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Preface

Mesoscale physical–biological–biogeochemical linkages
in the open ocean: An introduction to the results of the

E-Flux and EDDIES programs
Mesoscale currents, fronts, and eddies are ubiquitous
and energetic features of ocean circulation. These phenom-
ena, sometimes referred to as the ‘‘internal weather of the
sea,’’ accommodate a diverse set of physical, chemical, and
biological interactions that influence marine biogeochem-
istry on a wide range of timescales. These biogeochemical
processes include the ‘‘biological pump,’’ i.e., the transfer
or flux of biologically produced organic matter and
associated elements from the surface ocean to depth
(Ducklow et al., 2001; Volk and Hoffert, 1985). Within
�80% of the world’s oceans, productivity of the auto-
trophic organisms that contribute to the biological pump
are typically limited by major nutrients (e.g., nitrogen,
phosphorus, and silica) or trace metals (e.g., iron). Primary
production in such oligotrophic regions therefore depends
mostly on intense recycling of nutrients within the surface
sunlit waters, with only a small fraction supported by that
entering from the atmosphere, or from the physical
transport of nutrients from nutrient-rich deep waters
below. Evidence that mesoscale and submesoscale phe-
nomena play a role in the latter process dates back more
than two decades (Angel and Fasham, 1983; Franks et al.,
1986; Ring Group, 1981; Tranter et al., 1980; Venrick,
1990; Woods, 1988).

In the open ocean there are several common types of
eddies. In the northern hemisphere, cyclones tend to create
a doming of the seasonal and main pycnoclines, while
anticyclones depress both. Mode-water eddies (MWEs)
are anticyclonic in rotation; however, the seasonal pycno-
cline domes while the main thermocline is depressed
(McGillicuddy et al., 1999). Wind-driven eddies in the lee
of Hawaii can be either cyclonic or anticyclonic; cyclonic
lee eddies have surface intensified features that dome the
seasonal thermocline (Lumpkin, 1998; Patzert, 1969). In
the Sargasso Sea, cyclones and MWEs have been
hypothesized to reconcile differences between tracer-based
estimates of new production and traditional shipboard
methods that may miss eddy-induced biological activity
(Jenkins, 1988). Estimates of the integrated impact of eddy-
driven nutrient fluxes vary considerably, from less than
10% to more than 50% of annual new production
e front matter r 2008 Elsevier Ltd. All rights reserved.
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(Falkowski et al., 1991; Martin and Pondaven, 2003;
McGillicuddy et al., 2003; Oschlies, 2002; Oschlies and
Garcon, 1998; Siegel et al., 1999; Williams and Follows,
2003).
The following compendium of papers focuses on results

from interdisciplinary programs carried out in the sub-
tropical North Pacific (E-Flux) and North Atlantic
(EDDIES). The structure of this volume reflects the
studies’ main goals. The first section focuses on character-
izing eddy-induced perturbations of the physical and bio-
optical environment via a tracer release experiment
(Ledwell et al., 2008) and a variety of shipboard, drifter,
and satellite measurements (Dickey et al., 2008; Greenan,
2008; Kuwahara et al., 2008; Nencioli et al., 2008; Siegel
et al., 2008). These studies also include model results that
confirm the importance of winds and topography in
Hawaiian eddy formation and propagation (Calil et al.,
2008). The second section delves into the plankton
community response, with papers discussing nutrient
distributions (Li and Hansell, 2008; Rii et al., 2008),
plankton community structure (Bibby et al., 2008; Brown
et al., 2008; Ewart et al., 2008; Rii et al., 2008), growth,
grazing, and metabolic balance (Bibby et al., 2008; Landry
et al., 2008a; McAndrew et al., 2008) and the influence of
eddies on higher trophic levels (Goldthwait and Steinberg,
2008; Landry et al., 2008b). The third section concentrates
on the resulting impacts on biogeochemical cycling and
export. It includes discussions of nutrient fluxes (Jenkins
et al., 2008), inorganic carbon, and nutrient mass balance
(Chen et al., 2008; Mahaffey et al., 2008), as well as sinking
particle fluxes derived from sediment traps and radio-
nuclide disequilibria (Buesseler et al., 2008; Maiti et al.,
2008; Verdeny et al., 2008). Last is a section that examines
the impact of eddies on trace elements and gases, including
hybrid-type metals in the Pacific (Noble et al., 2008) and
dimethylsulfide production and distributions in the Atlan-
tic (Bailey et al., 2008; Gabric et al., 2008).
The E-Flux program was comprised of three cruises in

the lee of the Hawaiian Islands that sampled two cold-core
cyclonic eddies of different ages (Benitez-Nelson et al.,
2007; Dickey et al., 2008). Cyclone Noah, a 2.5-month-old
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mature feature when sampled, was characterized by
relatively modest perturbations in chlorophyll and phyto-
plankton composition with respect to ambient conditions
(Kuwahara et al., 2008; Rii et al., 2008). In contrast,
younger and stronger Cyclone Opal contained a substantial
diatom bloom that decayed during the 9 days over which it
was sampled (Brown et al., 2008; Landry et al., 2008b;
Nencioli et al., 2008; Rii et al., 2008). Within the deep
chlorophyll maximum (DCM) at Opal’s center, photo-
synthetically active (high Fv/Fm) diatoms, such as the
chain-forming Chaetoceros spp., were �100 times higher in
biomass (Bibby et al., 2008; Brown et al., 2008) and �60
times higher in diatom pigment concentrations (Rii et al.,
2008) than that observed in the ambient waters. Enhanced
phytoplankton growth rates induced a shift from net
heterotrophy outside the eddy to net autotrophy inside the
eddy (McAndrew et al., 2008) and were accompanied by an
increase in microzooplankton grazing (Landry et al.,
2008a). Noble et al. (2008) describe mesoscale variations
in the distribution of cobalt, manganese, and iron, and
suggest an eddy-driven concentrating mechanism to
explain their observations within Cyclone Opal.

EDDIES (EDdy Dynamics, mixing, Export, and Species
composition) sampled ten different eddies in varying
degrees of detail in the Sargasso Sea off Bermuda
(McGillicuddy et al., 2007). The results presented herein
mainly focus on repeat occupations of two target eddy
features, cyclone C1 and mode-water eddy A4. Cyclone C1
was several months old when it was first sampled.
Although nutrients and chlorophyll were enhanced at the
center of C1 (Li and Hansell, 2008), the cyclone was
populated with a nano- to pico-phytoplankton community
typical of the region (Bibby et al., 2008; Ewart et al.,
2008). Net community production experiments within C1
suggested a transition from net autotrophy to net hetero-
trophy during the course of observations (Mourino-
Carballido and McGillicuddy, 2006). MWE A4 was also
several months old at the time of first sampling, but it
contained extraordinary diatom biomass (Bibby et al.,
2008; Ewart et al., 2008; McGillicuddy et al., 2007) that
persisted throughout six occupations during the ten weeks
of observations. The peak chlorophyll concentration
measured at the eddy center exceeded all prior observations
at the nearby Bermuda Atlantic Time Series Study (BATS)
site, eight standard deviations higher than the mean DCM
measured at BATS (McGillicuddy et al., 2007). Microscope
counts from a sample in the high-chlorophyll region
revealed the diatom assemblage within MWE A4 was
dominated by colonies of Chaetoceros spp., present in
concentrations of ca. 8000 colonies l�1, with each colony
containing ca. 15 cells. Given background diatom cell
concentrations of 1–50 cells l�1 (Goldman and McGillicud-
dy, 2003; Guillard and Kilham, 1977; Hulburt, 1990),
diatom concentrations were 2400–100,000 times higher
than the ambient waters. Diatom pigment biomass was 5–8
standard deviations above the BATS long-term average
(Ewart et al., 2008; McGillicuddy et al., 2007). Both C1
and A4 contained elevated zooplankton biomass, suggest-
ing eddy-driven impacts on higher trophic levels as well
(Goldthwait and Steinberg, 2008). Sargasso Sea eddies also
were used as natural laboratories for studies of dimethyl-
sulfide (DMS) cycling in an effort to help explain the so-
called ‘‘DMS summer paradox’’ characterized by peak
DMS concentrations during periods when biomass and
productivity are at their seasonal minima. Bailey et al.
(2008) and Gabric et al. (2008) incorporate lagrangian-
based observations from two eddies into one-dimensional
numerical models, exploiting the physical and biological
differences in the two features to expose the mechanisms
responsible for structuring the mean DMS profile.
Why are the biological and biogeochemical responses

within the sampled eddies so different and complex? It is
likely due to a combination of variations in the magnitude,
timing, and duration of nutrient input caused by differ-
ences in eddy formation, intensity, age, and movement, as
shown in this volume, and previously (Bibby et al., 2008;
Brown et al., 2008; McGillicuddy et al., 1999; Nencioli
et al., 2008; Olaizola et al., 1993; Rii et al., 2008; Sweeney
et al., 2003). For example, Hawaiian lee eddies are wind-
driven, formed by a combination of strong northeasterly
winds and island topography (Chavanne et al., 2002;
Lumpkin, 1998; Patzert, 1969), whereas mid-ocean eddies
in the Sargasso Sea are formed by instability processes that
feed on the larger scale flow (Robinson, 1983). Once
formed, cyclones and MWEs may also respond differently
to eddy–wind interactions. A spatially uniform wind
forcing over an eddy gives rise to mesoscale variations in
surface stress because the wind blows in the same direction
on one flank of the eddy and opposes it on the other. This
effect causes upwelling in the interiors of anticyclones
(Dewar and Flierl, 1987; Martin and Richards, 2001),
which reinforces eddy-induced upwelling in MWEs
(Ledwell et al., 2008; McGillicuddy et al., 2007). In
contrast, this same type of eddy–wind interaction tends
to depress the isopycnal uplift associated with cyclones
(McGillicuddy et al., 2007).
Despite the many differences among eddies sampled by

the two programs, it is clear that cyclones in both the
Atlantic and Pacific can result in substantial nutrient
injection. Cyclones Opal and C1 were both relatively strong
features, with eddy-induced nitrate injections estimated to
be 0.2molm�2 (Mahaffey et al., 2008) and 1.4molm�2

(Jenkins et al., 2008), respectively. Interestingly, of all the
cyclones that have been sampled intensively in the lee of
Hawaii (Table 1) and in the Sargasso Sea (Table S1,
(McGillicuddy et al., 2007), only Cyclone Opal contained
an extraordinary diatom bloom. Others contained more
modest enhancements of diatoms (a factor of two or less),
whereas some did not appear to perturb phytoplankton
community structure at all (Table 1).
Why was Cyclone Opal unique in this regard? Cyclone

Opal was characterized by very large isopycnal displace-
ments of over 100m at the eddy core, relative to
surrounding waters (Table 1), and was less than 6 weeks
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Table 1

Summary of biological/biogeochemical sampling of Hawaiian Lee eddies

Eddy Reference Isopycnal or isotherm

displacement

Approximate age

during samplinga

(months)

Remarks

Opal E-Flux (this volume) st ¼ 24.2; 140–20m 1 5�TChl a of ambient waters; Diatom

biomass 100� ambient waters

Noah E-Flux (this volume) st ¼ 24.0; 140–90m 2.5 1.1�TChl a of ambient waters; Prochl.

spp., prymn., & pelago

Sep 1989 Allen et al., 1996;

Falkowski et al., 1991;

Olaizola et al., 1993

Temp ¼ 23 1C; 130–100m Unknown 1.3–2.2�TChl a; Prochl. spp., chloro

spp., & chryso

Mikalele Seki et al., 2001 Temp ¼ 21 1C; 1 Background TChl a,

140–90m Pelago. & prasin.

Loretta Seki et al., 2001 Temp ¼ 23 1C; 140–50m 6 1.5�TChl a; diatoms, dinos, & haptos

Haulani Bidigare et al., 2003;

Vaillancourt et al.,

2003

st ¼ 23.5; 140–0m 2 1.5�TChl a; Prochl. spp., prymn.,

diatoms, & dino.

The magnitude of the isopycnal or isothermal displacement is used here as a proxy for eddy strength at the time of sampling. Because of seasonal and

interannual variations in mean stratification, a single isopycnal or isotherm cannot be used for diagnostic purposes. Instead, an isopycnal/isotherm

residing just below the euphotic zone in ambient waters is used.
aBased on satellite observations.
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in age (Dickey et al., 2008; Nencioli et al., 2008). The only
other Hawaiian cyclone studied to date to have similarly
large displacements in isopycnal surfaces was Cyclone
Haulani, a month older (Table 1, and see Fig. 2,
Vaillancourt et al., 2003); yet no increase in the diatom
biomass was observed. However, Vaillancourt et al. (2003)
report a relative minimum in Si:N within Haulani’s core,
consistent with a prior diatom bloom. Thus, older Cyclone
Haulani may have already peaked in diatom biomass prior
to sampling. That being said, eddy age may not be the only
issue. As Rii et al. (2008) and Brown et al. (2008) pointed
out, the absolute magnitude and rate of nutrient injection,
e.g., due to wind intensity and/or eddy movement (Nencioli
et al., 2008), at any point within an eddy’s life cycle may
influence the composition of biological community. For
example, Cyclone Noah, at 2.5 months of age, was
relatively weak and provided no evidence that a substantial
diatom bloom had ever occurred. The same is true for
young (1 month) and weak Cyclone Mikalele, whereas
Cyclone Loretta was older (6 months) yet still strong
enough that it accommodated a two-fold enhancement in
diatoms (Seki et al., 2001; Table 1).

Why has not a diatom bloom similar to that found in
Opal ever been observed in a Sargasso Sea cyclone? The
answer may in part be due to sampling. The E-Flux
experimental design took advantage of predictability in the
formation region for wind-driven cyclones, and sampling
of a young and strong cyclone revealed the presence of
diatoms in large numbers. However, that response was
ephemeral, as diatom abundance decreased by 50% during
the 9 days the E-Flux team was on site (Brown et al., 2008;
Rii et al., 2008). In contrast, formation of cyclones in the
Sargasso Sea is unpredictable by virtue of the geophysical
turbulence processes that create them. These features are
detectable by satellite altimetry (and more weakly in ocean
color; Siegel et al., 2008), but sampling thus far may have
been biased toward mature cyclones with stronger expres-
sions in satellite observations. As a result, if diatom blooms
have occurred in the initial formation and intensification
phases of Sargasso Sea cyclones, they could have been
missed (McGillicuddy et al., 2007; Bibby et al., 2008).
In contrast to cyclones in the Sargasso Sea and in the lee

of Hawaii, Sargasso Sea MWEs have a tendency to contain
significant numbers of diatoms, regardless of eddy age
(McGillicuddy et al., 2007; McNeil et al., 1999; Sweeney
et al., 2003). Sustenance of longer lasting diatom blooms
inside MWEs may be due to upwelling driven by eddy–
wind interactions described above, as well as enhanced
mixing caused by trapping of near-inertial motions (Kunze,
1985). Evidence of both mechanisms was revealed in the
tracer release experiment in MWE A4 (Ledwell et al.,
2008), and fine structure measurements in the core of that
feature are consistent with enhanced mixing (Greenan,
2008). Although the nutrient flux of 0.6mmolNm�2 d�1

inferred from the tracer release experiment in MWE A4 is
not particularly large (Ledwell et al., 2008), the character of
the 3He–NO3 relationship suggests steady upwelling
(Jenkins et al., 2008). Thus, we hypothesize that it is the
persistence of the nutrient flux that leads to the extra-
ordinary biological response in MWE A4.
Given the strong biological responses of large phyto-

plankton in Cyclone Opal and MWE A4, it is surprising
that neither feature showed any direct evidence of
enhanced overall particulate carbon export either by
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sediment traps or by 234Th:238U and 210Pb:210Po disequili-
bria during the field campaigns (Buesseler et al., 2008;
Maiti et al., 2008; Rii et al., 2008; Verdeny et al., 2008).
Rather, enhanced export was only observed in particulate
biogenic silica, with a small increase in zooplankton fecal
pellet production. Biogenic silica export was 3–4 times
higher than ambient waters in both Cyclone Opal (Maiti
et al., 2008; Rii et al., 2008; Verdeny et al., 2008) and MWE
A4 (Buesseler et al., 2008), suggesting that eddies may play a
role in the removal of silicate from surface waters. Enhanced
silicate removal would thus drive these already oligotrophic
systems towards silica stress and minimize the potential for
diatom growth in future upwelling events (Benitez-Nelson et
al., 2007; Rii et al., 2008). Additionally, enhanced zoo-
plankton fecal pellet flux was observed in Cyclone C1 and
MWE A4. Although increased fecal pellet organic carbon
flux did not enhance overall particulate C flux, eddies
appear to affect higher trophic-level community structure,
which in turn influences the composition and quantity of
sinking particles (Goldthwait and Steinberg, 2008).

Although significant enhancement of particulate carbon
flux was not observed in either E-Flux or EDDIES field
programs, it is possible that the export events were
somehow missed. Both C1 and A4 contained mesopelagic
oxygen anomalies that, if interpreted as the geochemical
signature of prior export events, amount to 1–3 times
annual new production for the region (McGillicuddy et al.,
2007), even after accounting for cyclone C1’s potential
distant water origin (Li et al., submitted). Why no similar
evidence of a large export event has been observed in any
of the Hawaiian lee eddies is unknown. According to the
‘‘leaky bottom’’ model proposed by Nencioli et al. (2008),
Cyclone Opal may have left a trail of its biological and
biogeochemical signature in its wake as it translated,
similar to the conceptual model introduced by Olaizola
et al. (1993). This is consistent with the generally shallow
penetration of Hawaiian lee eddies and would not allow for
a coherent oxygen deficit to form at depth. The same might
be true for Cyclone Noah, although this eddy remained
spatially stable and there is no evidence to suggest that the
wake hypothesized in the leaky bottom model occurred
(Kuwahara et al., 2008).

The biomass produced by eddy-induced blooms may
also have fates other than particle export. Observations
within Cyclone Opal indicate that rapid microzooplankton
grazing by large (450 mm) ciliates and dinoflagellates
released suspended and dissolved organic matter (Landry
et al., 2008b), rather than producing fecal pellets. This
finding is consistent with mass balance estimates of
nutrients and inorganic and organic carbon, which suggests
that most of the new production within Cyclone Opal

accumulated as dissolved organic matter (Chen et al.,
2008). In contrast, Li et al. (submitted) found no evidence
of dissolved organic matter accumulation within the
euphotic zone in cyclone C1.

It is important to note here that zooplankton may play a
role in organic matter transport beyond fecal pellet
production. Both Goldthwait and Steinberg (2008) and
Landry et al. (2008b) found an increase in mesozooplank-
ton biomass and grazing within MWE A4 and Cyclone
Opal, respectively, which resulted in migrant-mediated
active export fluxes that were 43% and 50% of that
measured within corresponding sediment trap deploy-
ments. Within Cyclone Opal, active transport may
reconcile 15N-based nitrogen mass balance estimates
(Landry et al., 2008b). However, active transport is still
not sufficient to explain the magnitude of the oxygen
deficits observed at depth in Cyclone C1 or MWE A4
(Goldthwait and Steinberg, 2008).
The mechanisms that control export of material out of

the euphotic zone thus remain enigmatic. In neither the
Pacific nor the Atlantic are the observed particle fluxes
sufficient to balance geochemical estimates of new produc-
tion (e.g., Jenkins, 1988). One hypothesis underlying both
the E-Flux and EDDIES programs was that episodic pulses
of organic matter might be undersampled in existing
databases, perhaps explaining the imbalances in mass
budgets computed from time series observations (Michaels
et al., 1994). Although the deep oxygen anomalies present
in C1 and A4 are suggestive of significant export events, the
fact remains that neither E-Flux nor EDDIES was able to
directly measure substantially enhanced particulate carbon
fluxes associated with mesoscale eddies. While sampling
may still be an issue, it is clear that the rarer such export
events are, the more extraordinary the particle fluxes will
have to be in order to dominate the mean flux.
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