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ABSTRACT:
A smeared spectrogram is a result of the smoothing kernel in the short-time Fourier-transform (STFT). Besides the

smeared energy, time and frequency phase information is also smeared, i.e., spectral components may contain impre-

cise phase information. The STFT is also used as the basis for more advanced signal processing techniques such as

frequency-domain beamforming and cross correlation (CC). Both methods seek the delay time between signals by

exploring phase-shifts in the frequency domain. Due to the inexact phase information in some of the time-frequency

elements, their phase shifts are incorrect. This study re-introduces the reassigned spectrogram (RS) as a measure to

fix the STFT artifacts. Moreover, it is shown that by using the RS, phase shifts can be optimized and improve beam-

forming and CC results. Synthetic and recorded data are used to show the advantage of using the RS in time-

frequency analysis, CC, and beamforming. Results show that, subject to certain constraints, the RS provides exact

time-frequency representation of deterministic signals and significantly improve CC and beamforming results. Array

analysis of infrasonic signals shows that better results are obtained by either the RS- or STFT-based analysis depend-

ing on the signals’ spectral components and noise levels. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

The spectrogram is a time-frequency representation

(TFR) of non-stationary signals, i.e., frequency- and

amplitude-modulated signals. It was developed during the

1940s and, due to its robustness and intuitive formulation,

has remained widely used (Bracewell, 2000; Cohen and

Loughlin, 2003; Koenig et al., 1946). The spectrogram is

defined as the squared modulus of the short-time Fourier

transform (STFT), which reads as

Sðt0;x0Þ ¼
ð

xðtÞhðt0 � tÞe�ix0tdt

¼ e�ix0t0

ð
XðxÞHðx� x0Þeixt0

dx
2p

: (1)

Here, x(t) is a signal, and h(t) is a smoothing kernel; their

frequency-domain forms are XðxÞ and HðxÞ, respectively,

and the integrals are defined as
Ð
¼
Ð1
�1. The squared modu-

lus, jSðt0;x0Þj2, can be understood as a time-frequency

energy distribution of the signal, smoothed by the energy

distribution of the window h(t). For convenience, TFR val-

ues will be presented in terms of absolute values, i.e.,

jSðt0;x0Þj, which later will be combined with phase infor-

mation and used in the beamforming method (Sec. III).

Also, angular frequency, x ¼ 2pf , is used for derivations

while the results are presented in terms of frequency, f.
The spectrogram and the STFT are fundamental signal

processing tools in many research fields. They are used for

time-frequency analysis and as a basis for more advanced

analysis methods. For example, in linguistics, the spectro-

gram is used to characterize the communication and speech

of humans and animals (Flanagan, 1972; Mellinger and

Clark, 2000; Potter et al., 1994), and in medical imaging, it

is used to describe skin vibrations and blood flow (Chen

et al., 2017; Jensen, 2006). The spectrogram and STFT-

based methods are also used to monitor and characterize

sources of anthropogenic noise like aircrafts, sirens, and

ships (Angione et al., 2016; Garibbo et al., 2020; Merino-

Mart�ınez et al., 2019; Rossi-Santos, 2020; Young, 1973). In

underwater acoustics, TFRs are used to detect earthquake

signals and describe the nature of their propagation (Evers

et al., 2014); TFRs are also used to study wind-induced oce-

anic waves (Guedes Soares and Cherneva, 2005).

Infrasound (low-frequency sound) monitoring is used to

detect anthropogenic and geophysical sources of sound in

the atmosphere, study their nature, and characterize the

atmosphere’s state. Such sources can be explosions

(Arrowsmith and Bowman, 2017), sprites (Applbaum et al.,
2020), ocean waves (Smets and Evers, 2014), and earth-

quakes (Shani-Kadmiel et al., 2018). In seismology, spectral

analysis is used to detect and distinguish between different

types of seismic waves (Gal et al., 2016), and in the field of

electromagnetism, spectrograms are used to detect radio

waves and describe the magnetosphere properties (Smith

and Angerami, 1968).

Although the STFT and spectrogram are widely used,

some inherent characteristics prevent obtaining a localized

TFR. First, in analogy to quantum mechanics’ uncertaintya)Electronic mail: gaverbuch@smu.edu, ORCID: 0000-0002-0403-9354.
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principle, the Heisenberg-Gabor limit states that it is impos-

sible to have a localized signal in time and frequency

(Cohen, 1995; Gabor, 1946); a high spectral resolution

requires long time windows, which yield low temporal reso-

lution. In contrast, a high temporal resolution requires short

time windows, which yield a low spectral resolution.

Second, the spectrogram’s time and frequency marginals are

not satisfied due to the running window, h(t), which leads to

imprecise representations of the signal’s bandwidth and

duration. However, energy can still be conserved by using a

normalized smoothing window (Cohen, 1995; Cohen and

Loughlin, 2003).

The simplest example that demonstrates the problem is

a spectrogram of the stationary-phase signal, exp ðix0tÞ. A

Fourier transform of a time window that contains an integer

number of cycles yields a delta function at x0. However, a

spectrogram with the same window size leads to a smeared

spectrum. Such spurious spectral distribution can be seen in

Fig. 1(b). Throughout this study, a normalized Hanning win-

dow is used as a smoothing kernel.

Besides obtaining smeared TFRs, the artifacts caused

by the STFT have additional impact on data analysis techni-

ques. Methods like frequency-domain beamforming and

cross correlation (CC) are based on the STFT. When beam-

forming, recorded signals are phase-shifted and summed to

maximize the signal power and suppress the noise. It will be

shown (Sec. II) that the STFT phase information, i.e., fre-

quency and time, does not always correspond to its TFR

location. Therefore, some of the beamforming phase-shifts

are inaccurate and prevent maximizing the signal power.

Similarly, CC phase-shifts suffer from the same effect.

Before continuing, it is important to stress that this does not

mean that previous work is wrong. The difference between

the performed phase-shifts and the one needed is relatively

small, and numerous excellent studies have properly used

both beamforming and CC techniques.

The method of reassignment corrects for the smeared

TFR that is caused by the smoothing kernels of the STFT. In

principle, this method uses the time and frequency first

moments to calculate the distribution’s center of gravity

coordinates. Then, the energy from each TFR element is

reassigned to the center of gravity, i.e., the reassignment

coordinates. Mathematically, the computed reassigned coor-

dinates correspond to the signal’s phase information

(Kodera et al., 1976). This method repairs the STFT arti-

facts and sharpens the spectrogram; it yields the reassigned

spectrogram (RS). As with the STFT, the RS is also sub-

jected to the Heisenberg-Gabor limit, therefore the resolu-

tion, i.e., the ability to resolve two nearby peaks, stays the

same. Figure 1(c) shows the RS of the previous stationary-

phase signal. As expected, the RS of the signal provides a

delta function in the frequency domain [Fig. 1(d)].

The remainder of the text is organized as follows.

Section II describes the method of reassignment. Two for-

mulations for computing the reassigned coordinates are pre-

sented, followed by numerical examples comparing the

STFT-based spectrogram and the RS. Frequency domain

beamforming is discussed in Sec. III, and beamforming

results, based on the STFT and the RS, are presented. In

addition, results of STFT- and RS-based CC are compared.

Finally, we discuss the presented results and its implications

in Sec. IV.

II. THE REASSIGNED SPECTROGRAM

A. Theory

Our analysis begins with the Wigner-Ville Distribution

(WVD). It provides a high TFR resolution for non-

stationary signals in the time-frequency plane and will be

used to derive the spectrogram and the reassigned coordi-

nates (Bracewell, 2000; Cohen, 1989; Debnath, 2002). The

WVD of a signal s(t) is defined as

Wðs; t0;x0Þ ¼
ð

sðt0 þ s=2Þs�ðt0 � s=2Þe�ix0sds: (2)

For a specific set of deterministic signals, the WVD provides

exact TFRs. For example, the WVD of an impulsive signal

dðt� t0Þ is a vertical line along the frequency axis at t0. A

chirp signal of the form eiðx0tþat2=2Þ has a WVD that corre-

sponds to dðx� x0 � atÞ (Bracewell, 2000). However, a

monochromatic cosine signal with angular frequency x0 has

a distorted WVD with horizontal lines at x ¼ 6x0, and a

spurious component at x¼ 0 (Cohen, 1995). Linear combi-

nations of the mentioned signals also yield spurious TFR

components. The limited signals for which the WVD

FIG. 1. (Color online) One Hz stationary phase function example. a)

Signal. b) Spectrogram. c) Reassigned spectrogram. d) Normalized cross

sections (dashed line in b and c) of the spectrogram and reassigned

spectrogram.
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provides accurate TFRs, and the broad range of signals for

which it provides inaccurate representations, limit its practi-

cal use.

A way to suppress these artifacts is by convolving Eq.

(2) with a two-dimensional smoothing kernel, Uðt;xÞ. The

smoothed WVD is defined as

Wsðs; t0;x0Þ ¼
ð ð

Uðt;xÞWðs; t0 � t;x0 � xÞdt
dx
2p

:

(3)

This operation preserves time and frequency invariance

while reducing the accuracy of the localized WVD (Auger

and Flandrin, 1995; Cohen, 1989). Moreover, by defining

the smoothing kernel, Uðt;xÞ, to be the WVD of a smooth-

ing window, h(t), it can be shown that the smoothed WVD

is identical to the well-known spectrogram (Auger and

Flandrin, 1995; Frazer and Boashash, 1994; Stankovic,

1994)

Wspðs; t0;x0Þ ¼
ð ð

Wðh; t;xÞWðs; t0 � t;x0 �xÞdt
dx
2p

¼ jSðt0;x0Þj2: (4)

A way to overcome the smeared distribution is by the

reassignment method. First proposed by Kodera et al.
(1976) and then furthered developed by Auger and Flandrin

(1995), the method shows that the local centers of gravity of

the spectrogram correspond to the phase components of the

signal. In addition, spectrogram elements in the vicinity of

the local centers of gravity may contain phase information

with the original signal components. It means that some

time-frequency elements contain phase information that cor-

responds to a different time and frequency, i.e., to the local

center of gravity (this concept will become clearer in Sec.

II B). The method reassigns energy from time-frequency ele-

ments to their local center of gravity. By that, a sharp and

accurate TFR of the signal is obtained. Auger and Flandrin

(1995) show that reassignment preserves time and frequency

invariance and energy conservation, and can localize chirps

and impulsive signals.

By computing the time first moment of Eq. (4), the reas-

signed time coordinate is expressed as

t̂ðt0;x0Þ ¼ t0�

ð ð
tWðh; t;xÞWðs; t0� t;x0�xÞdtdxð ð
Wðh; t;xÞWðs; t0� t;x0�xÞdtdx

:

(5)

Similarly, the reassigned frequency coordinate is

expressed as

x̂ðt0;x0Þ¼x0�

ðð
xWðh;t;xÞWðs;t0� t;x0�xÞdtdxðð
Wðh;t;xÞWðs;t0� t;x0�xÞdtdx

:

(6)

Let a signal be composed of N amplitude and frequency

modulated components

sðtÞ ¼
X

n

AnðtÞeiðxntþ/nÞ; (7)

where n ¼ 1;…;N, and xn ¼ xnðtÞ. If the components ful-

fill a separability condition, the STFT yields the analytic sig-

nal, i.e., the amplitude and frequency modulated

components. It is known that the analytic signal can also be

obtained using the Hilbert transform of the waveforms.

However, the presented methods to compute the reassigned

coordinates are based on the STFT. The separability condi-

tion is based on Gabor’s uncertainty principle and states that

within the vicinity of x0 and t0, there is only one dominant

component. Mathematically, the condition is given by

jSnðt0;x0Þj2�
X
l 6¼n

jSlðt;xÞj2; jx�x0j � �;

jt� t0j � d; (8)

where � and d are small parameters. Under this assumption,

the argument of the STFT has the form

argfSnðt;xÞg ¼ ðxntþ /nÞ; (9)

up to a 2pm factor, where m is an integer. In addition,

Kodera et al. (1976) show that Eqs. (5) and (6) can be sim-

plified to

t̂ðt;xÞ ¼ � @

@x
arg Sðt;xÞ
� �

(10)

and

x̂ðt;xÞ ¼ xþ @

@t
arg Sðt;xÞ
� �

; (11)

respectively. Compared to Eqs. (5) and (6), these compact

expressions have a clear physical meaning; Eqs. (10) and

(11) show that a local center of gravity is located at the

instantaneous time and frequency of the signal. Equally

important, these equations imply that some time-frequency

elements contain phase information that does not correspond

to their coordinates. It will be shown that this characteristic

prevents maximizing beamforming results.

Numerically evaluating the phase derivatives introduces

challenges in the form of phase-unwrapping, accuracy in the

presence of noise, and parting components that violate the

separability condition (Fulop and Fitz, 2006; Nelson, 2001).

A proposed way to overcome these challenges is by an

implicit evaluation of the phase derivatives. Auger and

Flandrin (1995) show that Eqs. (5) and (6) can be expressed

in terms of STFT with different window functions. The reas-

signed time coordinate can be formulated as

t̂ðt;xÞ ¼ t� Re
Sshðt;xÞ � S�ðt;xÞ
jSðt;xÞj2

( )
; (12)
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and the reassigned frequency coordinate as

x̂ðt;xÞ ¼ xþ Im
Sdhðt;xÞ � S�ðt;xÞ
jSðt;xÞj2

( )
; (13)

where Ssh and Sdh correspond to STFTs with smoothing ker-

nels t � hðtÞ and dh/dt, respectively. These alternative expres-

sions of the phase derivatives are expected to be more

reliable (Papandreou-Suppappola, 2003, chapter 5). For the

tested signals in Secs. II B and III, both methods provided

similar results. A detailed derivation of Eqs. (10)–(13) can

be found in the Appendix.

Regardless of the chosen method, the STFT values are

reassigned from the original coordinates to the new coordi-

nates as jSðt;xÞj ! R½t̂ðt;xÞ; x̂ðt;xÞ�. The RS can be

expressed as

Rðt0;x0Þ ¼
ð ð
jSðt;xÞjdðt0 � t̂ðt;xÞÞ

� dðx0 � x̂ðt;xÞÞdtdx: (14)

Numerical recipes of the methods can be found in Nelson

(2001), Papandreou-Suppappola (2003, chapter 5), and

Fulop and Fitz (2006).

B. Examples

Here, the method of reassignment will be demonstrated

on a selection of signals. Hopefully, this section will con-

vince the reader that this method can accurately correct the

spectrogram and prove that the smeared spectrum contains

phase information that corresponds to the original signal

components. Figure 2 shows the reassigned coordinates for

a signal composed of two stationary-phase functions. The

black line in the bottom frame represents a normalized spec-

trogram cross section. Peaks at 2 and 4 Hz correspond to the

signal’s frequencies. However, the smeared spectrum in

their vicinity is a consequence of the STFT. One can see

that elements of the spectrogram are reassigned to 2 and

4 Hz. According to Eq. (11), the reassigned coordinates

prove that frequency bins that do not correspond to the sig-

nal’s frequencies contain its phase information. For

instance, phase information at 1.5 Hz corresponds to 2 Hz. It

should be noted that TFR elements with very low ampli-

tudes contain numerical noise, which leads to false reassign-

ment, e.g., 3.5 Hz element is mapped to a frequency higher

than 4 Hz. Therefore, a threshold value is needed for the

method. Here, the spectrogram RMS is used as a threshold.

For the second example, two superimposed 50 s chirp

signals are used. In order to obtain a high time resolution,

the spectrogram is computed with a 2-s window and a 90%

overlap. Figure 3(b) shows the spectrogram of the signal,

and the black lines represent the chirps’ phase variation. The

RS shows a sharp TFR that mostly agrees with the input

phase functions [Fig. 3(c)]; the presence of some spurious

components between 20 and 25 s results from spectral com-

ponents that do not satisfy the separability condition. A

comparison between the TFRs’ cross sections shows that the

spectrogram misrepresents a broadband signal while it is

clear that the signal has distinct narrowband components

[Fig. 3(d)]. Also, it shows the RS low-amplitude artifacts

that result from not satisfying the separability condition.

These artifacts disappear once the separability condition is

satisfied.

The third example uses a random signal that is filtered

from 1 to 1.5 Hz. As in the previous example, a 2-s window

with a 90% overlap is used. Figure 4(b) suggests a frequency

range of almost 2 Hz, while Fig. 4(c) shows that the RS is

mainly composed of narrowband components. Moreover, in

some time elements, the RS appears to bifurcate. This arti-

fact is attributed to either low amplitude components or dis-

satisfaction of the separability condition.

An essential aspect of data analysis is the choice of the

processing parameters; each field with its unique signals has

its rule of thumb for defining them. Nevertheless, an optimal

choice is gained by experience, and the presented study is

no exception. In the previous examples, a short time window

was used to gain high temporal resolution at the expense of

an initial smeared spectrum in the frequency axes. It was

found that accurate, consistent results are obtained by cor-

recting the smeared frequency. Conversely, a long window

that provides a higher resolution in frequency with a

FIG. 2. Reassigned frequency coordinates. a) Superimposed 2 and 4 Hz

stationary-phase signals. b) Reassigned frequency coordinates as a function

of the spectrogram frequency coordinates. The black line corresponds to a

normalized cross section of the signal’s spectrogram. Black circles repre-

sent the reassigned frequencies’ coordinates.
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smeared spectrum in the time axes could not be rectified

appropriately by the reassignment method.

III. APPLICATION TO BEAMFORMING

Frequency-wavenumber (f-k) analysis, or frequency

domain beamforming, is an array analysis technique that

estimates the recorded waves’ parameters. These parameters

consist of back azimuth (BA), apparent velocity (AV), and

signal-to-noise ratio (SNR). The BA points to the direction

of arrival, and AV indicates the plane wave inclination

angle. In this study, the algorithm proposed by Smart and

Flinn (1971) is used. The algorithm is based on a f-k search

(Bartlett, 1948) combined with the Fisher statistic. It is the

frequency domain equivalent to the delay-and-sum beam-

former (Melton and Bailey, 1957), which provides a statisti-

cal framework to estimate the probability of detection.

Assuming a propagating plane wave of the form

gðx; tÞ ¼ Aeiðkx�xtÞ; (15)

which crosses an N elements array located at

xnði ¼ 1; 2;…;NÞ. The wave vector

k ¼
kx

ky

kz

2
64

3
75 ¼ x

c

cosðhÞ cosð/Þ
cosðhÞ sinð/Þ

sinðhÞ

2
64

3
75 (16)

describes the direction of propagation, and the wavenumber

is defined as k ¼ x=c. The angles h and / correspond to the

grazing angle and azimuth from the north, respectively, and

c is the propagation velocity. Defining Sðt;x; xnÞ as the

STFT of the recording at location xn, the signal power

across the array is computed by

PSðt;x; kÞ ¼
���� 1

N

XN

n¼1

Sðt;x; xnÞe�ik�xn

����
2

: (17)

The kernel e�ik�xn , also known as the steering vector, can be

read as the phase shift to the center of the array. Phase-

shifting and summing the spectral components with the cor-

rect wavenumbers will maximize the sum. The total power

is defined as

PTðt;xÞ ¼
1

N

XN

n¼1

jSðt;x; xnÞj2; (18)

and the Fisher ratio is

Fratioðt;x; kÞ ¼
PSðt;x; kÞ

PTðt;xÞ � PSðt;x; kÞ
ðN � 1Þ: (19)

The wavenumbers that give the highest Fisher ratio indicate

the parameters of the wave that most likely crossed the

array. The Fisher ratio is also a measure of the single com-

ponent SNR via Fratio ¼ N � SNR2 þ 1. Detections can be

determined by thresholding on Fratio or SNR (Averbuch

et al., 2018).

Other formulations of weighted steering vectors provide

different array responses and can improve the results

FIG. 3. (Color online) Two chirps example. (a) Signal. (b) Spectrogram.

The solid black line corresponds to the true phase function. (c) Reassigned

spectrogram. (d) Normalized cross sections (dashed line in b and c) of the

spectrogram and reassigned spectrogram.

FIG. 4. (Color online) One to 1.5 Hz signal example. (a) Signal. (b)

Spectrogram. (c) Reassigned spectrogram. (d) Normalized cross sections

(Dashed line in b and c) of the spectrogram and reassigned spectrogram.
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(Capon, 1969; Neele and Snieder, 1991). Moreover, post-

processing algorithms can sharpen the results and detect

multiple sources (den Ouden et al., 2020; Schmidt, 1986).

However, testing different detectors is not in the scope of

this study, and only the presented beamforming formulation

is used.

One can see that the phase-shifts in Eq. (17) are wave-

number dependent, and the wavenumbers are frequency-

dependent [Eq. (16)]. A basic assumption in this process is

that the phase information in Sðt;x; xnÞ corresponds to x.

Thus, the phase shifts and the phase information correspond

to the same frequency. However, Sec. II shows that this

assumption is not always accurate.

As stated in Sec. I, this characteristic does not imply

any flaws in previous studies. The implication of the RS on

the frequency domain beamforming is that the phase-shifts

can be optimized. In what follows, a comparison between

beamforming based on the STFT and RS is presented. The

only difference in the beamforming algorithm is that the

STFT spectrum, Sðt;x; xnÞ, is replaced by Rðt;x; xnÞ.
However, the phase information needs to be incorporated. In

Eq. (14), only the absolute values of the STFT are reas-

signed to Rðt;xÞ. Now, the phase information of the

assigned time-frequency elements is included, and phase

shifting Rðt;x; xnÞ is possible.

Although this section’s focus is beamforming,

frequency-domain CC is also based on phase-shifts of the

recordings. Therefore, the smeared STFT spectrum prevents

performing accurate phase-shifts. For clarity, the frequency-

domain CC reads

ðf ? gÞðtÞ ¼
ð

f �ðsÞgðsþ tÞds

¼
ð

F�ðxÞGðxÞeixt dx
2p

: (20)

To find the lag time, t, between time segments of recordings,

the arguments FðxÞ and GðxÞ will be time bins of the

STFT. Therefore, similarly to Eq. (17), the frequency of the

phase shift in Eq. (20) and the functions phase information

may differ.

The first beamforming and CC examples are based on a

time-shifted signal. Two identical signals are used where

one is time-shifted by 0.2 s. Random noise is added to them

independently. The processing parameters are set to a five-

second window with a 90% overlap. Figure 5(b) shows the

average Fisher ratio based on the STFT and RS. Results

based on the RS show a significant increase in the computed

Fisher values. Moreover, the results are sharper and more

precise, i.e., the lobe is smaller. CC results are presented in

Fig. 5(c). As expected, the RS-based CC provides higher-

amplitude correlation coefficients. However, the RS-based

correlation curve is a scaled version of the STFT-based

curve, and both curves’ maxima point to the correct lag

time.

While these results seem very promising, both methods’

performance depends on the ability of the RS to provide

accurate results. For example, in the presence of high noise

levels or spectral components that do not fulfill the separa-

bility condition, the RS introduces artifacts. Such artifacts

may lead to a worse beamforming and CC performance than

with the STFT. Hence, the traditional methods that are

STFT-based are more forgiving and, therefore, more robust.

In addition, the time correction of the RS leads to some time

bins that do not contain any signal components. In that case,

the STFT-based methods will provide detections, and the

RS-based methods will not.

In order to test the method on array data, the eight-

element I18DK infrasound array is used. This array is part

of the International Monitoring System (IMS), operated by

the Comprehensive Nuclear-Test-Ban Treaty Organization

(CTBTO). As in the previous example, the method is first

tested with synthetic data that consists of a continuous signal

in the frequency range of 0.2–0.3 Hz, AV of 340 m/s, and

BA of 300 degrees. Due to the array aperture and the sig-

nal’s frequency content, the processing parameters are set to

FIG. 5. Fisher ratio and cross correlation examples for two time-shifted sig-

nals. (a) Signal. (b) The average Fisher ratio calculated based on the STFT

(dashed line) and RS (solid line). (c) The average cross correlation based on

the STFT (dashed line) and RS (solid line).
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a 20-s window with a 90% overlap. Figure 6 shows the

beamforming results based on the STFT and RS for two

time bins: Figs. 6(a) and 6(c) are based on the RS, and Figs.

6(b) and 6(d) are based on the STFT. Time bins that fulfill

the separability condition yield a focused RS and improve

the traditional beamforming results [Fig. 6(a)]. However,

other time bins yield the opposite results, which can be

explained by: (1) Signal components that violate the separa-

bility condition lead to incorrect RS. (2) Higher noise levels

prevent accurate phase shifts. Due to the higher-amplitude

spectral components of the RS, the total power and noise

power are higher (than of the spectrogram), which leads to

lower SNR values. (3) Time bins without any signals may

contain a smeared STFT spectrum that will lead to detec-

tions. The results in Figs. 6(c) and 6(d) are probably an out-

come of the first two reasons.

After benchmarking the method’s performance with

synthetic data, recordings from February 10, 2010, are used

to test its performance on real data (Fig. 7). The specific day

is chosen after verifying that there are coherent microbarom

signals present. Microbaroms are low-frequency acoustic

perturbations in the atmosphere caused by oscillating

standing oceanic waves (Smets and Evers, 2014).

Depending on the ocean depth, their frequencies range

between 0.2 and 1 Hz (Assink et al., 2014; Averbuch et al.,
2019; Smets and Evers, 2014). Here, the recorded signals

have dominant microbarom frequencies ranging between

0.2 and 0.3 Hz.

Figure 8 shows the beamforming results, based on the

STFT and RS for two time bins. As in Fig. 6, the two meth-

ods perform differently at different time bins. Compared to

Fig. 8(b), Fig. 8(a) shows a significant improvement in both

amplitude and the lobe’s width. However, the STFT-based

results in Fig. 8(d) are better compared to Fig. 8(c).

IV. DISCUSSION AND CONCLUSIONS

The STFT and the spectrogram are fundamental signal

processing tools. Due to the use of a smoothing kernel, the

spectrogram is smeared. This leads to an imprecise TFR of

the recorded signals, i.e., some time and frequency elements

contain spurious energy. Moreover, these elements may con-

tain phase information that does not correspond to its spec-

trogram coordinates. This study re-introduces the RS. The

FIG. 6. (Color online) Frequency-wavelength analysis results for a synthetic signal, based on the STFT (b and d) and RS (a and c). Colors correspond to the

Fisher ratio, and solid contours represent the SNR. The dashed circle and arrow represent the signal’s apparent velocity and BA, respectively. Rows corre-

spond to the same time window.
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RS fixes the smeared spectrum by reallocating energy to the

distribution’s center of gravity, which corresponds to the

original signal phase information. In addition to time-

frequency analysis, STFT is used as the basis for more

advanced signal processing techniques such as frequency-

domain beamforming and CC. Both methods are based on

the phase-shifts of the recordings. Since some TFR elements

contain phase information that does not correspond to their

coordinates, their phase shifts are inaccurate. It means that

by using the RS, phase shifts can be optimized.

Section II B shows three examples that compare the per-

formance of the spectrogram and RS on known signals.

Figures 1, 3, and 4 show the stark difference in the obtained

TFRs; the spectrograms suggest that all signals are broad-

band, even though they are actually narrowband.

Conversely, the RS-based TFRs provide better representa-

tions of the signals. Since the spectrogram is widely used to

characterize recorded signals and will probably stay that

way, the presented results should be used to highlight the

inherent artifacts and limitations of the method.

While the theory and results presented in Sec. II are a

reminder of a method that stayed under the radar, to the best

of the author’s knowledge, this is the first time that the RS is

applied to f-k analysis and CC (Sec. III). Figure 5 shows the

significant improvement in both the Fisher ratio and CC

coefficient for a time-shifted signal. The improvement is

based on optimizing the phase-shifts by correcting the

FIG. 7. (Color online) I18DK representative recordings. (a) Signal. (b)

Spectrogram. (c) Reassigned spectrogram.

FIG. 8. (Color online) Frequency-wavelength analysis results for I18DK data, based on the STFT (b and d) and RS (a and c). Colors correspond to the

Fisher ratio, and solid contours represent the SNR. Rows correspond to the same time window.
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smeared spectrum. The Fisher ratio results, based on the RS,

show improvement in both amplitude and accuracy.

However, the RS-based correlation curve is a scaled version

of the STFT-based curve. Therefore, there is no improve-

ment in accuracy although it was expected.

The results from array data beamforming are less con-

clusive than the synthetic time-shifted signal example. For

time bins with signal components that fulfill the separability

condition, the RS-based beamforming is superior to the

STFT-based analysis. In contrast, the STFT-based beam-

forming provides better results if the separability condition

is violated and/or in the presence of high noise levels and

coherent noise. Furthermore, higher amplitudes of the RS

lead to an increase in the total power across the array [Eq.

(18)]. In that case, if the phase-shifts are not accurate, the

signal power and Fisher ratio are significantly low. These

facts make the STFT-based beamforming more forgiving in

contrast to the RS-base beamforming and, therefore, more

robust for infrasound data analysis.

The strict conditions of the RS-based beamforming and

its sensitivity to the choice of parameters make it hard to

implement operationally. However, the RS can still shed

more light on the observations and help choose better proc-

essing parameters for the STFT-based beamforming. For

example, if one bases her/his analysis on the spectrogram,

an initial broad frequency spectrum may be chosen; such a

broad spectrum will lead to relatively low SNR values. The

low values result from phase shifts that are “too far” from

the one needed. By trial and error, excluding some spectral

components will increase the SNR since the difference

between the performed phase-shifts and those needed is rel-

atively small. Finally, a further decrease in the frequency

range will reduce the SNR since the remaining frequency

elements contain low amplitudes. Such trial-and-error steps

can be reduced by basing the parameters’ choice on the RS.

In Sec. III, other beamforming methods were men-

tioned. Methods like Capon, MUSIC, and Clean, are based

on improving the array response and iteratively deconvolv-

ing it from the obtained results. While these methods come

to improve the beamforming part, the presented study comes

to improve the input data. Therefore, the RS can be used by

the more advanced beamforming techniques, and it is

expected to yield further improvement of the results.

High noise levels, coherent noise, and violation of the

separation condition harm the RS performance. For the

method to be more applicable to array data, further studies

on reducing noise and parting spectral components are

needed. It is found that RS-based beamforming performs

better on narrowband signals. If a broadband signal is pre-

sent, performing the array analysis on several narrow fre-

quency bands may be useful. This method may also be

applied to measurements with relatively low noise levels,

such as medical imaging and aeroacoustic studies.

The given examples in this study are mainly based on

continuous narrowband signals. Therefore, one can ques-

tion the performance of the method in the presence of a

broadband transient signal. Auger and Flandrin (1995)

show that the RS [Eq. (14)] inherits the WVD property and

can localize a delta function in time. However, the theory

does not discuss the RS performance on band limited tran-

sients, i.e., a filtered delta function. Preliminary numerical

tests show the presence of artifacts at the RS of such sig-

nals (not shown here). Therefore, in order to apply the RS

on such signals (for time-frequency analysis and beam-

forming) further theoretical and numerical studies on the

problem are needed.

To conclude, this study shows the potential benefits of

using the RS in time-frequency analysis, frequency-domain

cross correlation, and f-k analysis. In addition, the limita-

tions are presented and discussed. Hopefully, this study will

encourage further investigation that will lead to improved

signal processing capabilities.
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APPENDIX: DERIVING THE REASSIGNED
COORDINATES

To help the reader, a detailed derivation of the reas-

signed coordinates [Eqs. (10)–(13)] by Kodera et al. (1976)

and Auger and Flandrin (1995) is presented. The starting

points are the time and frequency first moments of the

energy measured by the WVD [(Eq. (4)]. Since the imagi-

nary part does not contribute to the integration, and the reas-

signed coordinates are real quantities, only the real part of

the expression will be considered:

t̂ðt0;x0Þ ¼ t0�

ð ð
tWðh; t;xÞWðx; t0� t;x�x0Þdtdxð ð
Wðh; t;xÞWðx; t0� t;x�x0Þdtdx

(A1)

and

x̂ðt0;x0Þ¼x0�

ðð
xWðh;t;xÞWðx;t0� t;x�x0Þdtdxðð
Wðh;t;xÞWðx;t0� t;x�x0Þdtdx

;

(A2)

which are almost the same as Eqs. (5) and (6). The only dif-

ference is that x0 � x is now swapped, and the frequency

variable elsewhere remains the same (based on the symme-

try of the FT).

The WVD can be expressed by the original signal and

window functions as
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ð ð
Wðh; t;xÞWðx; t0 � t;x� x0Þdt

dx
2p

¼
ð ð

X�ðx� x0ÞH�ðxÞe�ixt0
dx
2p

eix0t0

� xðt0 � tÞhðtÞe�ix0tdt

¼ S�ðt0;x0ÞSðt0;x0Þ: (A3)

Following Eq. (A3), Eq. (A1) can be rewritten as

t̂ðt0;x0Þ ¼ t0 �
eix0t0

ð
txðt0 � tÞhðtÞe�ix0tdtS�ðt0;x0Þ

S�ðt0;x0ÞSðt0;x0Þ
:

(A4)

To obtain the expressions of the reassigned coordinates by

Kodera et al. (1976), the integral in the numerator can be

expressed asð
txðt0� tÞhðtÞe�ix0ðt�t0Þdt¼�i

@Sðt0;x0Þ
@x0

þ t0Sðt0;x0Þ:

(A5)

Plugging Eq. (A5) in Eq. (A4) yields

t̂ðt0;x0Þ ¼
i

Sðt0;x0Þ
@Sðt0;x0Þ
@x0

: (A6)

Expressing Sðt0;x0Þ as its argument and modulus yields

t̂ðt0;x0Þ ¼ �
@

@x0

arg Sðt0;x0Þ
� �

þ i

A

@A

@x0

: (A7)

Retaining the real part of the expression leaves us with

t̂ðt0;x0Þ ¼ �
@

@x0

arg Sðt0;x0Þ
� �

; (A8)

which is equivalent to Eq. (10).

Similarly, Eq. (A2) can be simplified to the form

x̂ðt;xÞ ¼ xþ @

@t
arg Sðt;xÞ
� �

: (A9)

For the expressions proposed by Auger and Flandrin

(1995), let us start with Eq. (A4). Now, the integral in the

numerator will be expressed asð
txðt0 � tÞhðtÞe�ix0ðt�t0Þdt ¼ Sshðt0;x0Þ; (A10)

where Sshðt0;x0Þ correspond to the STFT based on the

smoothing kernel t � hðtÞ. This representation provides us

with Auger’s expression for the reassigned time,

t̂ðt;xÞ ¼ t� Re
Sshðt;xÞ � S�ðt;xÞ
jSðt;xÞj2

( )
: (A11)

Similarly, Eq. (A3) is used to express Eq. (A2) as

t̂ðt0;x0Þ ¼ x0

�
eix0t0

ð
xxðt0 � tÞhðtÞe�ix0tdtS�ðt0;x0Þ

S�ðt0;x0ÞSðt0;x0Þ
:

(A12)

Expressing xhðtÞ as Imfdh=dtg, the integral in the numera-

tor can be written asð
xxðt0 � tÞhðtÞe�ix0tdt ¼ ImfSdhðt0;x0Þg; (A13)

where Sdh corresponds to the smoothing kernel dh/dt. The

reassigned frequency coordinate is expressed as

x̂ðt;xÞ ¼ xþ Im
Sdhðt;xÞ � S�ðt;xÞ
jSðt;xÞj2

( )
: (A14)
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