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ABSTRACT

For direction-finding high-frequency (HF) radar systems, the correct separation of backscattered spectral

energy due to Bragg resonant waves from that due to more complex double-scattering represents a critical

first step toward attaining accurate estimates of surface currents from the range-dependent radar backscatter.

Existing methods to identify this ‘‘first order’’ region of the spectra, generally sufficient for lower-frequency

radars and low-velocity or low-surface gravity wave conditions, are more likely to fail in higher-frequency

systems or locations with more variable current, wave, or noise regimes, leading to elevated velocity errors.

An alternative methodology is presented that uses a single and globally relevant smoothing length scale,

careful pretreatment of the spectra, and marker-controlled watershed segmentation, an image processing

technique, to separate areas of spectral energy due to surface currents from areas of spectral energy due to

more complex scattering by the wave field or background noise present. Applied to a number of HF radar

datasets with a range of operating frequencies and characteristic issues, the newmethodology attains a higher

percentage of successful first-order identification, particularly during complex current and wave conditions.

As operational radar systems continue to expand to more systematically cover areas of high marine traffic,

close approaches to ports and harbors, or offshore energy installations, use of this type of updated method-

ology will become increasingly important to attain accurate current estimates that serve both research and

operational interests.

1. Introduction

High-frequency radars are now being used on an op-

erational basis to routinely observe surface currents

over the coastal ocean at scales from 20 to 150 km off-

shore (see Paduan and Washburn 2013 for a review).

The compact direction-finding SeaSonde radar system,

commerciallymanufactured by CODAROcean Sensors

(COS), dominates the number of installed systems

worldwide. Thus, much of the operational and scientific

uses of radar-derived surface currents rely on the pro-

cessing algorithms used by COS’s operational software,

the SeaSonde Radial Suite (COS 2013), to convert the

observed backscatter energy into surface currents from

known azimuthal directions.

In these systems, the correct identification of the first-

order region of the power spectra, where the signal is due

to the coherent backscatter from Bragg resonant waves

(Barrick 1972; Lipa et al. 2006; Paduan et al. 1999), is a

critical step toward attaining accurate estimates of surface

currents. The existing method used to determine these

limits within the SeaSonde Radial Suite relies on a series

of user-defined parameters (COS 2013; Table 1) that are

initially set upon installation of a system and infrequently

altered thereafter. In general, this methodology leads to

sufficiently accurate first order identification for lower

frequency (4–6 MHz) systems and locations with weak

velocities or small wave regimes. However, application

of the existing method to higher-frequency systems

(20–50MHz) as well as locations with strong currents or

variable wave regimes can lead to more frequent failures

of the method, resulting in elevated velocity errors. Ad-

ditionally, spectral noise from such factors as intermittent

radio frequency (RF) noise, ionospheric returns, or

moving offshore structures such as offshore wind energy

installations can confound the existing method if not

properly tuned for the instantaneous conditions present.

This paper presents an alternative methodology that

uses a single, globally relevant smoothing length scale

to reduce the number of user-defined parameters and

marker-controlled watershed segmentation (Meyer

1994), an image processing technique, to separate areasCorresponding author: Anthony Kirincich, akirincich@whoi.edu
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of spectral energy associated with useable observations

of surface currents from wave- or noise-dominated

spectral energy. Importantly, it considers the total

range-dependent spectra in a holistic approach, what

an operator would naturally do ‘‘by eye,’’ allowing the

method to correctly include complex patterns of Bragg

energy into the estimated first-order region. The paper

is organized as follows: additional details on the pres-

ently usedmethodology are presented first, followed by

details on the proposed methodology, referred to here

as the ImageFOLmethod, and the results of comparative

tests on a number of problematic SeaSonde datasets. A

MATLAB-based software package that performs the

calculations described in the text is being made publicly

available (Kirincich 2016a) to facilitate additional testing

and further advancements.

2. Background

The largest contribution to the returning power (the

backscatter) from a transmitted signal in the HF spec-

trum is the scatter from surface waves whose wavelength

is half the wavelength of the radar (Crombie 1955,

Fig. 1). These waves are known as the Bragg resonant

waves, in analogy to scattering from a crystal or a dif-

fraction grating. In the absence of a surface current,

scatter from the Bragg waves produce two peaks in the

power spectrum of the radar return at plus/minus the

frequency of the Bragg wave (the ‘‘first order’’ region;

Barrick 1972). Advection of these waves by a current

produces aDoppler shift in the location of the first-order

peaks and, hence, the observed displacement in fre-

quency can be used to infer the component of the cur-

rent along the radar beam. The Bragg peaks are flanked

by a weaker ‘‘second order’’ continuum (Barrick and

Weber 1977, Fig. 1) due to double scattering from two

wave periods, which contains contributions from all

ocean wave components longer than the Bragg waves.

For direction-finding systems such as the SeaSonde,

identification of the boundaries between the primary or

first-order Bragg region and the weaker or second-order

continuum within the observed backscatter spectra is

one of the first steps toward estimating the radial ve-

locities. Referred to as the first-order limits (FOLs),

these boundaries are identified using the self-spectra of

themonopole receive antenna (COS 2013), as they alone

contain a full response from all azimuthal directions. The

SeaSonde Radial Suite, COS’s operational software

package, relies on a proprietary calculation, performed

separately on the self-spectra of each range bin, to estimate

the FOLs. The calculation uses a set of five user-defined

parameters (COS 2013; Table 1) that act to compare the

power of the spectra near each of the Bragg lines to the

power of the areas adjacent to it, in order to identify sig-

nificant local minima in power, which are assumed to be

the gap in spectral space between the first-order region and

the flanking second-order regions. A number of the pa-

rameters (Table 1) are used to limit the result to spectral

areas some level above the noise floor, or with corre-

sponding current speeds less than some value. All spectral

points (in range and Doppler frequency) within the des-

ignated first-order region are processed using the multiple

signal classification (MUSIC) algorithm (Lipa et al. 2006;

Schmidt 1986) to define the radial velocities observed by

the direction-finding radar system.

It should be noted that phased-array HF radar systems,

which use beam forming to isolate each azimuthal di-

rection, also need to identify the first-order region from the

second-order continuum, particularly for inverting the

observed spectra to estimate the surface gravitywave field.

However, as the first-order region is narrower by definition

for phased-array spectra after beam forming, defining the

first-order limits within phased-array radar results is more

straightforward than for direction-finding radar results.

Operationally, the COS FOL parameters are set upon

installation of a new SeaSonde system, and are adjusted by

trial and error to minimize errors perceived by visual in-

spection of a few of the initial spectra (COS 2013; Cook

et al. 2008). Most parameters (Table 1) are not altered

thereafter. Some have only a minor effect on FOL

TABLE 1. SeaSonde FOL parameters.

Parameter Definition Usage

noisefact Noise threshold Data below noisefact*(noise floor) are eliminated.

nsm Smoothing length scale Used to set in spectral points.

fdown First-order factor Used (as amaxa/fdown) to set start point of search

for null between first- and second-order energy.

flim Low-energy threshold Used (as amaxa/flim) to eliminate spectral points

that are too far below the peak energy.

currmax Current threshold Sets the maximum current speed allowed.

ionfact Ionospheric contamination factor Used to find near Bragg energy greater than

ionfact*(Bragg Energy).

a The quantity amax is the range-dependent maximum power.
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identification (i.e., nsm), while others (fdown, flim) have

overlapping effects that may confuse efforts to tune the

identification process. For many systems, particularly

those operating at lower frequencies (4–5MHz), this initial

tuning of the FOL methods is sufficient and results in few

errors in the processing of the data. However, for higher-

frequency systems (24–26 and 40–45MHz), as well as

those operating in high and/or variable current environ-

ments or variable wave conditions (e.g., near bathymetric

shoals, strong currents, or high-wave climates), use of the

COS parameters have increased potential either to place

second-order wave energy within the first-order limits or

FIG. 1. Important aspects of the ImageFOL method, shown using the ensemble-averaged spectra (i.e., from the *.cs4 file) captured by

the monopole of LPWR at 0645 UTC 8 Feb 2011. (a) Range-dependent maximum power (bold solid) mean power (solid), and noise level

(dashed) for the lhs (blue) and rhs (right) of the spectra. (b) Spectral power for all ranges and Doppler frequencies (or velocities; color

shading) with the first-order line calculations based on well-tuned SeaSonde parameters (gray). (c) Range-averaged power for each

Doppler frequency. (d) Preprocessed spectra power in arbitrary units. Estimated watershed ‘‘segments’’ (outlined in red) with those

segments overlapping the Bragg region (outlined in black). (e) Processed power in arbitrary units after application of the length-scale-

based smoothing and reconstruction, used to compute the MCWS, and estimated watershed segments (outlined in black).
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to systematically exclude valid first-order energy (i.e.,

from a consistent phase of the tide) from the identified

first-order region. Either type of error can lead to poten-

tially substantial errors in the estimated surface currents.

A sample spectra from a 25-MHz radar site located on

Martha’s Vineyard, Massachusetts (site LPWR; Table 2),

illustrates the potential issues in more complex observa-

tions of the spectra (Fig. 1b). For a number of range bins

on the left-hand side of the spectra, the first-order region is

wide in spectral space with potentially multiple high en-

ergy peaks separated by areas that approach background

levels. In contrast, the right-hand side of the spectra has

muchhigher energy in the second-order region and amore

narrowly defined first-order region. Additional examples

of spectra fromLPWR(Fig. 2) illustrate both the potential

temporal variability of the spectral returns seen at an in-

dividual site as well as the flexibility required, both in time

and range, to assessing the first-order limits properly.

To be clear, it is certainly possible to tune existing FOL

methods in order to achieve reasonable results for an

individual spectrum. However, two points should be

readily apparent fromFigs. 1b and 2: 1) Stronger spatially

and temporally variable currents combined with moder-

ate variable wave conditions are transient effects that can

be difficult to correctly separate on a consistent basis

using a static set of parameters within existing methods.

2) Even within a single realization (i.e., Fig. 1b), a pa-

rameter set that gives reasonable results on one-half of

the spectramight performpoorly on the other half, due to

the large changes in the second-order energy level, aswell

as the variable spectral location of the second-order en-

ergy caused by variable wave conditions. Finally, within

the SeaSonde Radial Processing Suite, elevated levels of

background noise are identified by a separate parameter

(ionfact; Table 1) outside of the COS FOL method and

not recorded within the spectral data file.

TABLE 2. Test datasets and results.

Site LPWR NWTP HATY CORE STV1

Region Martha’s Vineyard Nantucket Cape Hatteras Oregon

Location

(lat8, lon;8)
41.3484, 270.6402 41.2420, 270.1070 35.2573, 275.5200 34.7601, 276.4114 46.1764, 2123.9784

Center frequency

(MHz)

25.500 13.520 4.575 4.537 13.512

Spectral length

(points)

1024 1024 1024 1024 512

v_incr (m s21) 0.0115 0.0217 0.0318 0.0321 0.0431

Data source —a —a H. Seim

(University of North Carolina)

M. Kosro

(Oregon State University)

Complicating issues Strong tides, Noise Gulf Stream, Strong tides,

Variable waves Noise Swell

Image FOL parameters

vel_scale (cm s21) 20 20 40 40 70

Max_vel (cm s21) 200 200 300 300 200

SNR_min 5 5 5 5 5

Results

No. files examined 2684 709 278 280 158

No. of failures by method

COS FOL 544 161 108 79

ImageFOL 261 7 17 6 29

Both 130 14 8 9

Failures by method (%)

COS FOL 25 25 42 31

ImageFOL 15 3 9 5 18

Length-scale variability

N 5 vel_scale/(100v_incr) 16 8 12 12 16

lhs: dn 6 std(dn) 8.5 6 3.1 5.0 6 2.0 8.6 6 2.6 8.5 6 2.0 8.2 6 2.7

rhs: dn 6 std(dn) 7.2 6 2.5 5.9 6 1.9 8.8 6 2.6 8.4 6 2.1 6.4 6 2.0

a Operated by the author.
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3. The ImageFOL method

This paper describes a new methodology for de-

lineating the first-order region in direction-finding HF

radar spectra that is both more flexible than the present

method and requires less tunable parameters. In almost

all of the situations described above, or those addition-

ally shown in Fig. 3, an operator with a minimal amount

of experience in radar processing can, by visual exami-

nation of the spectra, separate the first- and second-

order regions. Thus, since our eye can ‘‘see’’ where the

line should be drawn, a logical step forward is to in-

corporate image processing techniques to isolate all of

the first-order area in a coherent manner.

It will be shown below that image-based FOLs can do

as good as current methods for more simply defined

spectra, as well as allow for transient high-wave or strong

current effects to be captured more consistently in more

complex spectra. Additionally, the method requires only

three parameters to be set, or ‘‘tuned,’’ by the user

(Table 2). Similar to existing methods used by COS

software, two thresholding parameters are used: a mini-

mum signal-to-noise ratio for viable spectral estimates

of the surface currents and a maximum velocity that will

be encountered by the radar. The third parameter—a

smoothing length scale described in detail below—is

critical to the proper delineation of the FOLs.

a. Methodological background

The field of image processing is well developed and

numerous techniques exist to examine images and find

an object—say, a piece of fruit or a person—and separate it

FIG. 2. Sample monopole spectral power for LPWR (color shading), illustrating the potential variability of first- and second-order

spectral energies as well as the performance of first-order line calculations based on well-tuned SeaSonde parameters (COS FOLs, gray)

and the ImageFOL results (black): (top) 2230 UTC 19 Jul 2011, (middle) 0315 UTC 6 Apr 2011, and (bottom) 1730 UTC 6 Aug 2014.

Spectral points within the ImageFOL area that would be passed to the direction-finding algorithm, defined as SNR . 5 above the

demeaned, detrended spectra used to estimate the ImageFOLs (see text for details), are shown within the white contour.
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from the rest of the image. The facial recognition algo-

rithms embedded in the photo editing software on a typical

personal computer is one example of the field’s maturity.

The application of these techniques to the problem of

correctly determining the first-order region is useful, as this

process is effectively the same as what an operator would

naturally do by eye. Further, such a method considers the

total spectra present in a holistic approach, in contrast to

acting on each range bin independently.

The component of image processing of interest here

involves image segmentation, or isolating important ele-

ments of an image from the background and each other.

Numerous algorithms exist in the literature to perform

segmentation, including clustering methods, histogram-

based methods, edge detection, model-based segmen-

tation, watershed segmentation, and neural networks

segmentations (see Shapiro and Stockman 2001 for a full

summary). However, because of the natural roll off of

spectral power both in range and Doppler velocity that

exists within the first-order region, the most viable

methodology of interest is watershed segmentation.

Watershed segmentation and the watershed transform

(Meyer 1994) consider a grayscale image as representing a

topographic relief map, where light pixels are high and

dark pixels are low, and find individual ‘‘catchment ba-

sins’’ that are separated by ridge lines to define water-

sheds. This segmentation intowatersheds is more effective

if the basic location of foreground objects are already

identified, or marked, relative to the background, and

small blemishes have been removed (Mathworks 2013).

Thus, a hybrid approach called marker-controlled water-

shed segmentation (MCWS) is used here.

FIG. 3. Sample monopole spectral power (color shading) for sites (top) NWTP, (middle) HATY, and (bottom) STV1. In the two top

panels, the calculated first-order lines based on well-tuned SeaSonde parameters (COS FOLs, gray) and the ImageFOL results (black) are

shown along with the spectral points within the imageFOL area that would be passed to the direction-finding algorithm, defined as SNR. 5

above the de-meaned, de-trended spectra used to estimate the imageFOLs (white contour).
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MCWS couples morphological filtering of the image

as pretreatment in order to guide identification of the

core areas of objects before using watershed segmen-

tation to determine their boundaries. The image is fil-

tered using a smoothing disk of variable size to highlight

areas of minimal change either in the objects or the

background. Lighter areas of minimal change that are

greater than a threshold area in size are marked as ob-

jects, and the watershed transform is applied to find the

boundaries around adjacent objects. Thus, the size of the

smoothing disk is a critical parameter for proper use of

the technique. TheMCWS technique is straightforward,

well documented (Beucher 1993; Meyer 1994; Gonzalez

and Woods 2008), and well cited for use in similar types

of tasks within the medical image processing literature

(e.g., Pham et al. 2000; Yang et al. 2006). MCWS has

recently been adapted for oceanic research applications

(Al-Lashi et al. 2016) and is fully integrated into com-

mon analysis software packages such asMATLAB, used

here for development.

While MCWS is preferred for use here for both

performance and convenience, tests between MCWS

and other image segmentation techniques, such as edge

detection, found that the particular method of seg-

mentation did not matter as much as the preprocessing

of the spectra and a keen choice of the smoothing

length scale, both of which are described in detail be-

low. Thus, detailed sensitivity tests between image

segmentation techniques themselves are beyond the

scope of this work.

b. Application to HF radar: The ImageFOL method

In the context of identifying the first-order region

using MCWS, the spectral power observed by the

monopole (antenna 3) is considered here to be the image

and the Bragg region, the continuous region of elevated

spectral power due to Bragg scattering, is the object we

seek to isolate. However, small-scale (in power and

spectral space) variations, analogous to blemishes on

a photo, on or near the Bragg region exist within the

spectra. A user-defined length scale sets the size of the

smoothing disk, which is used both to smooth out small

variations to guide object identification and the water-

shed transform and to set the minimum size of an object.

Additionally, the ImageFOL method uses a number of

pretreatment steps based on important properties of the

first- and second-order regions of HF radar backscatter

and how they are represented in a typical spectra—that

is, what operators generally develop a feel for over

time—to further constrain the MCWS calculation.

These steps both prepare the image for the MCWS and

are used to adjust the user-defined length scale based on

the oceanic conditions observed within the spectra.

Somewhat independent of FOL identification, RF

noise can occur for various reasons, within random

spectral areas (range, Doppler velocity dependence, and

energy level), and must be accounted for. Broadband

energy that simply raises the noise floor at all or a given

range bin can be well constrained and eliminated by the

ideas described below. Isolated points, or more impor-

tantly areas/lines of noise energy at narrow bands of

Doppler frequency, are also easily ignored by the pres-

ent methodology except when they overlap the Bragg

region itself. However, if significant RF noise exists

within the Bragg region, then it becomes difficult to tell

whether an observation is signal or noise based on the

spectral patterns available during FOL estimation.

While other methods within an HF radar processing

stream outside of the FOL estimation component, such

as a postprocessing analysis of the azimuthal distribution

of radial velocity, could be used to identify noise versus

signal on a finer scale within the Bragg region, these are

beyond the scope of the present work. Thus, we seek to

identify such events so that the entire Bragg region in

the given spectral half can be ignored from the radial

velocity analysis, preventing potentially erroneous data

from being considered further.

c. Implementation

d Required inputs: In addition to the spectral power

observed by the monopole and basic information

about the radar itself (operating frequency, velocity

resolution, etc.), three user-defined parameters are

used within ImageFOL: The first parameter, max_vel,

the absolute maximum current speed encountered,

and the second parameter, snr_min, the minimum

power above the range-dependent mean power al-

lowed, are similar to those used by the COS FOL

method. The third, vel_scale, represents a velocity

scale (e.g., 20 cm s21) that is used to set N, the core

smoothing length scale used throughout ImageFOL,

as N 5 vel_scale/(100v_incr), where v_incr is the

Doppler velocity resolution of the spectral file. De-

fining N based on vel_scale allows the method to

account for the effects of the velocity resolution of the

spectra, a function of the spectral length and radar

frequency in a user-friendly way. The parameter vel_

scale can be defined either visually—for example,

one-half of the spectral width of most of the Bragg

energy—or mathematically—for example, the tem-

poral standard deviation of the observed velocities—

and adjusted from there to suit the user’s needs.
d Pretreatment: Using N as a smoothing length scale,

spectra are filtered in range to calculate the mean

energy separately for each spectral half (Fig. 1a),

corresponding to the Bragg returns from incoming
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[right-hand side (rhs)] and outgoing [left-hand side

(lhs)] Bragg waves. This range-dependent mean pro-

file is subtracted from each half to form the spectral

anomaly. Values less than zero are replaced with

zeros. All actions are performed separately on the left

and right halves of the spectra, as the characteristics of

the first, second, and background energies present due

to incoming (lhs) and outgoing (rhs) waves can be

markedly different. Using the mean spectral energy

was found to be a more reliable way to determine a

lower bound for the FOL calculation than using the

noise floor times some user-defined value. Given

equal first-order energy, increased wave activity

would increase the second-order energy present,

which would result in a higher mean energy and thus

an increased lower bound. The spectral anomalies are

then normalized by the range-dependent maximum

power (Fig. 1a) to transform the anomaly into a gra-

dient function spanning 0–1 at each range (Fig. 1d).

This acts to sharpen the difference between Bragg and

non-Bragg energy at higher range bins and normalize

for the roll off of Bragg energy with range.
d Adjusting the length scale: The length scale N is used

to set the initial size of the smoothing disk used by

MCWS. However, the size of the disk is adjusted to

account for both the magnitude and location of the

second-order energy present. This is a critical aspect of

the methodology, allowing the MCWS to be flexible

to a wide range of noise and signal conditions.

Stronger wave/wind conditions should use a smaller

disk, while no wave, strong current conditions should

use a wider disk. Strong swell conditions, which push

the second-order energy closer to the Bragg region,

require a smaller disk, somewhat independently of the

relative strength of the second-order energy. Image-

FOLs account for these effects by decreasing the

initial length scale and thus the size of the MCWS

smoothing disk by a noise factor, defined as the

difference between the mean second-order energy

and the noise floor. This noise factor is doubled if

the distance between the inner edges of the second-

order regions that flank the Bragg region is smaller

than 3N, typical of strong swell conditions. The inner

edges of the second-order regions are defined to be the

first local minimum to the left and right of the Bragg

peaks of the range-averaged spectra (Fig. 1c). A factor

of 3N is used here due to the space, in spectral points,

needed to define the basins between adjacent ridges

within the MCWS. The altered length scale, defined

here as dn, is always less than N, different for each

spectral half, and highly variable in time (Table 2).
d Screening for RF noise contamination: As described

above, elevated RF noise that contributes to higher

background noise levels (i.e., noise exists at all ranges

and Doppler velocities) and RF noise that is isolated

to individual range bins (i.e., horizontal lines in the

spectra) can be accounted for via pretreatment. Ele-

vated RF noise that exists at isolated Doppler fre-

quencies can be separated from the Bragg energy

using MCWS except when the noise overlaps with the

Bragg frequencies. Generally, high levels of Doppler

frequency–dependent RF noise at or near Bragg

Doppler frequencies have energy levels that are

somewhat independent of range, while in contrast

typical first-order energy decreases to lower power

at higher ranges. Thus, a viable test for whether noise

is a dominant part of the signal at near-Bragg fre-

quencies is whether the range-dependent energy level

at Bragg6N frequencies for each spectral half rolls off

at similar levels. If the ratio between the roll off on a

spectral half to the roll off on the other spectral half is

less than 0.4–0.5 (defined as an internal constant based

on inspection of the datasets described below), then

no FOLs are returned for the spectral half, effectively

removing it from radial processing.
d MCWS application: MCWS acts to first saturate the

top 1002 2dn percentile of the altered image (Fig. 1e)

to create a plateau effect within the Bragg region, al-

lowing markers to be placed at these regions of mini-

mal change before applying the watershed transform.

MCWS is applied iteratively, decreasing dn until a

minimum number of four segments are found within

each spectral half. This ensures that segments are

identified at the Bragg region and on either side of the

Bragg region. Applied to the test datasets below,

multiple iterations were rarely needed.
d Postprocessing: The MCWS procedure may generate

multiple segments that incorporate the first-order

region. Here again, dn is used to define those segments

that have area within6dn from the Bragg line as part

of the first-order region. Of these segments, all points

within them that have radial velocities less than max_

vel and pretreatment energies greater than snr_min

are assumed to be first-order energy (Fig. 1d, white

contour).

4. Application

a. Test datasets

Spectral results from five different HF radar in-

stallations (Table 2), including one 25-MHz system

(LPWR; Figs. 1 and 2), two 4-MHz systems (HATY and

CORE; Fig. 3) and two 13-MHz systems (NWTP and

STV1; Fig. 3) are used as test datasets to validate the

performance of the ImageFOL method. The data
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products used here (the *.cs4 or *.cs files as defined by

the SeaSonde Radial Suite; COS 2013) represent the

ensemble averaged spectra used to estimate the initial

radial velocities (referred to as the ‘‘radial shorts’’;

COS 2013) that are subsequently time averaged over a

larger 30–180min time window into the radial velocity

product normally reported by SeaSonde systems. Each

dataset was chosen due to the occurrence of compli-

cating issues that prevent existing methods from

achieving consistent and correct identification of the

first-order region (Figs. 2 and 3). Both 4-MHz systems

(HATY and CORE) observe portions of the Gulf

Stream where radial currents reach upward of 3m s21,

waves are highly variable, and significant background

noise issues exist (H. Seim and S. Haines 2016, per-

sonal communication). The STV1 data contain strong

tidal currents associated with the Columbia River

plume as well as narrow-banded high-energy swell (M.

Kosro 2016, personal communication). The 13-MHz

NWTP data have an issue with frequent intermittent

RF noise existing at variable Doppler frequencies.

And finally, the 25-MHz LPWR data used for much of

the ImageFOL testing exist in a low RF noise envi-

ronment but have highly variable currents and waves

that produce complex patterns within the spectra

(Figs. 1 and 2).

b. Assessment strategy

Two types of tests were performed to assess the per-

formance of the ImageFOL method in finding the first-

order region in comparison to existing methods. First,

visual inspection of the estimated first-order limits for all

available spectral results (Table 2) was performed to

assess how well either the COS FOL method or the

ImageFOL method was able to correctly separate the

first-order region from the second-order or noise ener-

gies. Failure was defined as incorrect estimates of the

first-order region for greater than three range bins of a

given ensemble-averaged spectra.

Second, the results from LPWR for both the COS and

ImageFOL methods were used to quantify the potential

for error reduction using comparisons to the surface-most

velocity observations of six bottom-mounted upward-

looking acoustic Doppler current profilers (ADCPs)

deployed within the radar’s range during August 2014.

Described in detail by de Paolo et al. (2015) and Kirincich

and Lentz (2017), locations of theADCP results used here

were 2.5–12.5km away from the radar in water depths of

12–25m (Table 3; Fig. 4) This test used each realization

of the ensemble-averaged spectra (a 15-min average of

multiple spectral estimates) and the FOLs from both

methods to estimate radial velocities (i.e., radial shorts;

COS 2013) following Lipa et al. (2006) and Kirincich

(2016b). For the nearest radar range–azimuthal bin to each

ADCP location, the raw time series of radial velocities,

with no subsequent quality assurance–quality control

(QA–QC) techniques applied, were compared to the

component of the horizontal velocity vector from the

surface-most ADCP depth bin, generally 2–4m below

the surface, aligned with the bearing between the radar

and ADCP locations. The along-radial ADCP velocities

were augmented with an estimate of the Stokes drift based

on nearby wave observations to account for this key dif-

ference between the two observation techniques (see

Kirincich et al. 2012 for details).

Comparisons between the radial velocities observed by

LPWR during August 2014, processed using both FOL

methods, and the near-surface velocities observed by

ADCPs were assessed by estimating the cross correlation

at zero time lag and the rms difference (RMSD) between

the radar and ADCP radial velocity time series for the

raw 15-min estimates of the radial velocities (Table 3). In

general, a large number of physical and instrumental

factors can lead to differences between ADCP and radar

observations. Published estimates of rms difference range

from 5 to 20cms21 (see Paduan and Washburn 2013)

with 5–6 cms21 representing a likely lower bound for

well-sampled time-averaged radar results in less complex

TABLE 3. LPWR results against near-surface ADCP-based velocities.

Raw 15-min samples Half-hourly averages

Bottom Range Angle from COS FOLs ImageFOLs COS FOLs ImageFOLs

Landera (km) Boresight (8)b R RMSD (cm s21) R RMSD (cm s21) R RMSD (cm s21) R RMSD (cm s21)

B 8.8 35 0.75 10.1 0.75 10.0 0.79 9.0 0.80 8.6

C 2.5 242 0.77 9.1 0.77 9.0 0.84 7.4 0.86 6.8

D 8.5 232 0.70 10.5 0.72 10.0 0.77 8.8 0.77 8.7

F 12.5 248 0.62 14.1 0.68 13.5 0.64 13.3 0.66 12.7

G 7.1 278 0.93 11.5 0.93 10.8 0.94 11.0 0.94 10.3

I 7.8 248 0.79 10.8 0.81 10.1 0.82 9.7 0.83 9.3

a Bottom lander locations shown in Fig. 4.
b As estimated, negative angles from boresight—that is, directly offshore—indicates locations to the east of the radar site.

AUGUST 2017 K IR INC I CH 1687



current environments. Thus, rms differences greater than

these lower bounds represent errors or differences due to

additional instrumentation or methodological issues that

could be reduced via additional processing methods (see

discussion below). Comparisons also are given for half-

hourly averaged radial velocities to determine the

potential importance of the FOL method on more com-

monly used data products (Table 3).

c. Results

For the COS FOL method, FOL results (the Alim

output; COS 2013) were taken from the resource fork of

the data file itself and not calculated in this study. For

each of the datasets used, the existing COS FOLs rep-

resented the best ‘‘well tuned’’ state of the operational

HF radar system possible using the COS parameters and

methodology. For the ImageFOL method, only two of

the three input parameters were varied among the test

datasets used here (Table 2). A higher max_vel was used

for HATY and CORE to account for the strong Gulf

Stream velocities present in those results. The charac-

teristic velocity scale, vel_scale, was set at 20 cm s21 for

LPWR and NTWP and at 40 cm s21 for HATY and

CORE, a-priori based on the width of the Bragg region

in Doppler frequency. For STV1, vel_scale was set at a

larger value of 70 cm s21 after viewing one-third of the

files used here, due to the tidal phase dependence of the

characteristic issue.

The first test aimed to determine, by inspection,

whether the ImageFOL methodology was able to

more accurately determine where the lines separating

the first- and second-order regions should be drawn.

While failure was defined as bad FOLs at greater than

three range bins in a given file, compared to the as-

sessment of a trained operator, it should be noted that

both methods were generally successful at greater

than one-half of the range bins in all of the files ex-

amined. Reported here in terms of the percent of files

with failures due to the large difference in the number

of data files observed (Table 2), failures of the COS

FOL method occurred in 25%–40% of files for those

sites with COS FOL results. ImageFOL failure rates

were lower, at 3%–18%, with failures at sites LPWR

and STV1 being the largest. At LPWR, while the

ImageFOL results are more often able to successfully

delineate the first-order region in complex current and

high-wave environments (e.g., Fig. 2, top panels), the

method still fails during complex currents and narrow-

banded low-frequency swell (e.g., Fig. 2, bottom

panel). At STV1, failures of the ImageFOL method

were primarily driven by exclusion of strong surface

currents in a narrow range to the left of the rhs Bragg

region, which become partially separated from the

main Bragg peak over the course of a tidal cycle

(Fig. 3). In contrast, NWTP and both 4-MHz sites have

large improvements in first-order line identification,

mostly due to the noise removal threshold for NWTP

but range-dependent complex velocities for the 4-MHz

sites (Fig. 3).

In the second test, comparisons between the radial

velocities observed by LPWR during August 2014,

processed using both FOL methods, and the near-

surface velocities observed by in situ ADCPs (Table 3)

showed improved comparisons between the radar and

the ADCP due to the FOL method alone, which sug-

gests that the method with a lower rms difference has

reduced errors relative to the other. For comparisons

using the raw 15-min radial velocities, the ImageFOL

rms difference results were consistently less than the

COS FOL rms differences. West of the radar or close to

the coast (landers B and C in Table 3), the reductions

were generally small [O(0.1) cm s21]. In contrast, loca-

tions to the east of the radar, at negative bearing angles

from boresight, had larger [O(0.5–0.7) cm s21] re-

ductions in rms differences. Correlation coefficients

FIG. 4. (a) The southern New England Shelf, denoted in red

relative to North America (inset top left), and the study area south

of Martha’s Vineyard (red box). (b) Coverage map for the WHOI

HF radar system with the locations of the radars (dots) and the

(triangles) used in the analysis. LPWR is the center of the three

radars that contribute to the coverage area.
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were generally the same or higher for ImageFOL re-

sults. These trends persist for comparisons using the

more typical 30-min averaged radial velocities, with

the ImageFOL rms difference being an average of

0.5 cm s21 less than the COS FOL rms differences. Pre-

vious studies of the coastal ocean offshore of Martha’s

Vineyard (Wilkin 2006; Kirincich et al. 2013; Kirincich

2016c) have shown that amplitudes of the surface tidal

velocities are strong and spatially variable to the east of

LPWR, where landers F, G, and I were located. Thus, the

west-to-east increase in the difference between COS

FOL and ImageFOL results is consistent with the

broader trend of more complex radial velocities present

to the east.

5. Discussion

Both of the assessment tests employed here suggest

that the ImageFOL methodology outperforms stan-

dard methods with little tuning for the individual type

of spectra or site characteristics. While a number of the

scaling and pretreatment factors used in ImageFOL

have parallels to that employed by the COS method, a

key methodological difference is the holistic approach

ImageFOL makes to consider all range bins at once.

Indeed, much of the gains in successful FOL identifi-

cation come from the inclusion of areas of spectral

energy that are ‘‘detached’’ from the range bin peak

but ‘‘attached’’ to high-energy areas at adjacent range

bins. Additionally, COS methods tended to include

waves when the second-order energy was high and/or

broad banded in Doppler frequency, suggesting that

the COS parameters are simply not flexible enough to

adapt to the potential range of variability present (e.g.,

Fig. 2). In contrast, the ImageFOL method essentially

has one tunable parameter, vel_scale, making re-

finement for a new radar configuration more

straightforward.

The largest fraction of identification errors using the

ImageFOL method occurs during strong currents and

narrow-banded, long-period swell. This represents the

most difficult non-noise conditions for either method

to successfully identify without changing parameters

so much that other failure modes become more im-

portant. For example, at SVT1 near the Columbia

River, using vel_scale 5 40 cm s21 resulted in 37 fail-

ures, all due to first-order energy falling outside of the

FOLs. Increasing to vel_scale 5 70 cm s21 gives fewer

failures, 29 in total, but 4 are now due to second-order

energy being included within the FOLs. Further in-

creases in vel_scale result in further increases in the

number of failures, with most of the failures coming

from second-order energy being included in the FOLs.

Additionally, in-depth analysis of failures during

swell conditions such as that seen in Fig. 2 suggests

that a poor identification of the inner edge of the

second-order region within the range-averaged spectra

(i.e., Fig. 1c) can lead to an elevated dn, contributing to

failures. While this provides a pathway for further im-

provement of themethod, these swell-dominated areas are

generally weaker in power than the true Bragg region.

Thus, coupling the ImageFOLmethod with a data quality

processing step that performs power-weighted averaging

of the radial velocity results (Kirincich et al. 2012; de Paolo

et al. 2015) might act to minimize the potential errors due

to these methodological failures.

The ImageFOL method is also adept at detecting

noise occurring in or adjacent to the Bragg region. It

is not known how many of the failures of the COS

FOL method found at NWTP would have been cap-

tured by the ionospheric interference check used by

the SeaSonde Radial Processing Suite or passed

through to the radial velocity calculation. Addition-

ally, the COS check compares the energy within the

identified FOL to that immediately outside of it, using

the threshold value to determine whether to ignore

the Bragg region at the given range bin (COS 2013).

For narrow-banded in Doppler frequency, noise oc-

curring within the Bragg region, the Bragg region it-

self is contaminated but potentially not identified

following this approach.

The LPWR radial velocity comparisons to in situ

ADCP velocities quantified the amount of error re-

duction possible solely due to refined FOLs. Consid-

ering the raw 15-min radial velocity results, reductions

in rms difference were largest in locations with

stronger, more variable currents and times of stronger

waves. Averaging to one-half-hour increments led to

rms differences that were 1–3 cm s21 lower than that

found for the raw 15-min radial velocities (Table 3)

but that still contained notable reductions in rms dif-

ferences for the ImageFOL method compared to COS

FOLs. While the total reductions in rms difference

were small relative to the absolute rms differences

(i.e., 5%–10%, Table 3), they still represent a poten-

tially significant part of the increase in rms difference,

or error, above the lower error bound of 5–6 cm s21

observed for HF radars (Paduan andWashburn 2013).

In terms of this lower bound, previous works have

found that the direction-finding algorithm itself con-

tributes 3–4 cm s21 of error (Laws et al. 2010) and the

near-surface shear between the radar at the surface

and the ADCP below can account for 2–3 cm s21 of

rms difference (Graber et al. 1997). The error re-

duction seen here, which exists in addition to these

and other sources of rms difference or error, should be
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considered to be one aspect of the total error budget

for radial velocities. Thus, it is most useful to consider

the effectiveness of the method in reducing the mag-

nitude of the errors observed above the 5–6 cm s21

lower bound. In this context, the 0.5 cm s21 mean error

reduction simply due to the improved the FOL

method can reduce the amount of error above the

lower bound by up to a third at some sites (Table 3).

Additional QA–QC steps such as spatial smoothing,

despiking the radial velocity time series via standard

methods (Halle 2008; NDBC 2009), or more advanced

non-velocity metric-based QA–QC steps (Kirincich

et al. 2012) have been shown to yield reductions that

account for significant portions of the remaining

error budget.

While the test datasets were chosen specifically for the

difficult conditions for FOL identification present, both

methods still have nonzero failures and, thus, more work

is needed to understand how the remaining failures—

particularly in large-current andhigh-swell environments—

can be addressed in a systematic way. For this reason,

and to spur additional development of HF radar signal

processing in a coherent way, a ‘‘developer’’ kit for

the ImageFOL method is available publicly online

(Kirincich 2016a). New FOL methods such as this could

be incorporated into an operator’s processing stream in

two ways: either 1) via the user-defined scripts section

of the existing SeaSonde Data Processing Suite (COS

2013) or 2) within an offline or parallel processing stream

that incorporates the methodology made available here

into the HFR_Progs MATLAB toolbox to load and

analyze SeaSonde-typeHF radar datasets. The data sent

by the WHOI-owned HF radar systems to the NOAA/

Integrated Ocean Observing System (IOOS)-sponsored

national network of HF radars already incorporates

these and other advancedmethods (Kirincich et al. 2012;

de Paolo et al. 2015; Kirincich and Lentz 2017) into the

real-time operational data processing.

6. Conclusions

An alternative methodology for first-order region

identification is presented that uses a single and glob-

ally relevant smoothing length scale, careful pre-

treatment of the spectra, and marker-controlled

watershed segmentation to separate areas of spectral

energy due to surface currents from areas of spectral

energy due to more complex scattering as a result of the

wave field or background noise present. Applied to a

number of HF radar datasets with a range of operating

frequencies and characteristic issues, the ImageFOL

method attains a higher percentage of successful first-

order limit identification, particularly during complex

current and wave conditions. In comparison, existing

identification methods more frequently fail in higher-

frequency systems and/or locations with more variable

current, wave, or noise regimes, leading to elevated

radial velocity errors. Carried through the remainder of

the HF radar processing methods to vector surface

currents, these errors can lead to increased noise levels

in the surface current estimates and potential biases in

the time-averaged surface currents.

While existing methods are likely to be sufficient for

HF radar installations in low-current and low-wave-

energy environments, future expansions of operational

HF radars are likely to focus on higher-frequency systems

to more systematically cover areas of high marine traffic

and close approaches to ports and harbors, all of which

entail complex current environments, such as flowaround

headlands, reefs, or embayments. Thus, many of these

types of systems are likely to experience difficulties in

identifying the first-order region due to variable currents

and wave energy. This is particularly true for HF radar

systems operating in view of future offshore wind energy

installations, where the rotating blades of the turbines

have the potential to cause strong reflections that could

result in variable noise conditions within the observed

spectral estimates that serve as the basis for HF radar–

based remote sensing of surface currents, waves, and

winds. Thus, use of this type of updated FOL methodol-

ogy will become increasingly important in the near future

to obtain accurate environmental data that increase both

marine domain awareness and coastal ocean research

objectives.

Acknowledgments. This analysis was supported by

internal funds from the Woods Hole Oceanographic

Institution. The author thanks M. Kosro, H. Seim,

M. Muglia, and S. Haines for providing portions of the

HF data that were used in this analysis, which are avail-

able upon request (akirincich@whoi.edu) as well as ar-

chived in the WHOI Data Library (http://dla.whoi.edu).

REFERENCES

Al-Lashi, R., S. Gunn, H. Czerski, R. S. Al-Lashi, S. R. Gunn, and

H. Czerski, 2016: Automated processing of oceanic bubble

images for measuring bubble size distributions underneath

breaking waves. J. Atmos. Oceanic Technol., 33, 1701–1714,

doi:10.1175/JTECH-D-15-0222.1.

Barrick, D. E., 1972: First-order theory and analysis of MF/HF/

VHF scatter from the sea. IEEE Trans. Antennas Propag., 20,

2–10, doi:10.1109/TAP.1972.1140123.

——, and B. L. Weber, 1977: On the nonlinear theory for gravity

waves on the ocean’s surface. Part II: Interpretation and

application. J. Phys. Oceanogr., 7, 11–21, doi:10.1175/

1520-0485(1977)007,0011:OTNTFG.2.0.CO;2.

1690 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 34

mailto:akirincich@whoi.edu
http://dla.whoi.edu
http://dx.doi.org/10.1175/JTECH-D-15-0222.1
http://dx.doi.org/10.1109/TAP.1972.1140123
http://dx.doi.org/10.1175/1520-0485(1977)007<0011:OTNTFG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1977)007<0011:OTNTFG>2.0.CO;2


Beucher, S., 1993: The watershed transformation applied to image

segmentation. Proceedings of the 10th Pfefferkorn Confer-

ence on Signal Image Processing in Microscopy and Micro-

analysis, P. W. Hawkes, Ed., Scanning Microscopy

International, 299–314.

Cook, T., L. Hazard, M. Otero, and B. Zelenke, Eds., 2008: De-

ployment and maintenance of a high-frequency radar for

ocean surface current mapping: Best practices. Southern

California Coastal Ocean Observing Tech. Rep., 39 pp.

COS, 2013: SeaSonde Radial Suite release 7. CODAR Ocean

Systems.

Crombie, D., 1955: Doppler spectrum of sea echo at 13.56Mc./s.

Nature, 175, 681–682, doi:10.1038/175681a0.

de Paolo, T., E. Terrill, and A. Kirincich, 2015: Improving Sea-

Sonde radial velocity accuracy and variance using radial

metrics.Proc. OCEANS 2015—Genova, Genoa, Italy, IEEE,

9 pp., doi:10.1109/OCEANS-Genova.2015.7271360.

Gonzalez, R. C., and R. E. Woods, 2008:Digital Image Processing.

Prentice Hall, 954 pp.

Graber, H. C., B. K. Haus, R. D. Chapman, and L. K. Shay,

1997: HF radar comparisons with moored estimates of

current speed and direction: Expected differences and

implications. J. Geophys. Res., 102, 18 749–18 766,

doi:10.1029/97JC01190.

Halle, C., 2008: HF radar processing using ‘‘nearest-neighbor’’

statistics. University of California, Davis, Bodega Marine

Laboratory Tech. Rep. 26 pp.

Kirincich, A., 2016a: ImageFOL developer package. Woods Hole

Oceanographic Institution. [Available online at https://github.

com/akirincich/imageFOLs.git.]

——, 2016b: Remote sensing of the surface wind field over the

coast ocean via direct calibration of HF radar backscatter

power. J. Atmos. Oceanic Technol., 33, 1377–1392,

doi:10.1175/JTECH-D-15-0242.1.

——, 2016c: The occurrence, drivers, and implications of sub-

mesoscale eddies on theMartha’s Vineyard inner shelf. J. Phys.

Oceanogr., 46, 2645–2662, doi:10.1175/JPO-D-15-0191.1.

Kirincich, A. R., and S. J. Lentz, 2017: The importance of lateral

variability on exchange across the inner shelf of Martha’s

Vineyard, MA. J. Geophys. Res. Oceans, 122, 2360–2381,

doi:10.1002/2016JC012491.

——, T. de Paolo, andE. Terrill, 2012: ImprovingHF radar estimates

of surface currents using signal quality metrics, with application

to the MVCO high-resolution radar system. J. Atmos. Oceanic

Technol., 29, 1377–1390, doi:10.1175/JTECH-D-11-00160.1.

——, S. J. Lentz, J. T. Farrar, and N. K. Ganju, 2013: The spatial

structure of tidal and mean circulation over the inner shelf

south of Martha’s Vineyard, Massachusetts. J. Phys. Ocean-

ogr., 43, 1940–1958, doi:10.1175/JPO-D-13-020.1.

Laws, K., J. D. Paduan, and J. Vesecky, 2010: Estimation and as-

sessment of errors related to antenna pattern distortion in

CODAR SeaSonde high-frequency radar ocean current

measurements. J. Atmos. Oceanic Technol., 27, 1029–1043,

doi:10.1175/2009JTECHO658.1.

Lipa, B. J., B. Nyden, D. S. Ullman, and E. Terrill, 2006: SeaSonde

radial velocities: Derivation and internal consistency. IEEE

J. Oceanic Eng., 31, 850–861, doi:10.1109/JOE.2006.886104.

Mathworks, 2013: MATLAB and Image Processing Toolbox re-

lease 2013a. The MathWorks, Inc.

Meyer, F., 1994: Topographic distance and watershed lines. Signal

Process., 38, 113–125, doi:10.1016/0165-1684(94)90060-4.

NDBC, 2009: Handbook of automated data quality control checks

and procedures. NOAA/NDBC Tech. Doc. 09-02, 78 pp.

Paduan, J. D., and L. Washburn, 2013: High-frequency radar

observations of ocean surface currents. Annu. Rev. Mar. Sci.,

5, 115–136, doi:10.1146/annurev-marine-121211-172315.

——, R. Delgado, J. F. Vesecky, Y. Fernandez, J. Daida, and

C. Teague, 1999: Mapping coastal winds with HF radar.

Proceedings of the IEEE Sixth Working Conference on

Current Measurement, S. P. Anderson et al., Eds., IEEE,

28–32, doi:10.1109/CCM.1999.755209.

Pham, D. L., C. Xu, and J. L. Princ, 2000: Current

methods in medical image segmentation.Annu. Rev. Biomed.

Eng., 2, 315–337, doi:10.1146/annurev.bioeng.2.1.315.

Schmidt, R. O., 1986: Multiple emitter location and signal param-

eter estimation. IEEE Trans. Antenna Propag., 34, 276–280,

doi:10.1109/TAP.1986.1143830.

Shapiro, L., and G. Stockman, 2001: Computer Vision. Prentice

Hall, 279–325.

Wilkin, J., 2006: The summertime heat budget and circulation of

southeast New England shelf waters. J. Phys. Oceanogr., 36,

1997–2011, doi:10.1175/JPO2968.1.

Yang, X., H. Li, and X. Zhou, 2006: Nuclei segmentation using

marker-controlled watershed, tracking using mean-shift, and

Kalman filter in time-lapse microscopy. IEEE Trans. Circuits

Syst. I, 53, 2405–2414, doi:10.1109/TCSI.2006.884469.

AUGUST 2017 K IR INC I CH 1691

http://dx.doi.org/10.1038/175681a0
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271360
http://dx.doi.org/10.1029/97JC01190
https://github.com/akirincich/imageFOLs.git
https://github.com/akirincich/imageFOLs.git
http://dx.doi.org/10.1175/JTECH-D-15-0242.1
http://dx.doi.org/10.1175/JPO-D-15-0191.1
http://dx.doi.org/10.1002/2016JC012491
http://dx.doi.org/10.1175/JTECH-D-11-00160.1
http://dx.doi.org/10.1175/JPO-D-13-020.1
http://dx.doi.org/10.1175/2009JTECHO658.1
http://dx.doi.org/10.1109/JOE.2006.886104
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1146/annurev-marine-121211-172315
http://dx.doi.org/10.1109/CCM.1999.755209
http://dx.doi.org/10.1146/annurev.bioeng.2.1.315
http://dx.doi.org/10.1109/TAP.1986.1143830
http://dx.doi.org/10.1175/JPO2968.1
http://dx.doi.org/10.1109/TCSI.2006.884469

