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Preface

Skill assessment for coupled biological/physical models of marine systems
Simulation models coupling physics to biological processes
in the ocean are central to many current programs. Ocean
physicalmodels have approached a high level of sophistication;
the physical relationships are canonical, and modern computa-
tional technology for fluidmechanics has advanced steadily for
two generations or more. The complexity of biological
processes in the ocean presents enormous difficulties beyond
physics. There is a recognizable mode of operation wherein
‘complete’ physics is coupled to reduced-complexity biology;
and simulations are typically chosen to fit field problems and
available data. The upshot of this situation is a great diversity in
what is possible in ‘replicating observations’, and even more
importantly, in assimilating them into simulations and creating
forecast systems.

Many important programs are currently facing the con-
sequences of this. The biological problems being addressed
are of immediate human concern, and there is a sense that
skillful simulations can be constructed. Yet what is meant by
“skillful” and “simulation” is typically very different depend-
ing on the target problem. Examples include the Joint Global
Ocean Flux Study (JGOFS), Ecology and Oceanography of
Harmful Algal Blooms (ECOHAB), and Global Ecosystem
Dynamics (GLOBEC), all of which have had numerous regional
manifestations in terms of target organisms and interactions.

This volume constitutes an effort to develop the theoretical
basis for the underlying problem of skill assessment in all of its
relevant senses—across species and ecosystems, geographical
places, and data types. Generic theoretical problems are
addressed in specific program contexts; both scholarly and
practical aspects arepresented across this diverse landscape. It
is hoped that presenting thiswork togetherwill help infinding
common ground and the conceptual strength and generality
that that leads to.

A scholarly basis of agreement is prerequisite to regulatory
progress and sound public advisement. However it is a mistake
to focus exclusively on the former, to the neglect of progress in
the public sphere where real problems originate and demand
attention. Accordingly, coupled to the scholarly advancements
herein there must be a parallel effort to embed findings in
regulatory practice. Our objective in publishing these papers
together is to advance this end.
0924-7963/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jmarsys.2008.05.002
1. Skill assessment vocabulary

The general problem of vocabulary is greatly compounded
by its very importance. The several fields represented in this
volume have made significant progress, evolving their own
dialects in the process. It is not our intention to change that.
However, there are a finite number of critical ideas in these
diverse fields.

For the purposes of this volume, Skill is fidelity of model
behavior to Truth. The sense of fidelity is implied in the purpose
of the modeling activity. There are several, dealing with state
variables, features, or dynamical processes/interactions.

Assessment is a human judgment about skill. Ideally, we
have skill and make no mistake about it. There are two types
of failure—failure to achieve skill, and failure to recognize it.
Each can have distinct consequences.

1.1. Truth, error, misfit

In science we observe, measure, predict, postulate, all
on the premise that natural truth is observable and un-
derstandable. The understanding we seek may be deter-
ministic, or stochastic, or a blend; yet the presence of
natural truth in the object of our study would appear to be
noncontroversial.

Both observation and theory—data and model—are ap-
proximations to truth. Neither is perfect. Both are separated
from truth by errors of fundamentally different origin. Fig. 1
indicates data error εd and model error εm as distinct entities.
Truth is hidden from us by both of these errors. Neither can be
known exactly.

It is a classic misconception that data are truth. First,
data are an incomplete sampling—much of truth goes
unobserved. And second, the method of observation is
necessarily imperfect and inserts a wedge between data
and truth. Models proceed from imperfect theory toward
truth estimation; data proceeds the opposite way, from
truth through the imperfect filter of the sampling method.
Proper interpretation of both requires an understanding
of the underlying model and sampling method, and their
errors.
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SinceTruth cannot beknown,neither canError.What canbe
known, with certainty, is the misfit δ, the difference between
data and model. A simple manipulation yields
δ ¼ ed−εm ð1Þ

If the two errors are uncorrelated, themisfit variance is the
simple sum of the two error variances:
Fig. 2. Prediction and Prediction Error; remaining terms as in Fig. 1.
P
δ2 ¼

P
e2d þ

P
e2m ð2Þ

where the overbar indicates an average. Misfit is by de-
finition limited by observation. Much of the truth goes un-
observed, and there is zero misfit if there are no data! A
major objective of skill assessment is to make estimates of
truth where we lack data and to make judgments about
those estimates.

Conceptual models of both errors are needed. The simple
objective of drivingmisfit to zero is insensitive to the precision
of the observations. Even if datawere perfect, zero misfit does
not imply zero error unless model error is zero. Necessarily
incomplete data require extrapolation if skill is to be assessed
away from data points.

1.2. Prediction

We can go further by recognizing that a prediction typically
is a blend of model and data, illustrated in Fig. 2. There is a
prediction error εp that is ideally smaller than the other errors.
The general field of data assimilation can be viewed as forming
predictions that join data and model, and ideally getting closer
to truth. The prediction procedure is itself a theoretical con-
struction. By extension of Fig. 1, we can define misfits between
prediction and data; and between prediction and model.

Error, like truth, is real and unknowable. At best we can
expect a statistical description of error. A good prediction is a
credible combination of data and model, invoking known or
hypothesized statistics of their errors. The resultant predic-
tion error εp is therefore a blend of εd and εm, achieved by
selecting model inputs. A good prediction will have valid
statistical basis for the selection, and will result in

• small, noisy misfits;
• small, smooth inputs deduced (e.g., from an inversion); and
• credible features of the prediction.
Fig. 1. Conceptual diagram of truth, Observed Data and Models Results, and
associated departures from each other. Note the distinction between Error (ε)
and Misfit (δ). Refer to text for definitions.
One presumes a range of recognizable possibilities, giving
context to the words small, noisy, smooth and credible. This
knowledge of credibility must be available to support a
prediction, whether formally or informally. It is often realized in
the form of a “Best Prior Estimate”, against which adjustments to
inputs, control parameters, or other deductions are judged; and
the probability (credibility) of departures from it. Related is the
concept of overfitting, in which misfits are rendered arbitrarily
small by electing unrealistically large or noisy fluctuations in the
free parameters. In so doing, overfitting reduces predictive skill.

The contributions to this volume explore aspects ofmisfits,
errors and othermetrics one faceswhen assessingmodel skill.
We look forward to continued development of all of these
ideas and hope that the collection of papers presented herein
will set the stage for future progress in this important field.

2. Coverage and topics

Authors of the papers in this volume convened for a series of
two workshops at University of North Carolina, Chapel Hill.1

Inviteeswere drawn from several sources reflective of the state-
of-the-art in coupled marine modeling in four different
application areas: plankton ecosystems and biogeochemistry,
harmful algal blooms, foodwebs, andwater quality. Interaction
amongst the groups resulted in papers focused on the cross-
cutting themes of skill metrics (Stowet al.) and skill assessment
in the context of data assimilation (Gregg et al.). Rose et al.
introduce somenew tools forquantitative comparisonof spatial
maps using simulated data and identical twin experiments to
evaluate their effectiveness.

2.1. Plankton ecosystems and biogeochemistry

Applications related to the area of ocean biogeochemistry
were quite diverse, including an assessment of a radiative
transfer model used as forcing for coupled physical–bio-
geochemical models (Gregg and Casey). Jolliff et al. introduce a
new tool for skill assessment, the “target error diagram,” using it
to test an ocean ecosystem model with satellite-based ocean
color data. Allen and Somerfield describe principal component
analysis andnonparametricmultivariate approaches toassessing
1 http://www-nml.dartmouth.edu/Publications/internal_reports/NML-
06-Skill/.
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an ecosystem model of the North Sea. Doney et al. present a
generalized framework for assessing the skill of global upper
ocean ecosystem–biogeochemical models, utilizing a variety
of metrics including model–data residuals, time–space
correlation, root mean square error, and Taylor diagrams.
Advanced methods for skill assessment were applied in two
different regional studies. Friedrichs et al. tested a set of
thirty primary production models with an extensive data set
in the Equatorial Pacific. Wallhead et al. use data subsetting
and Monte Carlo simulation to test statistical and dynamical
models of areal-mean chlorophyll on Georges Bank.

2.2. Harmful algal blooms

Stumpf et al. evaluate the skill of an operational harmful
algal bloom forecast model for Karenia brevis on the west
Florida shelf, using quantitative metrics to assess how well the
system performs in five aspects: identification, intensification,
transport, extent, and impact. Aharmful algal bloom issue in the
Gulf ofMaine is addressed by Smith et al.whouse aMonte Carlo
ensemble smoother approach to inverting for initial conditions
andmortality in a spatially explicit physical–biologicalmodel of
the toxic dinoflagellate Alexandrium fundyense.

2.3. Food webs

Fennel grapples with the issue of coupling plankton
ecosystemmodels with models of fish production, examining
the impact of model truncation and parameterization on skill.
Steele uses inverse methods to fit a linear food web model to
observations, critically evaluating the ecological assumptions
underlying these optimization strategies via comparison to
application in nonlinear dynamic models.

2.4. Water quality

Fitzpatrick provides a review of metrics used to assess the
skill of water quality models, which are becoming increas-
ingly important in setting policy on total maximum daily
loads of nutrient discharge in many areas of the coastal ocean.
Sheng and Kim use a variety of quantitative metrics to
evaluate a water quality model of the Indian River Lagoon.
Stow and Scavia utilize a Bayesian framework for parameter
estimation that yields both model forecasts and probabilistic
estimates of forecast uncertainty, a key input into policy
decision-making.

3. Summary outcomes

This volume is intended to represent the state-of-the-art in
coupled physical–biological model skill assessment. Included
is theory, practice, and data assimilation. From these papers
and discussion at the two workshops, a number of recom-
mendations emerged for the future of operational physical–
biological models to be used for management purposes:

Conceptual
• Encourage the use of probabilistic model results—
mean and variance—and the expression of this in
simple ways to a general audience, backed by
rigorous analysis.
• Encourage the formalization of the best prior esti-
mate—at the least, the mean and variance of all
relevant prior quantities.

• Always examine the posterior: a) the remaining misfit
andb) thedeparture fromtheprior. There is information
in both.

• Ensemble modeling approaches, specifically the use of
an ensemble of different models, are appealing in the
context of operational physical–biological models.

Practical
• It is essential to facilitate access to real-time data
streams. This includes networking, servers, andpeople.

• Encourage communication and interaction between
data providers and modeling activities.

• Similarly, encourage partnership between physical
modeling and biological modeling.

Organizational
• Recognize the importance of organizational struc-
ture. Encourage regional expertise in regional cen-
ters; and networking of these relative to technical
and scientific generalities.

• Encourage a blend of Government/University/Indus-
trial activity.

• Use the existing centers and cooperative programs to
their fullest. There is much opportunity in these for
cross-fertilization. Avoid creating new organizations
if extant ones can be made to work.

• Recognize the importance of small steps toward a
larger goal.

• Focus on system integration—of models, theory, and
observation—as an overarching goal.
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