

The 2010 Haiti earthquake disaster: The ShakeMap that could have been...

EGU2020: Sharing Geoscience Online | D2782 - EGU2020-7484 | 8 May 2020

Shahar Shani-Kadmiel^{1,2} Gil Averbuch^{1,2}, Jelle Assink², Pieter Smets^{1,2}, Läslo Evers^{2,1}

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

© Authors. All rights reserved

The January 12, 2010 M_W 7 Earthquake Disaster in Haiti

Due to the lack of seismometers during the **2010 Haiti earthquake:**

Overestimated shaking intensity near the epicenter

Underestimated the extent of potentially damaging shaking

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme	PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme				
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy	POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy				
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124	PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139				
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116	PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178				
INSTRUMENTAL INTENSITY	I	-	IV	V	VI	VII	VIII	IX	X+	INSTRUMENTAL INTENSITY	1	-	IV	V	VI	VII	VIII	IX	X+				
										Scale based upon Worden et al. (2012)													

ShakeMap generated more than a day after the earthquake

ShakeMap generated more than 7 years after the earthquake

C Authors. All rights reserved

Data Processing

I51H1

I51H4

latts Village

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

151H3

© 2018 Google Image © 2019 Maxar Technologies

Tucker's Town

451H2

Google Earth

© Authors. All rights reserved

Data Processing

Array Processing

© Authors. All rights reserved

Seismo-Acoustic Coupling and Propagation Conditions

MSIS-00 & HWM14 **ERA5 RA ECMWF**

Seismo-Acoustic Coupling and Propagation Conditions

Hayes et al. NG2010

grows with backprojection distance

- Down

Proof of Concept with the help of Lord Rayleigh

50 km extended source discretised to 400 m pistons Gaussian STF, $f_c=0.1$ Hz moveout velocity of 3 km/s

Proof of Concept with the help of Lord Rayleigh

50 km extended source discretised to 400 m pistons Gaussian STF, $f_c=0.1$ Hz moveout velocity of 3 km/s

Discussion & Conclusions

- The temperature gradient in the thermosphere makes \bullet it so there is always a thermospheric duct that is effective to about 2000 km.
- This means that the existing infrasound stations of the IMS already provide 90% coverage of landmass.
- When the network is complete the \bullet coverage will increase to 97%.
- The remaining gaps can be easily ● covered with nationally operated stations.

Next steps:

3D and 1D raytracing...

Translating measured acoustic pressure intensity to ground motions at the epicenter...

EGU2020: Sharing Geoscience Online | D2782 - EGU2020-7484 | 8 May 2020

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

