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An ensemble smoother is used to estimate the initial conditions and mortality rates for a
spatially explicit model of Alexandrium fundyense. The data assimilation procedure is effective
at reducing model-data misfit in this strong constraint problem formulation. The skill of this
estimation procedure is assessed through cross-validation. The estimation is carried out with
three different representations of circulation: no flow, climatology, and a data assimilative
hindcast. Although the misfit to the assimilated data is lowest with no flow, the skill of the
biological hindcast is best with the hindcast and climatological velocity fields. Mortality
estimates fall within the range of observed values, but the inferred spatial structure is not
testable with existing data.
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1. Introduction

A common theme in marine coupled physical–biological
models is the interaction of ocean currents with biological
processes via advection. In problems that assimilate measure-
ments to infer the values of the parameters of the biological
model, it is natural to question the impact of the presumed
advection on the biological estimation. We seek approaches
that are directly applicable to field data and spatially explicit
data-assimilative computational models, focusing on meth-
ods that facilitate quantitative skill assessment and process-
level diagnosis of the underlying solutions.

The data assimilation problem can be formulated in
several ways. In filtering applications, state estimates are
computed using only data that precede the analysis time. In
smoothing applications, all data collected over some time
interval are used to estimate themodel state at all time points,
leading to state estimates conditioned on the full data set.
Methods that require strict solution of the underlying model
equations are commonly referred to as “strong constraint,”
All rights reserved.
whereas “weak constraint” methods allow for departures
from the model dynamics.

A variety of mathematical approaches are available for
solving bothweak and strong constraint problems for filtering
and smoothing applications. Monte Carlo ensemble methods,
such as the ensemble Kalman filter (EnKF), ensemble Kalman
Smoother (EnKS), and ensemble smoother (EnS), utilize
statistical approximations to Bayesian state estimation with
the assumption that the estimator is a linear function of the
data. Variational techniques such as the adjoint method are
typically employed in strong-constraint formalism to mini-
mize the misfit between predictions and observations (a “cost
function”) through adjustment of model inputs such as initial
conditions, boundary conditions, and model parameters.
Formally, these strong constraint methods are analogous to
the Bayesian estimation of the control variables, with the cost
function being proportional to the log likelihood over the
uncertain parameters and data.

The particular coupled physical–biological problem of
interest here is posed as an advection–diffusion–reaction
equation for the concentration of a toxic dinoflagellate species,
Alexandrium fundyense (Anderson, 1997). In this context, the
reaction term represents the population dynamics of the
organism, some aspects ofwhich are relativelywell constrained
by laboratory measurements (e.g. growth), and others that are
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Table 1
Notation used herein

Symbol Definition

c A. fundyense concentration
g A. fundyense growth rate
m A. fundyense mortality rate
ci, mi ith ensemble A. fundyense concentration and mortality
H Linear measurement operator for A. fundyense concentration
W Observational error covariance
P Model error covariance for A. fundyense concentration
Pcm Joint error covariance for mortality rate and A. fundyense concentration
K0 Kalman gain matrix for A. fundyense initial conditions
Km Kalman gain matrix for A. fundyense mortality rate
d Data d=HC

true+ξ where ξ is the measurement error
E[·] Ensemble expectation operator, E x½ � ¼ 1

n∑
n
i¼1xi

ca Estimate of A. fundyense based on data, ca=E[c|d]
ma Estimate of mortality based on data, ma=E[m|d]
t0 Start time of the simulation
cb Estimate based on posterior mortality and initial conditions, cb=

E[c|ca(t0), ma]
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not (e.g.mortality). Our goal is to test thismodelwith shipboard
survey data that are non-uniformly distributed in space and
time, inverting for initial conditions and the more poorly
constrained aspects of the population dynamics (mortality).
Sensitivity to the prescribed velocity field is of key importance,
given the strongly advective environment inwhich this study is
carried out.

The nature of this endeavor lends itself to a strong
constraint methodology. Although adjoint methods have
shown promise in spatially-explicit coupled physical–biolo-
gical problems (Li et al., 2006; Matear and Holloway, 1995;
McGillicuddy and Bucklin, 2002; McGillicuddy et al., 1998), in
this instance we have chosen a strong constraint EnS
approach. Although filtering formulations of this approach
(the EnKF) has been applied extensively to coupled physical–
biological models of the ocean (Allen et al., 2002; Eknes and
Evensen, 2002; Natvik and Evensen, 2003a; Natvik and
Evensen, 2003b), applications to strong constraint smoothing
problems in the ocean have thus far been limited to spatially
aggregated models (Annan and Hargreaves, 2004).

The general approach to ensemble smoothing is presented
in text books such as Tarantola (2005) and Evensen (2006),
though the Monte Carlo implementation is not directly
advocated therein. Monte Carlo methods of data assimilation
hold some practical advantages over the variational approach,
namely they are “embarrassingly” parallel (i.e. the method
can be implemented in a parallel architecture without the
need for inter-processor communication and near perfect
scaling) and do not require generating the adjoint model
code. The latter is especially relevant for ecological models,
many of which include complex nonlinear (and potentially
non-differentiable) interactions.

How does one go about testing such models when the
amount of available data is limited and the number of degrees
of freedom in a spatially and temporally explicit model is
large? This question motivates three aspects of the present
study. Firstly, a Bayesian approach is taken in the data
assimilation to make the most use of a priori information
about the system. Secondly, the skill of this data assimilative
model is assessed using a cross-validation procedure (Efron
and Tibshirani, 1993; Friedrichs et al., 2007; Friedrichs et al.,
2006). Lastly, the posterior distribution of the inferred
parameters is evaluated using independent (unassimilated)
observations. For example, laboratory and field estimates of
grazing can be used to assess the plausibility of the inferred A.
fundyense mortality.

Herein we seek to address the following specific questions
in the context of the aforementioned A. fundyense model and
the data from a regional survey:

• What is the impact of the presumed circulation on the
estimate of biological parameters in a coupled model?

• Can skill metrics for biological fields distinguish between
the circulation choices?

• Are some parameters (mortality) more sensitive to the
choice of velocity field than others (initial conditions)?

The remainder of this paper is organized as follows: in
Section 2, a dynamicmodel for A. fundyense is introduced and a
stochastic model for its initial conditions is developed. In
Section 3 experiments in which the initial conditions of the
A. fundyensemodel are estimated are presented. The skill of the
data assimilative model is assessed through cross-validation
experiments. In Section 4 we present experiments in which
both the mortality field and the initial conditions of the
A. fundyense model are estimated. Again cross-validation
experiments are carried out. The conclusions are reported in
Section 5.

2. Dynamic and stochastic models for temporal evolution
of A. fundyense

2.1. The coupled physical–biological model

The temporal evolution of the A. fundyense field is
assumed to be governed by a two dimensional advection–
diffusion reaction equation

Ac
At

þ v:∇c−∇: D∇cð Þ ¼ g−mð Þc ð1Þ

where c=c(x, y, t) is the concentration averaged over a
presumed surfacemixed layer of depth of 20m. Notation used
throughout is summarized in Table 1. The diffusion coefficient
D is chosen to give a uniform Peclet number, Pe ¼ jvjl

D , where l
is the local length scale of the finite element mesh. In this
application we set Pe=10 to ensure numerical stability of the
advection–diffusion equation, yet avoiding excessive diffu-
sivity. By definition, D is dependent on the flow v and the pair
(v, D) defines the full transport effect on the biological field.
Eq. (1) is solved with a Galerkin finite element method with
implicit time stepping (Lynch et al., 1996). Natural boundary
conditions are assumed.

The population dynamics of A. fundyense is described in
McGillicuddy et al. (2005) and Stock et al. (2005). The
vegetative cells emerge through excystment from cyst beds
(Anderson et al., 2005), the abundance and distribution of
which were derived from measurements of the sediments.
The spatially variable growth rate, g, is a function of local
temperature, salinity, light, and nutrients. The best prior
estimate of mortality (0.1 d−1) is imposed in a spatially
uniform manner; perturbations to that prior, specifying our
uncertainty in its value, are discussed further below.
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We consider three different representations of the velocity
field ν (and by implication the corresponding diffusion field D).
The first field assumes no motion,ν0≡0. The second velocity
field, νc, is extracted from a climatological depth-averaged
velocity simulation of the Gulf of Maine for the May–June
period (Aretxabaleta et al., submitted for publication; Lynch
et al.,1996). This climatological simulationwas initialized using
mean temperature, salinity, and densityfields for theMay–June
time period and forced by baroclinic pressure gradients,
bimonthly mean wind stress, and the semidiurnal M2 tide.
The third velocity field, νh, is extracted from a data-assimilative
hindcast simulation of the same area during the cruise period
(Aretxabaleta et al., in preparation). This hindcast simulation
included density initialization derived from objective analysis
of hydrographic data, observed wind stress during the cruise
period, and elevation boundary conditions inferred from the
assimilation of shipboard and moored velocity observations in
the interior (Lynch and Naimie, 2002; Lynch et al., 1998). In the
hindcast, the rootmeansquaremisfit of thepredicted velocity is
reduced from 14 cm s−1 in the prior to 11 cm s−1 after
assimilation. The hindcast also improves the prediction of
unassimilated drifter trajectories. There is a logical preference
for the hindcast velocity field over the climatology, and for the
climatology over no motion. However, we choose not to
formalize this preference here; instead we treat each of these
three cases in independent sensitivity analyses.

2.2. Bayesian parameter estimation

Consider the generic data assimilation problem. There is a
set of observations, d, that will be used to estimate the
uncertain parameters of a dynamical model. Let θ denote the
unknownmodel parameters, f(θ) the prior distribution for the
parameters, and Ψθ the dynamical model solution given
parameter choice θ. The data d is an imperfect observation of
the true state of the system, d=HΨtrue+ξ where ξ is the
observational error and H is the measurement operator for
the observations. Bayes theorem allows us to compute the
posterior likelihood over θ

f θjdð Þ ¼ f djθð Þf θð Þ
∫θ f djθð Þf θð Þdθ ¼ f djθð Þf θð Þ

B dð Þ ¼ f djψθð Þf θð Þ
B dð Þ ð2Þ

where B(d) is the overall likelihood of the model given the
data. Assuming f (θ) is Gaussian, let θ̄ and Cθθ denote the mean
and covariance of θ. If the observations are not biased and ξ
has a Gaussian distribution with covariance W,

f θjdð Þ ¼
exp − 1

2 Hψθ−dð ÞTW−1 Hψθ−dð Þ
� �

exp − 1
2 θ − θ̄
� �T

C−1
θθ θ − θ̄
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þnmnd jWjnd jCθθjnm

q
ð3Þ

where nmis the dimension of θ, and nd the dimension of d. We
can define a cost function proportional to the log of the
conditional likelihood function J(θ)=−2log(f(θ|d)),

J θð Þ ¼ Hψθ−dð ÞTW−1 Hψθ−dð Þ þ θ− θ̄
� �T

C−1
θθ θ− θ̄
� �

þ q ð4Þ

where q ¼ log 2πð Þnmnd jW jnd jCθθjnm
� �

is a constant. This cost
function is typical of strong constraint data assimilation
problems usually solved with variational methods. The first
quadratic form penalizes the misfit to data, and the second
enforces a regularity constraint, penalizing departures from
the best prior estimates of the parameters. The inverse
covariance matrices, W−1 and Cθθ−1, play the role of weighting
matrices. The value of θ that minimizes Eq. (4) will also be the
maximum likelihood estimate.

We introduce a phantom linear operator Fθ≅HΨθ by
assuming that the state of the system (as reflected in the
data) will respond linearly over the range of plausible
variations in the parameters. Rewriting Eq. (4) with F we
have,

J θð Þ ¼ Fθ−dð ÞTW−1 Fθ−dð Þ þ θ− θ̄
� �T

C−1
θθ θ− θ̄
� �

þ q ð5Þ

Minimizing this quadratic form over θ leads to the normal
equations,
0 ¼ AJ θð Þ
Aθ

¼ 2FTW−1 Fθ−dð Þ þ 2C−1
θθ θ− θ̄
� �

ð6Þ

which can be solved for θ,

θ ¼ θ̄ þCθθFT FCθθFT þW
� �−1

d−F θ̄
� �

ð7Þ

yielding the familiar Kalman analysis. In our application to the
A. fundyensemodel, the linear operator F is never constructed
explicitly but rather implicitly estimated from a Monte Carlo
procedure. The term FCθθF

T is the model error covariance
sampled at the observation points. The matrix CθθFT is the
model error covariance between the uncertain parameters, θ,
and the observation points. Thus the inverse problem can be
solved in this manner without the construction of tangent
linear model or adjoint.

2.3. Prior model for A. fundyense initial conditions

The starting point for any Bayesian estimation is the
specification of a prior model (distribution) for the unknown
parameters, in this case the initial conditions of A. fundyense
concentration and in Section 4 the mortality rate as well. We
assume the mean A. fundyense field cclim(x,y,t) is the climatolo-
gical simulation computed in McGillicuddy et al. (2005), which
runs through the period March to August. This mean seasonal
simulation does not contain any of the interannual variability or
small-scale patchiness inherent in the surveyobservations to be
assimilated, which sample A. fundyense concentration in a non-
synoptic manner over a period of 11 days (Fig. 1).

We seek an ensemble of initial conditions for the start of
the survey t0 (June 6, 2006). Perturbations about the mean
state at time t0 are computed assuming that both the mean
and variability are related to the climatological value. We
construct n random initial conditions, and the ith random
initial condition for the A. fundyense model is,

ci t0ð Þ ¼max 0;
c
c lim t0ð Þffiffiffi

e
p

� �
exp nai

� �þ 100
cells
liter

nbi ð8Þ

where cclim(x,y,t0)is the climatological A. fundyense estimate
at the beginning of the survey and e is base of the natural log
(the term 1ffiffi

e
p is a normalization constant). The background

uncertainty of 100 cells l−1 reflects a subjective choice of what
constitutes a “significant” concentration of the organism,



Fig. 1. Spatial map of data and boundary of computational domain. The first survey is depicted on the left and the second survey on the right. The A. fundyense
samples were taken from June 1 2006 to June 15 2006. The measurements followed the coast from Cape Cod to the Bay of Fundy totaling 214 casts. The axes labels
corresponding to the figure on the left are longitude (degrees W) along the abscissa and latitude (degrees N) along the ordinate.
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chosen in this case to be one half of the concentration
generally required to lead to toxicity in shellfish along the
coast (Keafer et al., 2005). ξia and ξi

b are independent Gaussian
random variables with zero mean, unit standard deviation
and anisotropic covariance

cov x1; x2ð Þ ¼ exp −
jx1−x2j2

λ2
x

−
jh1−h2j2

λ2
h

 !
ð9Þ

where h1and h2 are the bathymetric depth at x1 and x2
respectively. The bathymetric decorrelation scale, λh, forces
shorter length scales in the cross isobath direction while
allowing correlation along isobaths to stretch to λx. Stock
Fig. 2. Mean (left panel) and standard deviation (right panel) of initial
et al. (2005) found along shore misfit decorrelation length
scales of 20–25 km and cross shore decorrelation scales of
15 km. Here we choose λx=50 km and the bathymetric
decorrelation scale λh=50 km, as the form of the anisotropy is
slightly different than was used in Stock et al. (2005).

The resulting distribution has high variance where climato-
logical values are high and a standard deviation of approxi-
mately 100 cells l−1 where the climatological values are low
(Fig. 2, right panel). Note that this form induces a positive bias
relative to the prior at low concentrations due to the positive
definite requirement on concentration and the perturbations to
the A. fundyense field specified in Eq. (8). It should also be
pointed out the distribution implicit in Eq. (8) is neither normal
conditions for A. fundyense. Units for the color scale are cells l−1.



Fig. 3. Estimates of A. fundyense concentration on June 10 (2/3 of the way through the survey) for three different estimates of A. fundyense initial conditions on June
1. Left: experiment A0 (no flow); middle: experiment Ac (climatological velocity); right: experiment Ah (hindcast velocity).
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nor lognormal but close to the sum of a normal and lognormal
distribution. AMonte Carlo approximation to the distribution of
the priormodel error at later times is obtained by solving Eq. (1)
with the initial conditions given by Eq. (8).

2.4. Statistical model for A. fundyense measurements

In addition to a distribution for model errors, the other
prerequisite for Bayesian estimation is a statistical model for
measurement error. The A. fundyense data utilized here
consist of shipboard microscope counts from water sampled
between 1 m depth and the surface. Ten liters of water were
sieved with a 20 μm filter and 1/140th of the filtered material
was counted under the microscope. Other morphologically
similar species, such as A. ostenfeldii, may be confused with A.
fundyense cells and introduce positive bias in the data. For
simplicity, we assume the measurements are unbiased with
uncorrelated Gaussian standard errors of 100 cells l−1,
although other forms are possible.

3. Estimation of initial conditions

The EnS is a simple Monte Carlo procedure to estimate
the parameters of a model. The ensemble of initial condi-
tions ci(x,y,t0) are simulated from the prior distribution as
described above. The temporal evolution of the A. fundyense
field is determined by solving Eq. (1), for each of the initial
conditions, producing the ensemble forecast ci. Eq. (1) is
solved on the time interval [t0, tf] where tf is the time of the
last A. fundyense observation. The ensemble covariances
between the initial conditions and misfits to the measure-
ments are used to estimate the initial conditions, using the
standard ensemble Kalman gain update (Evensen, 2006). An
ensemble of size n=500 is used throughout.

The analysis requires estimating the following matrices
from the ensemble integrations,

R0PHT ¼ n
n−1

E c t0ð Þ−E c t0ð Þ½ �ð Þ Hc−E Hc½ �ð Þ½ � ð10Þ

and

HPHT ¼ n
n−1

E Hc−E Hc½ �ð Þ Hc−E Hc½ �ð Þ½ � ð11Þ
where c(t0) is the initial A. fundyense concentration, and c is
the A. fundyense concentration at all times. R0 is the linear
operator corresponding to initial conditions, c(t0)=R0c, and
thus R0PH

T is the ensemble covariance between the initial
conditions and the observations. The matrix HPHT is the
ensemble covariance between the observation points. The
Kalman gain matrix for the initial conditions is,

K0 ¼ R0PHT HPHT þW
� �−1 ð12Þ

where W is the measurement error covariance matrix. The
posterior ensemble of initial conditions are then estimated as

cai t0ð Þ ¼ ci t0ð Þ þ K0 d−Hci−nið Þ ð13Þ
where ξi~G(0,W), a Gaussian random variable with mean 0
and covariance W.

A Monte Carlo approximation to the posterior distribution
of the A. fundyense population is obtained by solving Eq. (1)
with initial conditions given by Eq. (13). The prediction is
taken to be the ensemble mean of the posterior ensemble ca

henceforth.

3.1. Results

We present three experiments in which the initial
conditions for A. fundyense are estimated, each of which
utilizes a different circulation estimate. Velocity fields for
experiments A0, Ac, and Ah are no flow, climatology, and
hindcast, respectively. As expected, the spatial structure of
the estimated A. fundyense fields reveals dependence on the
velocity field (Fig. 3). In particular A0 is much less smooth
than Ac and Ah due to the absence of diffusion (via the Peclet
relationship). The RMS of themisfit of the posterior estimate,
r=d−Hca, reveals relatively little dependence on the velocity
fields (Table 2). The lowest RMS misfit is attained with the
assumption of no motion, due to the less stringent constraint
on the spatial structure of the estimate. In fact, a perfect fit to
the observations could be attained in the no-flow case if the
decorrelation length scales of the initial condition covariance
function (Eq. (9)) were sufficiently small, the variance
sufficiently large, and all measurements were distinct in
space/time.



Fig. 4. Transects of data used in the cross-validation experiments. Transects 22–31 lie on top of transects 9–1 and are sampled approximately seven days apart.
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3.2. Cross-validation

We seek a means to evaluate the skill of the data
assimilative model with respect to data not used in the
estimation. A set of thirty-one experimentswas carried out, in
which each one of the survey transects (Fig. 4) was system-
atically omitted from the EnS. The union of the misfits at the
unused data points from each of the thirty-one experiments is
used to assess the skill of the estimation.

Formally the procedure is a K-fold cross-validation scheme
(Efron and Tibshirani, 1993). Let ti denote the data from the
Table 2
Table of misfit to data from the experiment estimating A. fundyense initial
conditions

Experiment Velocity
field

Estimated
parameters

Prior
RMS
misfit

Posterior
RMS misfit

RMSCV

Data mean
c ¼ 1

n
∑n

i¼1di
861 791 798

A0 None c(t0) 811 463 756
Ac Climatological c(t0) 816 484 627
Ah 2006 hindcast c(t0) 807 501 662
B0 None c(t0),m 809 418 831
Bc Climatological c(t0),m 815 447 629
Bh 2006 hindcast c(t0),m 811 463 593

All entries are RMS misfits in units of cells l−1. The RMS of the data is
861 cells l−1. RMSCV is the rms of the cross-validated residual. The differences
between the prior RMSmisfits when the same velocity field is used are due to
the Monte Carlo nature of the calculation and non-linearity of the mortality
affect. The row titled data mean uses the data mean as the predictor, rather
than a dynamic model. The cross-validation prediction for the data mean is
the mean of the training set and the prior is assumed to be zero.
missing transect (test set), si the remaining data (training set)
and T i and Si the corresponding measurement operators. For
each of the K=31 transects and velocity fields ν∈ [ν0, νc, νh],
we compute the ensemble smoother estimate of A. fundyense
ca(v, si). The full cross-validation prediction vector is

t vð Þ ¼ T1E ca v; s1
� �

; T2E ca v; s2
� �	 


; :::; TKE ca v; sK
� �	 
	 
	 ð14Þ

and the cross-validation residual is rcv(ν)= d− t(ν). We define
RMSCV vhð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑nd

i¼1 di−ti vhð Þð Þ2
q

as the RMS of the misfit from the
cross-validation predictions. In the same manner we define
RMSCV(νc) and RMSCV(ν0) corresponding to estimates based
on the climatological and no-flow velocity fields.

Results of the cross-validation (Tables 2 and 3) reveal that
the skill of the no-motion case is barely better than that of the
prior estimate. Use of the climatological and hindcast velocity
fields results in better skill than with no-flow. However, the
Table 3
Table of significance level at which order of skill can be reversed

Experiment A0 Ac Ah B0 Bc Bh

Data mean 41 13 20 43 14 11
A0 21 29 35 22 17
Ac 40 12 50 40
Ah 35 41 32
B0 12 10
Bc 40

Based on a two sample t-test on the squared cross-validatedmisfits,(t(v)−d)2,
whose mean is the square of the skill estimate employed here. The test gives
the probability that the true mean of the two sets of squared misfits have
opposite rank of the sample mean rank, under the assumption that the
squared misfits are independent and have a Gaussian distribution. The
significance levels are not lower because of the variability of the squared
residuals and relatively small sample size.



Fig. 5. Estimates of A. fundyense concentration on June 10 (2/3 of the way through the survey) for joint estimation of A. fundyense initial conditions and mortality.
Left: experiment B0 (no flow); middle: experiment Bc (climatological velocity); right: experiment Bh (hindcast velocity).
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difference in skill between Ac and Ah is less significant than
the differences between A0 and either Ac or Ah.

4. Estimation of initial conditions and mortality

In this second set of computational experiments, we
augment the stochastic model for A. fundyense to include a
spatially variable mortality field. The mortality field is
estimated from the A. fundyense measurements in the same
manner as the initial conditions. With the uncertain mortal-
ity, the estimation problem becomes strongly nonlinear due
the term m and c both being unknown and their product
appearing on the right hand side of Eq. (1). With so little
known about the spatial structure of the mortality field, we
simply introduce a distribution of perturbations similar to
that used for the A. fundyense initial conditions. We simulate
the ith ensemble mortality field:

mi ¼ :1þ :025nci ð15Þ

where ξi
c is a Gaussian random variable with mean zero and

covariance given by Eq. (9). The resulting prior distribution for
mortality is Gaussian with a spatially uniform mean of 0.1 d−1,
standard deviation of 0.025 d−1, and spatial covariance
described above.

We experimented with simultaneous estimation of both
initial conditions and mortality, but found that approach does
not workwell. Because overestimation is correlated with both
a high initial population and low mortality (which are
assumed to be independent here), the direct EnS procedure,
applied to the joint estimate of A. fundyense initial conditions
and mortality rate, tends to overshoot the data. Instead we
employ a two-step procedure. Random initial conditions and
mortality rate are simulated from Eqs. (8) and (15) respec-
tively, and the A. fundyense initial conditions are estimated
using the algorithm described above. Second, the solution to
Eq. (1) is computed again with the corrected A. fundyense
initial conditions. Misfits from this second simulation are then
used to estimate themortality field. The posterior estimate for
the mortality field is:

ma
i ¼ mi þ Km d−Hcai −ξi

� � ð16Þ
where

Km ¼ RmPcm Hj0½ �T HPHT þW
� �−1

: ð17Þ
The matrix Rm is the operator corresponding to mortality

rate, m ¼ Rm
c
h i

and Pcm is the joint error covariance over

m

mortality rate and A. fundyense concentration. Thus,

RmPcm Hj0½ �T ¼ n
n−1

E m−E m½ �ð Þ Hca−E Hca½ �ð Þ½ � ð18Þ

is the ensemble covariance between the mortality field and
the A. fundyense field at the observation points. The posterior
estimates of the initial conditions and mortality field, cia(t0)
and mi

a, are then used to generate the posterior ensemble, cib,
via the numerical solution of Eq. (1). As in experiment A, the
estimate is the mean of the posterior ensemble, cb.

4.1. Results

Three experiments B0, Bc, and Bh were conducted with
estimation of both the initial conditions for A. fundyense and
the mortality field, using the same velocities as those in
experiments A0, Ac, and Ah. The joint initial condition and
mortality estimation experiments reveal strong dependence
on the velocity field (Figs. 5 and 6). Similar to the initial
condition experiments, the RMS of the misfit of the posterior
estimate r=d−Hcb achieves its lowest value in the no-flow
case, with misfits increasing in the climatological and
hindcast velocity cases (Table 2).

Cross-validation of the three experiments with joint
estimation of the initial conditions and mortality indicates
the best skill for the hindcast velocity field (Table 2). The
lowest RMS for the cross-validation prediction is found with
the hindcast velocity. The climatological velocity gives a
slightly higher RMS for the cross-validated residuals. The low
RMS misfit obtained for the no-motion case produces a high
RMSCV, i.e. low skill. As in experiment A, more significant
differences in skill are found between B0 and both Bc and Bh,
than between Bc and Bh (Table 3).

Analysis of the distribution of posterior mortality fields
provides an additional test of the model. Strictly speaking, the
“mortality” term in this simple model represents all processes



Fig. 6. Mortality estimates. Left: experiment B0 (no flow); middle: experiment Bc (climatological velocity); right: experiment Bh (hindcast velocity). The best prior
estimate of mortality is .1 d−1.
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that lead to removal of cells from the water column, including
zooplankton grazing, encystment, and cell death. We focus on
zooplankton grazing as it is the best known of the three. Studies
in this region have revealed that grazing on A. fundyense is a
complex interaction of both predator and prey, involving many
different size classes of zooplankton (Campbell et al., 2005;
Teegarden et al., 2001; Teegarden and Cembella, 1996; Turner
and Borkman, 2005; Turner and Tester, 1997). Further compli-
catingmatters, the toxinproducedbyA. fundyense can influence
its suitability as a food item for some predators (Colin and Dam,
2002). Direct measurements document highly variable grazing
rates, ranging fromnear zero to over 600% of the standing stock
of A. fundyense per day (e.g. Turner and Borkman (2005),
Table 4). Because suchmeasurements are so difficult and time-
consuming to make, the existing database is not nearly
sufficient to construct space-time maps of grazing impact on
A. fundyense populations. However, it is clear that the mortality
rates inferred from the EnS estimation procedure (ranging from
0 to 0.25 d−1; Fig. 6) fall well within the envelope of
observations. The inferred mortality fields are thus plausible,
but their spatial structure is not strictly testable at this time.

5. Conclusions

We have demonstrated the utility of a Monte Carlo linear
minimum variance estimation procedure in two strong
constraint data assimilation problems. The first is a linear
estimation problem: the estimation of initial conditions. The
second is a nonlinear estimation problem: the joint estima-
tion of initial conditions and mortality rate. Although the
success of the method is not surprising given the broad
success of the closely related EnKF approach, the application
herein demonstrates that the EnS estimation methodology
can be used to tackle strong constraint data assimilation
problems for coupled physical–biological systems.

Our results demonstrate that estimates of biological
parameters are highly dependent on the hydrodynamic fields,
a finding noted earlier by Matear and Holloway (1995). In
both sets of experiments (estimation of initial conditions only
and joint estimation of initial conditions andmortality), lower
misfits to assimilated data were achieved in cases with no
flow. However, those solutions exhibited the lower skill as
measured by cross-validation experiments in which subsets
of the data were systematically withheld from the estimation.
In contrast, use of climatological and hindcast velocity fields
resulted in higher misfits to assimilated data, but better skill
in predicting unassimilated data. These trends were most
pronounced in the joint estimation of initial conditions and
mortality. In that context, the no-flow condition resulted in
the worst skill, whereas the best skill of all resulted from use
of the hindcast velocity field.

Posterior analysis of the mortality field confirms that the
inferred rates fall well within the envelope of observations.
However, the extant database is insufficient to assess the
accuracy of its spatial structure. The inferred mortality field is
thus credible, but not presently testable. It should be noted that
this approach tends to compensate for errors in the prescribed
circulation with corresponding adjustments to the mortality
field. The fact that the least skillful estimate of the mortality
field (assumingno-flow) cannot be rejected in favor of themost
skillful estimate (using the hindcast velocity) on the basis of
direct grazing measurements highlights the intricate relation-
ship between physical and biological uncertainties in testing
coupled physical–biological models with observations.
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