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Abstract

A semianalytic solution to the mutual interaction of a Rossby wave and the surface mixed layer
is derived. The presence of the mixed layer causes neither damping nor growth of the interior
motions; modal structures and frequencies are simply altered by a small amount. Rossby wave
motions perturb the surface boundary layer quite significantly. Vertical transports arising from
both the wave itself and its interaction with the Ekman flow cause entrainment and detrainment
and create complex remnant layer structures below the mixed layer. The semianalytic solution is
used to benchmark a coupled quasigeostrophic and surface boundary layer numerical model.
Intricate numerical techniques are required to maintain the fidelity of the mixed layer—remnant
layer interface and the structures below it. © 1997 Published by Elsevier Science B.V.

1. Introduction

The upper ocean is a complex and highly dynamic environment which accommodates
a tremendous diversity of physical phenomena. In broad terms, variability in the surface
boundary layer results from a convoluted mixture of processes arising from three
fundamental sources: (1) direct atmospheric forcing, (2) motion in the ocean’s interior,
and (3) interaction between the previous two. The general characteristics of the oceanic
response to local fluxes of heat, salt and momentum through the air—water interface are
reasonably well understood (Price et al., 1987); this knowledge has been articulated into
a set of one dimensional models which are quite capable of realistically simulating
changes in the upper ocean forced directly by the atmosphere (Martin, 1985). Similarly,
the structure and variability of mesoscale currents, fronts and eddies has been well
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established (Robinson, 1983). The near surface expressions of these fluctuations in the
main thermocline are often times abundantly clear in satellite sea surface temperature
imagery, as well as in situ hydrographic observations. In contrast, relatively little is
known about how the surface boundary layer and main thermocline mesoscale currents
interact.

There has been some exploration of specific aspects of this general topic from a
geophysical fluid dynamics point of view. Early theoretical investigations focused on the
interaction of steady wind-driven surface currents with specified interior velocity
structures. Stern (1965) examined the superposition of Ekman drift on a geostrophic
vortex. Niiler (1969) conducted a similar analysis using a jet for the underlying velocity
field. Both of these efforts suggested that advection of the interior vorticity by the
boundary layer velocity was balanced by relatively intense vertical motion in localized
regions within the mesoscale structure. Stevenson (1983) constructed a semianalytic
solution for the interaction of Rossby waves with a mixed layer forced by seasonally
varying surface fluxes. Lee et al. (1994) used a two dimensional nonhydrostatic
primitive equation model to construct comprehensive simulations of the problem origi-
nally formulated by Niiler (1969). Diagnosis of the numerical solutions, which contain
more complete physics than the original model, shows complex secondary circulations
in and around the jet that are set up by its interaction with the wind-driven flow.

Observational inquiry into the interaction problem has in large part emphasized
higher frequency phenomena. Weller (1982, 1985) demonstrated that a mesoscale
quasigeostrophic deformation field can alter the effective coriolis frequency, thereby
modulating inertial oscillations. Kunze (1985) developed a wave—mean flow interaction
theory for the propagation of near inertial motions in the presence of geostrophic shear,
and presented a mechanism for trapping and amplification of such fluctuations in
regions of negative vorticity. The interaction of inertial currents with mesoscale flows
was investigated numerically by Klein and Hua (1988), who simulated spatial intermit-
tency in the depth of the mixed layer caused by variations in the local entrainment rate
via perturbations in vertical shear brought on by the combination of the inertial motion
and interior velocity field.

While it is clear that near inertial motion cannot be neglected in a complete theory of
the interaction problem, there are parameter ranges for which their inclusion is not
essential. Our aim is to investigate the fundamental mechanisms of this interaction at
small Rossby number through examination of a simple idealized case consisting of
freely propagating linear Rossby waves in the presence of constant surface forcing.
Stevenson (1983) analyzed the mixed layer response to the vertical motions of linear
Rossby waves over an annual heating and cooling cycle. His analysis was limited to the
effect of the interior motions on the mixed layer itself, with little attention given to the
dynamics of the remnant layer below. Here the interaction of the surface boundary layer
with linear Rossby waves will be examined in detail over a depth interval that includes
both mixed and remnant layers. An approximate analytic solution to the problem will be
described for an idealized case. This example is then used as a test case to demonstrate
the proper functioning of the three dimensional coupled quasigeostrophic and surface
boundary layer numerical model introduced by Walstad and Robinson (1993). This
quantitative benchmarking with a semi-analytical solution for an idealized linear (case
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validates the numerical model and thus provides a basis for extension of the results into
nonlinear regions of parameter space (McGillicuddy et al., 1995; McGillicuddy and
Robinson, 1997).

2. Scale analysis

A comprehensive scale analysis of a set of equations governing the interaction of the
surface boundary layer with a quasigeostrophic oceanic interior was conducted by
Stevenson (1980). 2 For brevity, the results will be presented here in summary form
only. The simplest scenario consists of spatially and temporally uniform atmospheric
forcing and linear interior motions. In the absence of interior motions, the mixed layer
depth is constant and the buoyancy increases linearly with time. The interior motions
perturb the mixed layer through their vertical velocities. The mixed layer perturbation
consists of a combination of simple displacement of the mixed layer interface and
entrainment /detrainment fluxes induced by vertical motions in the interior. Under
seasonally varying atmospheric forcing, the situation is somewhat different. When the
basic state is detraining and the frequency of the interior motions is much greater than
the seasonal frequency, the prior scale analysis still holds. However, for this same class
of internal motions, when the basic state is entraining an entirely different balance of
terms occurs. Vertical motions of the interior dominate mixed layer fluctuations as the
perturbation entrainment rate becomes negligible. Stevenson (1983) examined this
particular range of parameter space in an investigation of the seasonally varying
interaction between Rossby waves and the mixed layer.

The relative importance of horizontal variations in the basic state is controlled by
three nondimensional parameters

l w w

A=— =— b6=—

L w fo
where L is the spatial scale of atmospheric forcing, / and « are the length and
frequency scales of the quasigeostrophic interior motions, {2 is the yearly frequency,
and f, is the coriolis parameter. For A < %, horizontal advections of the basic state by
the interior geostrophic velocity are unimportant. In the range, %<< A < § horizontal
advection of the basic state buoyancy by the interior velocity plays a significant role in
determining the perturbation buoyancy in the mixed layer. Nevertheless, it is still the
vertical velocities associated with the interior motions that advect the buoyancy below
the mixed layer and perturb the mixed layer depth. The full suite of horizontal advection
terms become important when A > §. The basic state buoyancy both within and below
the mixed layer are advected by the interior velocity. In addition, the mixed layer depth
is perturbed by the interior velocity flowing across the bottom of the sloping basic state

mixed layer.

Three separate mechanisms by which the ocean’s internal motions affect the mixed
layer have thus been identified. First, mixed layer buoyancy can be modified by

? Contact A.R. Robinson to obtain a copy of the Ph.D. thesis of Stevenson.
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horizontal advection by the interior velocity. Second, horizontal interior flow impinging
upon a sloping mixed layer bottom can perturb the entrainment rate and the mixed layer
depth. Finally, vertical motions caused by the dynamics of the interior and its interaction
with the boundary layer flow can cause fluctuations in mixed layer depth and entrain-
ment rate. Of these three potentially important effects only the last will be considered
here in an idealized problem corresponding to the simplest scale analysis in which
atmospheric forcing is uniform. interior motions are linear, and horizontal variations in
the basic state are negligible (A < 2).

3. The model

In order to examine the mutual interaction between the surface boundary layer and
linear Rossby waves, a problem is constructed in which the mixed layer depth is
constant in the absence of any interior motions (the basic state). This is accomplished by
prescribing constant fluxes of momentum and heat through the surface. That is, the wind
stirring and heat input through the surface balance to maintain the mixed layer at a fixed
depth. First the effect of this mixed layer boundary condition on the linear quasi-
geostrophic potential vorticity equation is shown to be small. Thus, the Rossby wave
modes can be computed as if the mixed layer were not present. The waves are then used
to perturb the basic state mixed layer to permit detailed diagnosis of the interaction
between the surface boundary layer and the interior motions. The fundamental connec-
tion between the two regimes is a result of vertical motions in their interval of overlap,
which arise from two different sources: vortex stretching in the interior and a surface
divergence caused by the advection of the interior by the wind driven boundary layer
flow. These vertical motions in the upper ocean induce fluctuations in the depth of the
mixed layer as well as entrainment and detrainment fluxes through its base, causing the
development of complex vertical density structures. A number of numerical techniques
are developed to facilitate accurate representation of this solution in the coupled
quasigeostrophic and surface boundary layer model.

In this problem. a Kraus—Turner type bulk mixed layer model is used. It is assumed
that neither buoyancy nor horizontal velocity vary within the mixed layer. Vertical
velocity varies linearly within the mixed layer as a result of the continuity equation and
the assumption concerning horizontal velocity. Turbulent diffusion below the mixed
layer is not considered in this model, nor is the generation of turbulent kinetic energy
due to the shear at the base of the mixed layer. For simplicity it is assumed that all solar
radiation is absorbed at the sea surface. The dimensional buoyancy, momentum,
turbulent kinetic energy, entrainment and vorticity equations for the mixed layer are

b
hﬁ—,+hv'Vb+(h—h,)e:B', (1a)

fok X ho=71—hn(Vp)_, (1b)

I o
;h(h* b,Ye=myu, - ;B(,h - €uh (lc)



D.J. McGillicuddy Jr., A.R. Robinson / Dynamics of Atmospheres and Oceans 27 (1997) 549-574 553

oh
e=a—t-0—v+-Vh+wJr (1d)
haé‘ A ar» ar®
=4 + = - 1
a1 fow, + Bhv ax 3y (1e)

A detailed derivation of these equations is provided in Stevenson (1980). The
symbols used in these equations are defined in Table 1.

In order to understand the mutual interaction of the mixed layer and the Rossby
waves, the mixed layer quantities ¢ are separated into a basic state ¢ determined by the
atmospheric forcing and a perturbation component caused é by the Rossby waves
(ie.p=+ qg). In this analysis, the mixed layer is forced by a constant wind stress
and a constant positive surface buoyancy flux. Therefore, the basic state mixed layer
stays at a constant depth and the mixed layer buoyancy increases linearly with time. The
basic state equations for buoyancy, momentum and turbulent Kinetic energy are

Edi’ 2

i (2a)

kxmo=r1 (2b)
1. 1.

l—=h—=<h=0 2
2" 3 (2¢)

where B = %}. Time, mixed layer depth, mixed layer buoyancy, horizontal mixed layer
velocity, and wind stress have been scaled as follows:

t=wt"
Table 1
Definition of symbols used in the dimensional mixed layer equations
v del operator [ = (a—dx, %)]
X,y eastward and northward coordinates
t time
h mixed layer depth
b mixed layer buoyancy
b, buoyancy just below the mixed layer
v vertically averaged horizontal mixed layer velocity [ = (u, v)]
v, horizontal velocity just below the mixed layer
w, vertical velocity just below the mixed layer
{ mixed layer vorticity [ = (3—; - j—'j)]
e entrainment rate
B, surface buoyancy flux
T surface wind stress divided by a reference density [ = (¥, 7()]
u, friction velocity [ = Ir'/?]
p pressure
d fixed depth below which there is no direct surface influence
fo coriolis parameter
B northward gradient of the coriolis parameter
m, wind generated TKE parameter
€, background dissipation
Kk unit vector in the upward direction
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where asterisks indicate dimensional variables and  1s the Rossby wave frequency.
The Rossby waves are governed by the linear quasigeostrophic potential vorticity
equation,
N p d 1 ap B ap
— 4+ - =
v(z) dzdt o dx

at dz
where p is the dynamic pressure and y(z)= Sif-‘ The eastward and northward
coordinates x and y have been scaled by the horizontal length scale L of the Rossby
waves, the vertical coordinate z has been scaled by the depth of the ocean D and the
dynamic pressure p has been scaled by f,U, L, where U, is the horizontal velocity scale
of the interior motions. The nondimensional numbers are

0 (3)

. BL
B —_— —_—
Jo
W
o= —
fo
N*D?
S = b Il
foL

where N is the Brunt—Viisild frequency scale for %% and b;(z") is the vertical
structure of buoyancy in the absence of any interior motions.

The interaction between the mixed layer and the Rossby waves is governed by the
perturbation buoyancy, horizontal momentum, turbulent kinetic energy, entrainment,
vorticity, and buoyancy below the mixed layer (b,) equations:

_db . db 1—3()__ N - = A
ha—t+hg[—+?hv-Vb+(b—b+)e+Ro[(b—b+)e=O (4a)
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kX o= —n(Vp)_; (4b)
- - Roj_, . . 1, 1.,
Eh(b—b_,,)e'i' —z—h(b— +)e=—5h—§h (40)
_ Oh Ro _ A
e=a—t+—é—v+'Vh+W+ (4d)
o PRo__ . B
ha—t+—6-hv-V§+w++§hv=0 (4e)
3b. Ro . db,  db
— 4+ —0- Vb +w— +Ww =0 (4f)
at S dz dz
The perturbation variables have been scaled as follows
I
h=—=
HRo,
. b*,b;
) L0
YRo,
. b
b,=—
Y
é\*
é=—
HwRo,
~ l,;*
p=—
U
p- L
U/L
(W*,ﬁz:
(W)= —
HwRo,
where the Rossby numbers for the interior and boundary layer motions are Ro; = f—f)’t

and Ro = f—f)_/z respectively. In these perturbation equations many small terms have been
neglected. See Stevenson (1980) for a formal scale analysis. Because linear Rossby
waves are considered (i.e., Ro, << o), all terms of order 2% are neglected.

4. Results
4.1. Linear Rossby wave modes in the presence of a surface mixed layer

In the absence of any forcing, the linear quasigeostrophic potential vorticity equation
is an eigenvalue problem. For a horizontally unbounded domain with no boundary layers
the solutions to the vorticity equation are freely propagating undamped Rossby wave
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modes. In this section, the effect of the surface mixed layer on these linear Rossby wave
modes is calculated. It is found that the effect is one of neither damping nor growth.

The surface mixed layer. which is forced by the atmosphere, is a boundary layer for

the interior quasigeostrophic motions. A boundary condition for the quasigeostrophic

potential vorticity equation is obtained by matching the vertical velocities of the interior

and boundary layer components just below the mixed layer. Using the mixed layer

momentum Eq. (4b) and mixed layer vorticity Eq. (4e), the vertical velocity just below

the mixed layer is
- 3 i
PR ¥ B A (5)
at ) o dx | &

h

This vertical velocity w . is matched to the interior vertical velocity which is deter-
mined from the interior equation for the conservation of buoyancy,

1 ('f:/)
W= — (6)
y(z) dzdt
The matching condition at - = - Am7z is.
A =w( A, h) (7)

where A, = pand H is the previously defined depth scale for the mixed layer. The
factor A, appears in front of v, because W is scaled by HwRo,, while w is scaled by
DwRo,.

The quasigeostrophic potential vorticity Eq. (3) is easier to solve if the boundary
condition is applied at the surface of the ocean (- = 0) instead of the base of the mixed
layer (= — A_ h). In order to extend the interior solution to z = 0, a solution is defined
that satisfies Eq. (3) between the surface and the bottom of the mixed layer where y(z)
varies continuously to z=0. Since the boundary condition is on the vertical velocity,
the vertical velocity must be extended to the surface. The vertical velocity can be Taylor
expanded to about - = 0 because the mixed layer is shallow compared to the depth of
the ocean (i.e.. A, < 1)

w(0) — A, nw X
7 T+ O(A;) (8)

m

w=w(0) +

where the matching condition Eq. (6) has been used to determine the leading term in the
expansion. From Eq. (3) and Eq. (6), it can be seen that

&ip Bap ow
FRNaL—— 9

at 8§ dx az ©)

By substituting Eq. (5) and the vertical derivative of Eq. (8) into Eq. (9), the following
equation for the vertical velocity at the surface is obtained:

A, Ro - s

5 ho - VV‘P'() (10)

where terms of order A and higher have been neglected. Note that w(0) represents the

interior contribution to the surface vertical velocity; the sum of the interior and boundary

w(0) = —



D.J. McGillicuddy Jr., A.R. Robinson / Dynamics of Atmospheres and Oceans 27 (1997) 549-574 557

layer components vanishes in accordance with the rigid lid approximation. The vertical
velocity w(0) is a result of the divergence caused by the advection of the interior
velocity by the Ekman velocity. This process does not depend on boundary layer
structure; the same term would arise from a constant eddy viscosity boundary layer
model. Finally, using Eq. (6) and Eq. (10) the surface boundary condition for the
potential vorticity equation Eq. (3) is derived:

" _ AuRo 0)hv - VV?2 1
= v .
= S (0 T (1)
The boundary condition at the bottom of the ocean is w =0 at z = — 1, or using Eq. (6),
a*p
=0. 12
dzot ( )

As an example, the potential vorticity equation Eq. (3) with the boundary conditions
Eq. (11) and Eq. (12) is solved for the special case of constant stratification (y(z) = $).
First, the quasigeostrophic pressure is separated as follows:

p(x’y’z’t)=¢(Z)ei(kx+lyvot) (13)
where &k, { and ¢ are the nondimensional eastward wave number, northward wave
number and frequency, respectively. Using Eq. (13), the potential vorticity equation Eq.
(3) and the boundary conditions Eq. (11) and Eq. (12) become

d’p

?+a2¢=0 (]43)

dd) 2 2 2

d—z=—c[a +S8(k2+1%)]¢ at z=0 (14b)

d

£=0 at z=—1 (14c)
where

3 k A, Ro k*+ 1
a’= -5 (k2+12)+§— Cc= 3 p (k70 = 17(0)
a

and 7% and 7 are the nondimensional eastward and northward wind stress compo-
nents. Eq. (2b) was used to relate the Ekman velocity to the wind stress.
The following eigenfunctions are solutions to Eq. (14a):
¢, =A,sina,(z+ 1)+ B,cose,(z+ 1) (15)
The bottom boundary condition Eq. (14c) is satisfied if A, = 0. The surface boundary
condition Eq. (14b) yields the following expression for the eigenvalues a,:
Cla2+S(k*+1%)]

tana, = (16)
41

In the MODE region, A"‘f—" ~6-107%, so C is very small and Eq. (16) can be solved
approximately for small C. Assuming the zeroth eigenvalue to be very small (a nearly
barotropic mode),

a2~ CS(k2+1%) (17)
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The other eigenvalues are found by expanding in powers of C,

a,=a”+ Cal+ 0(C?) (18)
Substituting Eq. (18) into Eq. (16) the eigenvalues are
a!” =nmw (19a)
S(k*+17)
al’=nmr+ ——F (19b)
nw

This expansion is valid for Chr < .

Because the eigenvalues are real. the mixed layer does not cause the vertical structure
function of the waves to damp or grow. The modal structures and frequencies are simply
altered by a small amount. Thus in calculating the response of the mixed layer to
perturbations by Rossby waves the Rossby wave modes can be calculated as if the
mixed fayer did not exist.

4.2. Surface mixed layer response to a rossby wave

The basic state mixed layer is driven by a constant wind stress and a constant positive
surface buoyancy flux. Using Eq. (2c), the constant basic state mixed layer depth is

- 2
h= 5 (20)
1 + —
B
and using Eq. (2a), the basic state buoyancy is
_ ot
b= = (21)

h

where the constant of integration has arbitrarily been chosen to be zero. Because the
wind stress is spatially uniform there can be no wind stress curl contribution to the
vertical velocity at the base of the mixed layer. However, if there is a zonal component
of the wind there will be vertical velocity due to the advection of planetary vorticity. In
this problem the basic state vertical velocity is ignored so that attention can be focused
on the coupling between the Rossby wave and a basic state mixed layer in which the
basic state ocean below the mixed layer is quiescent.

The basic state mixed layer is perturbed by a Rossby wave which is a solution to the
linear quasigeostrophic potential vorticity equation Eq. (3) with boundary conditions
42 = () at the surface and bottom of the ocean. The effect of the surface mixed layer on
the Rossby wave was found to be small in Section 4.1; hence, the effect on the Rossby
wave is ignored. The pressure field for a single Rossby wave at the bottom of the mixed
layer is

p=cos(kx +Ily—1t+ &) (22)
where &k and [ are the nondimensional eastward and northward wave numbers scaled by
the horizontal wave number k, and ¢ is a phase constant. The Rossby wave dispersion
relation is

~

) B
EN = -k (23)
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Table 2
Vertical velocities at the bottom of the mixed layer for Rossby waves fit to the MODE data by McWilliams
and Flierl (1976)

Wave Period Wavelength Prop. dir. a? R (k + TD)
Barotropic #1 161 171 304 0 0.52
Barotropic #2 129 291 217 0 -0.35
Baroclinic #1 187 301 303 1.04 0.33
Baroclinic #2 332 290 208 0.96 -1.00

where A, = £ is the ratio of the horizontal length scale L =k’ and the Rossby radius
r. In this problem, it is the vertical velocity at the bottom of the mixed layer caused by
the Rossby wave that perturbs the mixed layer. Using Eq. (4b), Eq. (4e), Eq. (22) and
Eq. (23), the vertical velocity at the base of the mixed layer is

W, = Ahsin(z — 6) (24)
where
Ro
A=A+ ?(ﬁk+ﬁl) (252)
O=hkx+ly+ ¢ (25b)

In this model, there are two mechanisms that produce vertical velocity at the bottom
of the mixed layer represented by the two terms in Eq. (24) and Eq. (25a). The first term
hAZsin(z — 6) is the vertical velocity at the mixed layer bottom due to vortex stretching
by the Rossby wave that exists in the absence of the mixed layer. The second term
Zop(wk + pl)sin(t — ) is the vertical velocity that arises from the divergence caused by
the advection of the surface Rossby wave velocity by the Ekman velocity (or any other
mean flow). Table 2 compares the two terms of the vertical velocity for the two
barotropic and first two baroclinic Rossby waves that McWilliams and Flierl (1976)
obtained from a wave fit to the MODE data. The vertical velocities in a barotropic
Rossby wave are identically zero. Therefore, with a barotropic Rossby wave the vertical
velocity at the base of the mixed layer results only from the second mechanism. There
are vertical velocities in a baroclinic Rossby wave and in Table 2 it can be seen that the
vertical velocities at the base of the mixed layer resulting from the two mechanisms are
comparable. Thus, even though the vertical velocity arising from the second mechanism
does not affect the Rossby waves, it is as important as the vertical velocity of the Rossby
wave in perturbing the mixed layer.

The mixed layer depth response to a Rossby wave is found by solving the turbulent
kinetic energy equation Eq. (4¢), the entrainment equation Eq. (4d) and the equation for
buoyancy below the mixed layer Eq. (4f). The response is calculated first during
detrainment and second during entrainment. The method, which is similar to that used
by Gill and Turner (1976), is first discussed and then the solution itself will be
presented.

During detrainment the mixed layer depth and buoyancy are easily found from the
turbulent kinetic energy Eq. (4c) and buoyancy Eq. (4a) equations. The buoyancy jump
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at the bottom of thee mixed layer is zero during detrainment. Hence, from Eq. (4¢) the
perturbation mixed layer depth / is zero. Eq. (4a) becomes
b Ro "
—+—r-Vbhb=0 (26)
ar o
Thus, moving with the Ekman flow the perturbation buoyancy b is constant throughout
the period of detrainment.

In order to calculate the perturbation buoyancy below the mixed layer B, the
advection of the buoyancy f),, by the basic state velocity below the mixed layer

By V}AJ,_) is neglected. The reason for ignoring this term is that it is not obvious how
the find the basic state velocity below the mixed layer. Below the mixed layer the basic
state velocity is no longer balanced by the wind stress: therefore, it must undergo
geostrophic adjustment. The relative importance of buoyancy advection by this velocity
is not known.

To find the buoyancy below the mixed layer let /i, be the distance from a fluid
parcel of a given buoyancy to the bottom of the mixed layer. Using Eq. (24), the
equation for buoyancy below the mixed layer Eq. (4f) is replaced by

dh,

i

= Ahsin(1— #) (27)

Eq. (27) is a statement that only the vertical motion of the fluid parcels below the mixed
layer is important. Upon integrating Eq. (27). /1, is found to be

/7,,,=A;1(cos(lv 6)—cos(r—40)) (28)
where h,, is the distance from the bottom of the mixed layer to the fluid parcel of
buoyancy b(+') and ¢’ is the time when that fluid parcel was detrained.

From the entrainment equation Eq. (4d), it can be seen that during detrainment the
vertical velocity W, must be negative since h is zero. Inspection of Eq. (24) reveals that
for A> 0 w, is negative for # — 7 <t < #. However. detrainment does not necessarily
start at r= 6 — 7 because if the mixed layer is deepening faster than the downward
movement of the fluid just below the mixed layer (i.e., 22> — ) then entrainment is
occurring. Thus, at some time after 6 — 7. which cannot be determined a priori.
detrainment starts. Detrainment ends and entrainment begins when the fluid just below
the mixed layer stops moving down and begins to move up (i.e., when w _= 0). This
occurs at 1= 6.

During entrainment the perturbation mixed layer depth varies. The equation for the
distance between the fluid parcel of buoyancy h(+') and the bottom of the mixed layer is

Oh,  dh

- = — + Ahsin(1—~ 6 2
at dt sin( ) (29)
Upon integration £, is
h, = —h+Ah(cos(t — 0) —cos(1 — 6)) (30)

where the constant of integration has been chosen so that #,, is continuous at r = 6. A
time 7, can defined as the time during detrainment when the mixed layer buoyancy
b(1,) equals the buoyancy b, (1) just below the mixed layer at time ¢ during entrain-
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ment. When ¢ = 7, the fluid of buoyancy b(¢') is at the bottom of the mixed layer Gi.e.,
h,, = 0). Using this information in Eq. (30) yields an expression for the perturbation
depth

h = Ah(cos(t— 0) — cos(T, — )) (31)
The equation relating ¢ and 7, is found from the turbulent kinetic energy equation Eq.

(4¢). First, the total buoyancy jump must be related to ¢ and 7,. From the definition of
7, and Eq. (21)

(b-5.)+(b—b,)=b(r)—b.(1)
=b(1) = b(7))

1
= Z(I_Th) + O(Ro;) (32)
Using Egs. (4c) and (4d), Eq. (31) and Eq. (32), the equation relating ¢ and 7, is

1+ % (cos(t—6) —cos(1,—6))

dr,
dr (7, —t)sin(7,—8) (33)

where it is again assumed that the perturbation velocity below the mixed layer is
negligible. The phase # can be eliminated by the following change of variables

t'=t—60

T, =T7,— 0 (34)
Hence,

dr; 2\ cost* —cosT,

o T Bl N * (35)

dt B/ (7, —t")sinT,

where it is assumed that 7,” is a function of r— 6 only. Eq. (35) is numerically
integrated using a second order Runge—Kutta algorithm (Press et al., 1986) with the
initial condition 7,” = 0 at ¢t* = 0. Entrainment ceases at t* — 7,° = 27, when the first
fluid parcel that left the mixed layer during detrainment is entrained back into the mixed
layer. Thus, the time when detrainment starts is determined. The perturbation mixed
layer depth is given by Eq. (31). The perturbation mixed layer buoyancy is obtained
from the buoyancy equation Eq. (4a), which, together with Eq. (2a) and Eq. (4c),
becomes

32 P g 2 36
_+_ . = < =
at é v Bh (36)

The perturbation buoyancy and mixed layer depth for the special case 1_20 < § are
shown as functions of time ¢* for one Rossby wave period in Fig. 1 and Fig. 2. In Fig.
3, profiles of buoyancy are shown for various times during the Rossby wave period. The
three figures show that there is a growing buoyancy jump that moves up and down
sinusoidally with motion of the Rossby wave. During detrainment the mixed layer stays
at a constant depth h while the buoyancy jump moves down. As the buoyancy in the
mixed layer increases due to the positive surface buoyancy flux, fluid leaves the bottom
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of the mixed layer resulting in a stratified region between the bottom of the mixed layer
and the buoyancy jump. Entrainment starts at +* = 0 when the buoyancy jump starts to
move back up. The water that left the mixed layer during detrainment re-enters the
mixed layer during entrainment. As entrainment proceeds a smaller buoyancy jump
builds up at the bottom of the mixed layer because the mixed layer buoyancy increases
from the time a water parcel leaves the mixed layer during detrainment to the time it
re-enters during entrainment. As is evident from the turbulent kinetic energy equation
Eq. (4¢) during entrainment the mixed layer becomes shaliower. The reason for this is
that some of the turbulent kinetic energy is used to mix the entrained water thus leaving
less turbulent kinetic energy to mix the buoyancy added at the surface. Entrainment
continues as the large buoyancy jump begins to move back down; that is, the mixed
layer deepens more rapidly than the water below. Just as the mixed layer deepens back
to the depth 4, it entrains the last of the water between the mixed layer and the large
buoyancy jump. Thus, the buoyancy jump at the bottom of the mixed layer adds to the
large buoyancy jump. This completes the cycle and detrainment once again begins.
During entrainment for finite B the perturbation buoyancy decreases. Meanwhile, the
basic state buoyancy is increasing due to the surface buoyancy flux. Hence, the effect of
the Rossby wave is to lower the rate of increase of mixed layer buoyancy at a fixed
point in space. There is also spatial structure in the buoyancy response to the Rossby
wave as shown in Fig. | (remember. /" =7 — #). The buoyancy increases in the



D.J. McGillicuddy Jr., A.R. Robinson / Dynamics of Atmospheres and Oceans 27 (1997) 549-574 563

-20 | I L L L

-1.0

0.0

Perturbation Depth

2.0 T

-m/2 0 n/2 ” 3n/2
Time
Fig. 2. (a) Perturbation depth, and (b) location of the large buoyancy jump relative to the bottom of the mixed

layer as functions of time for 1_20 <« 8 and B =« (solid line), B =1 (dashed line), and B = 4 (dashed—dotted
line).

direction that the Rossby wave propagates. For B = (ie., there is no dissipation) the
Rossby wave does not affect the mixed layer buoyancy.
The reason that the perturbation buoyancy decreases for finite B and is zero for
B = is as.follows. For finite B, the Rossby wave causes more water to be in contact
with the surface as the average depth of the large buoyancy jump is greater than h. On
the other hand, for B = o the average depth of the large buoyancy jump is equal to h.In
the presence of the Rossby wave the mixed layer is shallower than h during detrain-
ment. Hence, for finite B there is less dissipation of turbulent kinetic energy than in the
absence of the Rossby wave. With less dissipation, there is more turbulent kinetic
energy available to mix the buoyancy added at the surface throughout a greater volume
of water. Therefore, the buoyancy increases less rapidly in the presence of the Rossby
wave. In the case when B = =, there is no background dissipation so the same amount
of turbulent kinetic energy is available for mixing whether the wave is present or not.
The Ekman velocity advects the perturbation buoyancy that arises for finite B. To
calculate the effect of this advective flux equation Eq. (36) can be rewritten as follows
b Ro b 2k
— 4+ — (@ +0l)— = — (37)
ar é 0  Bp?
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as the advection occurs only in the propagation direction of the wave. Furthermore,
since the perturbation buoyancy is a function of +— 6 only Eq. (37) can be rewritten

using Eq. (31)
Ro Vdb 2A
?(ﬁk%”ﬁl) — = —ﬁ(cosl’ — cosT," )

at’
Thus, when advection is important the perturbation buoyancy is found by integrating Eq.
(38).The extra factor (1 — % (uk + 1)) is greater than one if the Ekman velocity has a
component in the direction opposite to which the Rossby wave is propagating. In this
case, the buoyancy decreases slower as r* increases because the Ekman velocity
advects in greater values of b. On the other hand, the factor is positive and less than one
if the Ekman velocity has a component in the direction the wave is propagating and this
component is less than the phase speed of the wave. In this case, buoyancy decreases
faster as +" increases because the Ekman velocity advects in smaller values of b. The
factor is negative if the Ekman velocity has a component in the direction the Rossby
wave is propagating and this component is greater than the phase speed. In this case, the
buoyancy increases with increasing ¢ . The reason is as follows. When the mixed layer
fluid moves past the Rossby wave in a frame of reference fixed to the moving wave its
buoyancy decrc:.ases. With no Ekman velocity the fluid moves eastward relative to the

wave. Hence, b decreases to the west and increases as ¢ ™ increases.

|- (38)
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5. Numerical simulations
5.1. The numerical model

The surface mixed layer response to the Rossby wave described in Section 4.2 was
used as a comprehensive test problem for a numerical model of boundary layer
interactions with the ocean interior. The coupled quasigeostrophic—surface boundary
layer (QGSBL) model described by Walstad and Robinson (1993) is formulated to
represent the same basic physics as the preceding, but is not strictly limited to linear
problems. The prognostic vorticity equation is

4
P +al(¢,8)+ By =F,,
where

é;: VH2¢+ Fz(o-lpz)z
and the Jacobian J(¢,{) = ¢, {, — ¢,{,. The nondimensional parameters are

Voo
o=
D
B =By Dt
. fiD?
© NZH?
where
fo=202sn0,
af
By = 8_
y

and D, H, t, and V, are characteristic length, depth, time and velocity scales. The
stratification is given by

2
0

o(2) = 53
where

N2= _E@

p 9z

The surface and bottom boundary conditions provide prognostic equations for the top
and bottom density
ar oy, w! atz=0
2 =
E +aJ(l//,F U'dlz) —KVHlel—J(lll,b) atz= —7

where k is the bottom friction applied over the topography b. The dimensional
quasigeostrophic vertical velocity w?® = 72%iw' is balanced by the Ekman vertical
velocity to maintain the rigid lid approximation at the sea surface

wd +wf=0at z=0
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The horizontal Ekman velocities are given by

alj7 aliT
S [ I (R
R P dz\ p

with transports

~
T o oo

jT i T

Mr = b=~ :
Pofo Poto

The quasigeostrophic contribution to the total vertical velocity at the surface is

. o,  dv, | B
w(z=0) = ‘““7‘ + _l - —(urR + V'/'Rv) - _EVT
dx dy o f, h

where R is the relative vorticity at the surface

R= v
D H =4

Vertical velocities are assumed to vary linearly with depth in this model. As the
boundary condition sets the surface value. the vertical derivative of the vertical velocity
is used to interpolate

v,['- D

—f()[ODE(ml@)ﬂ

The surface boundary layer component of the vertical velocity w is assumed to vanish at
the base of the mixing layer, so it varies linearly between —w®% and 0 between z =0

w0 =

and z = —h. Equations for the boundary layer buoyancy and temperature evolution are
. w
pitalJ(p) +u(8) +p) +v(8 +p) T (Wt w@)p) - o
ap
=(M,) +—1I.
T PoCp

O +a(J(¢ . 9)+u(8, +9,)+r(8 +9,)+(w¥+w)d,) - wb.

= ( M 19) z + 1
PoCp

where (Mp)z and (M0)z represent mixing terms which are composed of instantaneous
homogenization within the mixed layer and constant diffusion below. The final terms on
the right hand sides represent the divergence of the penetrative surface heat flux (short
wave solar radiation). In these equations, the quasigeostrophic streamfunction dimen-
sionalized according to

Yy =V,Dy.
The density and temperature perturbations to the mean stratification due to interior
motions are

_ pofoVo D
gHo

6" (o).~
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VoHI?
o= —b ACTATE
where @ represents the mean vertical temperature gradient. The mixing layer depth
equation is
h,+uh, +vh, +w=e

where the entrainment rate e is the flux across the base of the mixing layer. This
quantity is normally derived from the Garwood (1977) entrainment model. To facilitate
quantitative comparisons between the numerical and analytic solutions this module of
the algorithm was replaced with a representation of the turbulent kinetic energy budget
given in Eq. (4c).

5.2. Results

The first comparison of the numerical results from the QGSBL model with the
semianalytic solution revealed a number of significant discrepancies between the two.
The problems resulted from a failure to maintain the fidelity of the discontinuity in
properties between the bulk mixed layer and the remnant layer below. Nearly all of the
horizontal, vertical and temporal operators in the boundary layer model computed
differences across the base of the mixed layer, resulting in unphysical leakage of
material between the two layers. The troublesome algorithms were redesigned to insure
that the only transfer of properties across the mixing layer depth interface is that
prescribed by the entrainment function. These modifications will now be described. *

First, the vertical advection algorithm was changed from the second order uncentered
method described in Walstad and Robinson (1993) to a modified first order upwind
differencing scheme. Upwind techniques are known to be effective in applications in
which the advected quantity undergoes sudden changes of state (Press et al., 1986). In
the present problem, it is the discontinuity between the mixing and remnant layers that
must be preserved. No material must pass through the interface between the two layers
except that which is prescribed by the entrainment equation. In the old vertical advection
scheme, the finite differences were computed across the mixing layer interface resulting
in substantial exchange between the two layers. Leakage of this type is eliminated in the
modified upwind technique.

For a scalar ¢, the difference equations are

() =c_ 1oy T o+ 1y
co=—(c_y+ecyy)
For w, <0 and k+#k,, + 1 (where k,, represents the grid point whose model level
depth is the deepest of all those in the mixing layer),
t

Ca = —{—~
Lp—1 — Lk

* The following algorithmic improvements overcome the computationally cumbersome problem of coupling
a bulk boundary layer to an interior model configured on level surfaces. An alternative approach would be to
reformulate the boundary layer model in a level-by-level discretization.
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and

¢, =0.
When w, <0 and k =k, + [, care must be taken in order not to advect material across
the mixing layer depth interface. The desired finite difference is that between layer k
and the point just below the mixing layer. But, the point just below the mixing layer

resides in layer k. so there is no gradient because of the ‘layer’ model discretization.

Therefore, in this case ¢_, =c¢_, =0. For w, >0 and k+#k,,,.
!
o T T
Skl ~k
and
¢ ;=0
Again, when w, >0 and k=4, ,. ¢ |, =c¢., =0 to prevent leakage across the mixing

layer depth interface. Boundary conditions must be specified at the bottom and top of
the SBL grid during upwelling and downwelling, respectively. When w, <0 and k= 1,
¢_,; =c,,; =0 as the gradient is assumed to vanish at the surface. When w >0 and
k=1, a boundary value ¢, must be prescribed.

The second change to the model was necessary to maintain the fidelity of the two
layers during horizontal advection and filtering operations. In the presence of a spatially
varying mixing layer depth field, simple horizontal operators will compute differences
across the interface between the mixing and remnant layers. In order to remedy this
problem, two level surfaces are defined at each time step that bound the upper and lower
excursions of the mixing layer depth field. Above and below these surfaces the relevant
fluxes are computed in the normal fashion using the appropriate operator (the Arakawa
Jacobian for advection and the Shapiro filter for dissipation). Between these surfaces
things are a little more complicated. At each vertical level, a surface is defined that is as
close to the horizontal as possible but follows the interface contour when necessary to
prevent crossing it. Scalar values from these deformed surfaces are then sent to the
appropriate operator to compute the fluxes. This technique is illustrated in Fig. 4.
Consider the two dimensional x-z grid shown. The mixing layer depth in each column
is indicated by an asterisk, and the interface between the mixing and remnant layers is
approximated by the bold solid line connecting those points. Because the excursions of
the interface do not reach rows 1 or 4, horizontal advections are computed there using
the normal procedure. Now. for each of the rows in the interfacial region, both mixing
layer and remnant layer advection terms must be computed. In the figure, the stretched
surfaces on which the Jacobian operates are indicated by dashed and long-dashed lines
for rows 2 and 3, respectively. After remnant and mixing layer advections terms have
been computed for each point in the interfacial region, the algorithm selects which term
to incorporate at each point according to its position relative to the interface.

Just as the fidelity of the mixing layer depth interface must be maintained in the
spatial differencing, it must also be carefully treated in the temporal dimension.
Consider the methods by which the various terms are time stepped. The ‘mixing’ terms
(all those in the buoyancy equation except for the advection terms) are marched ahead in
time using a simple forward Eulerian technique, while the advective terms are time
stepped using a leapfrog method. Implementation of this approach requires that two
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Fig. 4. A schematic diagram of the method used to deform surfaces in the transition layer for subsequent
horizontal numerical operations.

solutions be maintained during an integration, one representing the model state at time ¢
and one in which the advective terms lag by one time step 6¢. The advection terms are
moved forward in time in a fashion schematized in Fig. 5. The advective terms are
computed from solution II, multiplied by 28¢ and added to solution 1, yielding solution
I1I that now leads solution II by 8¢ in the advective terms only. At this point, the mixing
terms are computed for both solutions and advanced &¢. This results in an analogous
configuration to that with which the cycle was begun; we have a physical solution at
time ¢+ &¢ and a solution that lags by ¢ in the advective terms only.

Unphysical transport of properties across the mixed layer depth interface can result if
the implementation of this leapfrog time stepping procedure is not carefully treated. This
results from the fact that the mixed layer—remnant layer grid configuration changes over
time. That is, a given gridpoint that is in the mixed layer in solution II (Fig. 5) does not
necessarily reside in the mixed layer in solution I, to which the advective terms
computed from solution II are added. This situation is remedied by mapping the
advective terms from solution II to solution I in the two regimes (mixed layer and
remnant layer) separately. The mapping technique is illustrated in Fig. 6. This approach

Advection (\; ‘—\—M» x
SBL-I o~
Mixing
QG t—At
Advection
SBL-II
Mixing

Fig. 5. A schematic diagram of the time stepping procedure used in the surface boundary layer model.
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Fig. 6. A schematic diagram of the mapping used for the time stepping of advection terms for the case in
which the mixed layer grid in solution Il is (a) shallower than solution I, and (b) deeper than solution 1.

insures that mixed layer advective fluxes remain in the mixed layer and remnant layer
fluxes remain in the remnant layer.

With these improvements in place. the numerical model accurately represents the
semi-analytic solution of the mixed layer response to a Rossby wave. Fig. 7 shows a
time series of maps of streamfunction, vorticity, vertical velocity, mixing layer depth,
and the normalized root mean square difference between the mixing layer depth field of
the numerical and semianalytic solutions for approximately 1 wave period. Fig. 8 shows
that the spatially averaged normalized root mean square error in mixing layer depth is
well within acceptable limits, as the average error does not exceed 8%. The marked
periodicity of the error trajectory is due to the fact that the model domain is not large
enough to contain a full wavelength of the Rossby wave. The important points here are
that (1) the maximum error never gets too large, and (2) the average error (which is
more representative of an integrated error value) is comparable to the error levels
present in the interior quasigeostrophic model (Robinson and Walstad, 1987). Here, it
must be noted that the size of the domain used in such a comparison does in fact
influence the integrated error because perfect information is being fed into the domain at
inflow points. A greater percentage of the area of a smaller domain will be influenced by
this inflow of information, thus, artificially improving the error estimate.

Analysis of a time series of the buoyancy profile for the center point in the model
domain shows excellent agreement throughout the simulation (Fig. 9). In the initial
condition, the vertical velocity at the center of the domain has just changed sign. Thus,
the period of detrainment has just concluded, and entrainment is about to begin. This
situation is analogous to profile B in Fig. 3. In this panel, the numerical solution (solid
line) and the semianalytic solution (dashed line) are coincident. Throughout the period
of entrainment(z = 20,40,60) and subsequent detrainment (¢ = 80, 100), the numerical
solution tracks the semianalytic solution extremely well. The only discrepancy between
the two profiles is in the region of the buoyancy jump in the remnant layer. The
numerical solution does not maintain the sharp gradient of the analytic solution in the
remnant layer only. This is attributable to the numerical diffusion, or artificial viscosity
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Fig. 7. A time series of streamfunction at 100 m, vorticity at 100 m, vertical velocity at 25 m, mixing layer
depth and mixing layer depth error (normalized root mean square) fields for (a) ¢t =0, (b} =20, (c) t = 40,
(d) 1= 60, (e) t =80, (f) t = 100 days.

inherent in the vertical differencing scheme employed in the numerical model (Roache,
1972), but not included in the semianalytic solution. The magnitude of the artificial
viscosity is controlled by computational parameters (the grid interval and the time step).
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For the present case the artificial viscosity is more than an order of magnitude less than
the commonly accepted value for physical diffusion in the remnant layer of the real
ocean (1 cm?/s). Because the intent here is to construct a model capable of simulating
the real ocean, this error source is of no concern as it will be swamped by physical
diffusive processes.

6. Conclusions

A detailed description of the interaction between a Rossby wave and a surface mixed
layer has been presented. It is demonstrated that the presence of the mixed layer has
negligible impact of the wave itself. However, the vertical motions induced by vortex
stretching in the interior and the divergence caused by the advection of the interior
velocity by the wind driven flow dramatically affect the evolution of the boundary layer
structure. Alternating periods of upwelling and downwelling not only move the mixed
layer up and down, but also cause entrainment and detrainment. This results in the
production of complex remnant layer structures during some parts of the wave period.
The magnitude of the boundary layer disturbance caused by the interaction is fundamen-
tally controlled by the strength of the Ekman flow and the amplitude of the Rossby
wave. This idealized problem has been used to benchmark a coupled quasigeostrophic
and surface boundary layer model. Intricate numerical techniques are required to prevent
unphysical flux of material through the mixing layer depth interface when the depth of
this interface varies in space and time.
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