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Introduction
Mesoscale and high-frequency variability in the Ross Sea (Antarctica):
An introduction to the special issue
1 http://science.whoi.edu/users/olga/PRISM_RS/PRISM_RS.html.
Variability on short temporal and small spatial scales poses particu-
larly difficult challenges to the field of oceanography. To begin with,
these high frequency and high wavenumber fluctuations can confound
interpretation of longer-term trends in mean properties of the physical,
biological, and chemical characteristics of the ocean. This “noise”
superimposed on the trends of interest must be filtered out to obtain
accurate estimates of such temporal changes (seasonal, annual, interan-
nual, interdecadal, etc.). Secondly, such fluctuations can actually con-
tribute to the mean properties themselves. For example, mesoscale
eddies contribute significantly to the general circulation in a number
of areas throughout the world ocean (McWilliams, 2008). A classic con-
struct for separation of themean fieldφi and its variability φi′ is provid-
ed by the Reynolds decomposition, in which the fluctuating component
averages to zero: φi ¼ φi þ φ0

i. The Reynolds average of the product of
two constituents φiφ j includes contributions not only from the means

φi φ j but also from the Reynolds stressesφ0
iφ

0
j, the latter of which repre-

sents the net effect of the fluctuating components. Yet another impact of
variability on mean properties stems from the fact that biological and
chemical transformations typically involve nonlinear functions; even
though φ0

i ¼ 0, the average value of such a function operating on the

fluctuations f ðφ0
iÞ can be significantly different from zero. For all of

these reasons, it is of considerable interest to characterize the variability
of the ocean over the full spectra onwhich such fluctuations exist. How-
ever, given the difficulty and expense ofmaking in situmeasurements in
the ocean, high frequency and high wavenumber variability tend to be
chronically undersampled.

This statement is particularly true in remote areas of the world
ocean, such as the Ross Sea (Fig. 1a). One notable exception is the
study of Hales and Takahashi (2004), which used the Lamont Pumping
SeaSoar to sample physical, bio-optical and biogeochemical properties
of the upper 100 m at a horizontal resolution of 3–5 km. They observed
significant variability at length scales on the order of 10 km or less in
nearly all the quantities measured. Indeed, satellite ocean color imagery
in the Ross Sea is suggestive of an energeticmesoscale (Fig. 1b). Howev-
er, the mechanisms generating this patchiness in the Ross Sea are not
known. Likely candidates include advective stirring and local stimula-
tion of productivity via iron supply and/or light availability through var-
iations in mixed layer depth. Cross-shelf transport of Modified
Circumpolar Deep Water (MCDW) could be involved in both aspects,
as well as the larger-scale penetration of low-biomass water from off-
shore that is apparently constrained to the troughs adjacent to Pennell
and Mawson Banks (Reddy and Arrigo, 2006).

The need to understand themechanisms responsible for suchmeso-
scale and high-frequency phenomena in the Ross Sea is motivated by
the important physical, biological, and biogeochemical processes that
http://dx.doi.org/10.1016/j.jmarsys.2016.10.010
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take place there. Not only is the Ross Sea a site of bottom water forma-
tion (Gordon et al., 2009; Jacobs and Giulivi, 1999), it is the single most
productive area in the Southern Ocean (Smith et al., 2014a) and may
constitute a significant but unaccounted for oceanic sink of atmospheric
carbon dioxide, largely driven by phytoplankton production (Arrigo
et al., 2008). Recent field efforts aimed at various aspects of these prob-
lems have paid special attention to resolving mesoscale eddies and
other high frequency variability. This issue is an initial attempt to
synthesizefindings from “Processes Regulating Iron Supply at theMeso-
scale” (PRISM1; McGillicuddy et al., 2015), “Slocum Enhanced Adaptive
Fe Algal Research in the Ross Sea” (SEAFAReRS; Smith et al., 2014b), the
“Ross SeaMesoscale Experiment” (RoME; Rivaro et al., 2017;Misic et al.,
2017) and several national Italian programs.

Many aspects of the striking seasonal variability in the Ross Sea stem
from the polynyas characteristic of the region. Although these polynyas
are a seasonal phenomenon, their dynamics are strongly influenced by
high-frequency and small-scale variations in wind forcing (Sansiviero
et al., 2017). By incorporating these aspects into an advanced numerical
model, Sansiviero et al. are able to achieve realistic hindcasts of the
Terra Nova Bay polynya. Dynamics of these ice masses are critical to
the phytoplankton living within them (Saggiomo et al., 2017),
which are important not only locally but also in seeding open water
blooms.

Seasonal variability is also present in the inflow of MCDW onto the
Ross Sea continental shelf, as revealed by a ten-year time-series of
moored observations described by Castagno et al. (2017). These data
also document fluctuations on a wide range of time scales, from tidal
to interannual. Complementary hydrographic sections illustrate how
MCDW inflows are constrained by the topography to enter through
deep troughs between the various banks along the outer continental
shelf. The impact of MCDW-derived dissolved iron on fueling phyto-
plankton blooms on Pennell and Mawson Banks is examined in Kustka
et al. (2015) as well as two additional papers in this issue (Kohut
et al., 2017; Hatta et al., 2017). Kustka et al. foundMCDW to be less im-
portant than benthic sources in sustaining phytoplankton on Pennell
Bank. Comparisons of Pennell and Mawson Banks by Kohut et al. and
Hatta et al. reach the same conclusion with respect to the relative im-
portance of benthic and MCDW sources of dissolved iron. However,
they differ somewhat in their explanations for why phytoplankton con-
centrations are higher on Pennell than Mawson Bank. Whereas both
studies indicate a stronger density gradient above the bottom mixed
layer on Mawson Bank inhibiting delivery of the benthic source to sur-
face waters, Kohut et al. suggest two additional factors: (1) a weaker
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Fig. 1. Top: Bathymetric map of the Ross Sea shelf (figure modified from Mosola and
Anderson, 2006). Bottom: SeaWiFS ocean color image of the Ross Sea, showing
phytoplankton blooms in the polynya, 18 December 1998 (image courtesy of the
SeaWiFS Project, NASA GSFC).
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sedimentary source of iron on Mawson Bank due to more scouring by
stronger tidal currents, and (2) longer residence times of surface waters
on Pennell Bank favoring retention of phytoplankton blooms.

The processes involved in iron supply are addressed in Mack et al.
(2017), who diagnose transport pathways and flux estimates from a
realistic circulation model of the region. Tracer simulations explicitly
represent sources from the benthos and MCDW as described above, as
well as sources frommelting sea ice and glacial input. Although their re-
sults are somewhat sensitive to tidal forcing and horizontal grid resolu-
tion, benthic sources generally provide the largest input of iron on a
regional basis, consistent with other recent studies (Gerringa et al.,
2015; Marsay et al., 2014; McGillicuddy et al., 2015). The next largest
sources of iron are sea ice melt and MCDW, with a very modest input
from glacial sources. Ryan-Keogh et al. (2017) examine the biological
consequences of variations in iron supply, describing seasonal changes
toward an iron-efficient photosynthetic strategy that may contribute
to a shift in the phytoplankton assemblage from one comprised mostly
of Phaeocystis antarctica to one dominated by diatoms as iron becomes
limiting.

Within the context of such seasonal variations, there are mesoscale
fluctuations whose amplitude in some cases can approach that of the
seasonal variability itself. For example, Smith et al. (2017) use optical
measurements from the Video Plankton Recorder to document dramat-
ic fluctuations in P. antarctica associated with fronts and eddies in vari-
ous regimeswithin the Ross Sea. One such regime occurs along the edge
of the Ross Ice Shelf, where eddies of 20–30 km in diameter containing
the cold and fresh signature of glacial meltwater are generated by an in-
stability process enhanced by roughness along the edge of the ice shelf
(Li et al., 2017). Bochdansky et al. (2017) describe measurements using
both an in situ digital holographic microscope and a video particle pro-
filer that reveal small-scale and mesoscale patterns in particle abun-
dance, composition, and export. Vertical resolution of b1 m facilitates
characterization of fine-scale patchiness that correlateswith the density
structure, thereby indicative of physical-biological interactions in shap-
ing the observed distributions. Misic et al. (2017) also document meso-
scale fluctuations in the distribution of particulate organic matter, with
substantial variations in its lability that may regulate its utilization by
higher trophic levels and export to depth. High-resolution spatial sur-
veys of the carbonate system (Rivaro et al., 2017) indicate variability
on scales of 10 km, driven primarily bymesoscale perturbations to phy-
toplankton activity. The imprint of mesoscale physical-biological inter-
actions is also detected in higher trophic levels, as acoustic surveys of
krill reveal negative correlations between Euphausia superba and
salinity, whereas E. crystallorophias is positively correlated with fluores-
cence (Leonori et al., 2017). Acoustic time-series data are suggestive of
event-driven changes in the abundance of migrating zooplankton, al-
though much of the variance in the year-long record occurred at diel
and tidal frequencies (Picco et al., 2017).

Study of high-frequency and small-scale variations in the ocean is
facilitated by the use of autonomous observing platforms such as
gliders, whose use is becoming more common in regional studies.
In situations where oceanographic features of interest are relatively
stationary, as is the case when they are associated with bottom to-
pography, glider sections can be an effective means to characterize
them. For example, Kustka et al. (2015) and Kohut et al. (2017) use
glider sections to map phytoplankton blooms overlying Mawson
and Pennell Banks. Jones and Smith (2017) utilize a different sam-
pling approach, using the glider for long-term occupation of a 25 ×
50 km grid in time-series mode. Although spatial variability is pres-
ent in the data, the repeat occupations in this survey area permit ef-
fective extraction of high-frequency temporal variability in
chlorophyll fluorescence, which are driven primarily by wind-
driven mixing. Such short-term events are severely undersampled
by typical shipboard measurements, and may play an important
role in biogeochemical cycling.

The studies described herein constitute an initial step toward char-
acterization of high frequency and mesoscale variability in the Ross
Sea. Although these findings are substantial, considerably more effort
will be needed to fully characterize the wide variety of processes in-
volved. Fortunately, future progress in this area will be facilitated by
continuous improvement in observing technologies and their use not
only on ships but also on autonomous platforms. Models of increasing
spatial and temporal resolution will play an important role in
interpreting these observations and ultimately understanding the im-
pacts of mesoscale and high frequency variability in mean properties
and fluxes of physical, biological, and chemical materials.
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Italian researchers fondly remember their friend and colleague Luigi
Michaud, who tragically died January 17th 2014 in the Ross Sea that he
loved and studied with great passion.
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