
RESEARCH ARTICLE
10.1002/2016JC011714

Mesoscale modulation of air-sea CO2 flux in Drake Passage

Hajoon Song1, John Marshall1, David R. Munro2, Stephanie Dutkiewicz1, Colm Sweeney3,4,
D. J. McGillicuddy Jr.5, and Ute Hausmann5

1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA, 2Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research,
University of Colorado, Boulder, Colorado, USA, 3Cooperative Institute for Research in Environmental Sciences, University
of Colorado, Boulder, Colorado, USA, 4NOAA Earth System Research Laboratory, Boulder, Colorado, USA, 5Department of
Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Abstract We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated bio-
geochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model.
Both observations and model show a negative correlation between temperature and partial pressure of CO2

(pCO2) anomalies at the sea surface in austral summer, indicating that warm/cold anticyclonic/cyclonic
eddies take up more/less CO2. In austral winter, in contrast, relationships are reversed: warm/cold anticy-
clonic/cyclonic eddies are characterized by a positive/negative pCO2 anomaly and more/less CO2 outgas-
sing. It is argued that DIC-driven effects on pCO2 are greater than temperature effects in austral summer,
leading to a negative correlation. In austral winter, however, the reverse is true. An eddy-centric analysis of
the model solution reveals that nitrate and iron respond differently to the same vertical mixing: vertical
mixing has a greater impact on iron because its normalized vertical gradient at the base of the surface
mixed layer is an order of magnitude greater than that of nitrate.

1. Introduction

The Southern Ocean (SO) is the largest sink of anthropogenic carbon dioxide (CO2), taking up roughly one
third of the global inventory [Mikaloff Fletcher et al., 2006; Gruber et al., 2009; Lenton et al., 2013]. At the
same time, the SO releases natural CO2 into the atmosphere, partially canceling out anthropogenic uptake
[Gruber et al., 2009]. Several modeling and observational studies suggest that the SO may have become less
effective in taking up anthropogenic CO2 over the last several decades [Metzl, 2009; Le Qu�er�e et al., 2010;
Lovenduski et al., 2013]. A large-scale analysis by Landsch€utzer et al. [2015] and regional studies by Xue et al.
[2015] and Munro et al. [2015a], indicate that SO CO2 uptake may have increased over the past decade.
Landsch€utzer et al. [2015] suggest that this recent increase in SO CO2 uptake follows a decade in which CO2

uptake stagnated consistent with previous studies, while an analysis by Majkut et al. [2014] suggest that no
decrease in the effectiveness of SO CO2 uptake has occurred.

The air-sea CO2 flux in the SO has marked seasonal variability [Takahashi et al., 2002; Lenton et al., 2006;
Metzl et al., 2006; Brix et al., 2013; Lenton et al., 2013]. In austral summer, the ocean takes up CO2 due to
increased biological productivity. In austral winter, however, suppression of biological productivity and the
upwelling of waters rich in dissolved inorganic carbon (DIC) increases surface ocean pCO2. Over the last
decade Landsch€utzer et al. [2014] and Munro et al. [2015a] suggest that the sign of winter air-sea exchange
may be into the ocean due to slower oceanic pCO2 increase than that in the atmosphere. Surface pCO2 is
also sensitive to temperature through solubility effects and decreases/increases as temperature cools/
warms. These two opposing effects (biogeochemistry and solubility) compensate one another reducing sea-
sonal pCO2 variability [Jiang et al., 2014; Munro et al., 2015b] relative to other parts of the ocean where these
effects are not as well balanced [Takahashi et al., 2002]. Even in the presence of compensation, observations
show a seasonal variability in oceanic pCO2 which is larger than that of atmospheric pCO2 in both the Indian
and west Pacific sectors [Metzl et al., 2006; Brix et al., 2013]. This indicates that the ocean plays an active role
in air-sea CO2 flux in the SO by changing the difference between oceanic and atmospheric pCO2.

Mesoscale eddies, often identified by anomalies in sea surface height (SSH), modulate oceanic physical
fields such as temperature, salinity, heat flux, heat content and vertical mixing [Hausmann and Czaja, 2012;
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Stephenson et al., 2013; Song et al., 2015]. Cyclones typically have colder core temperatures than the sur-
rounding fluid, resulting in anomalous heat uptake [e.g., Williams, 1988]. They are characterized by stronger
stratification in the near surface ocean, since isopycnals dome upward, leading to shallower mixed layers. In
the southern hemisphere, cyclones rotate clockwise and are associated with a negative SSH anomaly. In
contrast, warm anticyclones are less stable with anomalous heat loss to the atmosphere, downward doming
of isopycnals, weaker stratification and deeper mixed layers. Anticyclones rotate counter-clockwise with a
positive SSH anomaly.

Mesoscale eddies can also impact biogeochemical fields such as nutrients and plankton in complex ways
(i.e., stirring, trapping and isopycnal displacement, Ekman pumping from eddy-wind interaction, and anom-
alous vertical mixing, see Gaube et al. [2013]). In particular, the trapping mechanism can transport water par-
cels horizontally to other areas with different biogeochemical properties, and is more effective when there
is a stronger lateral gradient. Isopycnal displacement changes the depth of the nutricline and affects the
nutrient supply to the euphotic zone. Anticyclones/cyclones deepen/shoal isopycnals and the nutricline,
resulting in less/more available nutrients. However deeper/shallower mixed layers in anticyclones/cyclones
can provide more/less nutrients to the surface [Kunze, 1985; Kunze et al., 1995; Koszalka et al., 2010; Song
et al., 2015; Dufois et al., 2016].

These complex impacts of mesoscale eddies in the SO have been reported in the literature. Kahru et al.
[2007] observed that cyclones have enhanced chlorophyll biomass while anticyclones are marked with low-
er chlorophyll biomass in the Scotia Sea of the southwest Atlantic. However, Meredith et al. [2003] found an
increased chlorophyll biomass in an anticyclonic eddy found above the northwest Georgia Rise in the Scotia
Sea. Korb and Whitehouse [2004] argue that this is because of anomalously high iron supply from shelf sedi-
ments. Thomalla et al. [2011] report a complex interplay between mixed-layer depth and chlorophyll in the
SO, which suggests that anomalies in vertical mixing associated with mesoscale eddies can have different
impacts on the surface chlorophyll biomass depending on the region. Indeed, satellite observations of SSH
and chlorophyll reveal complex relationships between mesoscale eddies and chlorophyll biomass in the SO,
with both positive and negative cross correlations [Gaube et al., 2014].

Mesoscale eddies modulate air-sea CO2 flux through anomalous physical and biogeochemical properties;
however, it is not straightforward to anticipate how mesoscale eddies change CO2 flux because the overall
sign and magnitude are dependent on a complicated balance of physical and biological processes with
sometimes opposing effects. In the high-nutrient low-chlorophyll SO, primary production is generally regu-
lated by iron (Fe) [Cooper et al., 1996; Boyd et al., 2000; Watson et al., 2000] and light. Thus higher levels of
biologically available Fe will result in enhanced primary production, leading to lower DIC, pCO2 and either
increased uptake or reduced outgassing of CO2. Anticyclones may have less Fe if the downward displace-
ment of isopycnals pushes Fe-rich water to a deeper level, leading to less primary production and CO2

uptake. In contrast, anticyclones potentially lead to more CO2 uptake if they trap Fe-rich water near the sed-
iment sources and are transported offshore [Korb and Whitehouse, 2004]. If vertical mixing in the open
ocean is deep enough to entrain Fe-rich subsurface water in anticyclones, we can also expect more CO2

drawdown by enhanced primary production. Even in the presence of elevated Fe, the biological effect may
be muted if anomalously deep mixed layers lead to light limitation, complicating the role of mesoscale
eddies in modulating air-sea CO2 flux.

In this study, we attempt to gain a deeper understanding of the role of cyclonic and anticyclonic eddies in
modulating CO2 flux in the region of Drake Passage over the seasonal cycle using repeat shipboard trans-
ects and an eddy-resolving ocean model. Both observations and model reveal mesoscale modulation of the
CO2 flux which varies seasonally. This is studied by separating the oceanic pCO2 into temperature-driven
and DIC-driven components. An eddy-centric analysis of the model simulation reveals a differing response
of iron and nitrate to the same vertical mixing, which we link to the size of the vertical gradients at the base
of the mixed layer.

Our paper is organized as follows. In section 2, we describe the observations of pCO2 across the Drake
Passage. Eddy-resolving simulations of the CO2 flux and associated biogeochemical fields in the Drake Pas-
sage region are presented in section 3 using cross correlation and eddy-centric analysis. The influence of
mesoscale eddies on the CO2 flux and nutrient supply are summarized and discussed in section 4. We con-
clude in section 5.
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2. Analysis of Observations in Drake Passage

2.1. Data From the Laurence M. Gould
We use the sea surface temperature (SST) and the pCO2 in surface waters sampled from the Antarctic
Research Supply Vessel (ARSV) Laurence M. Gould across the Drake Passage during the period 2002–2015
[Jiang et al., 2014; Munro et al., 2015a,2015b] (Figure 1a). This data set includes 246 crossings of Drake Pas-
sage with at least some measurements in every month of the year; crossings are most frequent in October
(30 times in the austral spring) and least frequent in July (6 times in the austral winter) over the length of
the time series (Figure 1b). The cross correlation between SST and pCO2 anomalies are of interest in the
investigation of the role of mesoscale structures on pCO2. Hence, the linear trend of the surface data along
the crossing is removed to reveal anomaly patterns. The result is qualitatively the same if other plausible
methods are used in the computation of anomalies (Appendix A).

2.2. Observed Correlations Between SST and pCO2 Anomalies
We investigate how the anomalies of physical and biogeochemical variables change associated with meso-
scale eddies by examining the correlation near Drake Passage as shown in Figure 1c. The correlation coeffi-
cient between observed SST and pCO2 anomalies is negative in summer (from December to March),
suggesting anticyclonic warm eddies carry anomalously low pCO2 water (Figure 1c). Interestingly, this rela-
tionship is reversed in austral winter with a positive correlation from April to November. Since the ocean
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Figure 1. (a) Cruise lines across the Drake Passage along which repeat measurements were taken during the period 2002–2015, (b)
number of crossings for each month and (c) the cross correlation between SST and pCO2 anomalies. Correlation coefficients are computed
using anomalies along the transect and are grouped by month. Black dots and error bars in Figure 1c represent the mean and standard
error. The pCO2 is separated into temperature-driven (pCO2,T) and DIC-driven (pCO2,DIC) contributions following Munro et al. [2015b]. The
correlation between SST and pCO2,T (red) and pCO2,DIC (green) anomalies is plotted.
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takes up CO2 in summer due to increased primary production, the negative correlation suggests that more
CO2 enters the ocean in anticyclones than surrounding areas because of lower pCO2. In winter, when the
ocean emits CO2 to the atmosphere, anticyclones release more CO2 owing to their higher pCO2. Cyclones
exhibit the opposite behavior; less CO2 uptake in summer and less outgassing in winter.

Such relationships are also seen in the analysis of expendable bathythermograph (XBT) data across
the Drake Passage. For example Sprintall et al. [2012] found that warmer waters have greater
DpCO2 (air-sea) in spring north of 57�S associated with the decrease of oceanic pCO2. In winter,
XBT data show a negative correlation between temperature and DpCO2 south of the Polar Front,
corresponding to higher oceanic pCO2 in warmer water. Sprintall et al. [2012] attribute this seasonal
change in correlation to variation in the relative impacts of temperature-driven solubility and bio-
logical uptake, similar to what we will describe in section 4.1. In order to probe the mechanisms
linking hydrodynamic variability with air-sea CO2 flux, we now turn to a high resolution model of a
section of the Antarctic Circumpolar Current.

3. Coupled Eddying Biogeochemical-Physical Model of the Drake Passage Region

3.1. High Resolution Model Including Drake Passage
The oceanic carbon cycle is simulated by accounting for oceanic transport as well as biological and carbon-
ate sources/sinks. Here physical fields taken from the MIT Ocean General Circulation Model (MITgcm)
[Marshall et al., 1997a,1997b; Adcroft et al., 1997; Marshall et al., 1998; Adcroft et al., 1999] are used to drive a
carbon cycle model. The model is configured in a sector of the Antarctic Circumpolar Current including the
Drake Passage with a horizontal resolution of 1/20� and 50 vertical levels. The model domain also encom-
passes the region of the Laurence M. Gould transects. Forcing data sets for the model are the corrected nor-
mal year Common Ocean-ice Reference Experiments version 2 (CORE-II) [Large and Yeager, 2009] at the
surface and OCean Comprehensible Atlas (OCCA) product [Forget, 2010] at the open boundaries. This con-
figuration is adopted from that described in Tulloch et al. [2014] where the simulated physical solution is
intensively evaluated against observations.

The biogeochemical sources and sinks for the carbon cycle are air-sea CO2 flux, carbonate flux and primary
production. They are computed using a simple biogeochemical model [Dutkiewicz et al., 2005; Parekh et al.,
2006; Verdy et al., 2007] which simulates 6 biogeochemical variables: DIC, alkalinity, oxygen, nitrate (NO3)

Figure 2. pCO2 from the (a, b) climatology and (c, d) model simulation for (a, c) February and (b, d) August. Climatological oceanic pCO2 data [Takahashi et al., 2014b] is adjusted to a ref-
erence year 2005 and, hence, systematically higher than the modeled pCO2 for pre-industrial period. The color gray represents sea-ice from the model.
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and its dissolved organic form, and Fe. The
model simulates net community produc-
tion in the ocean using a combination of
light and nutrient (Fe and NO3) limitation.
This is similar, but distinct from primary
production which only includes the impact
of autotrophs (described in Appendix B).
The biogeochemical model was integrated
for 3 years from an initial state taking
monthly mean boundary conditions from a
global model. Model parameters are tuned
to yield biogeochemical states close to the
climatology. A list of parameter values is
given in Table 1. The simulated surface
pCO2 captures seasonal changes of the
meridional pCO2 gradient in the climatolo-
gy: increasing/decreasing pCO2 toward the

equator in summer/winter (Figure 2). More evaluation of the modeled biogeochemistry against the climatol-
ogy and observation is provided in Appendix D.

3.2. Simulations of Air-Sea CO2 Flux
The air-sea CO2 flux (FCO2 ) is parameterized as

FCO2 5Kw 12ASIð Þ pCO2
atm2pCO2ð Þ

5Kw 12ASIð ÞDpCO2;
(1)

where Kw is the gas transfer velocity (m s21) estimated using wind speed squared and SST [Wanninkhof,
1992]. Kw is then inversely scaled by the sea-ice coverage (ASI) in each grid cell and becomes zero when the
grid cell is completely covered by sea-ice. The atmospheric pCO2 (pCO2

atm) is set to a pre-industrial level
(278 ppmv), and the oceanic pCO2 at the surface (pCO2) is calculated following Follows et al. [2006]. A posi-
tive FCO2 means that the ocean receives CO2 from the atmosphere, and vice versa.

3.3. Analysis of Model Results
3.3.1. Eddy Correlations Over the Seasonal Cycle
The correlation between simulated SSH and pCO2 anomalies (solid black line in Figure 3) exhibits similar
behavior to that found in the data described in section 2 (compare to Figure 1c). In summer, the pCO2

anomaly is negatively correlated with the SSH anomaly, indicating that anticyclones/cyclones have lower/
higher oceanic pCO2. However, the correlation changes the sign to become positive in winter: anticyclones
have higher pCO2 and cyclones lower pCO2. Higher pCO2 indicates either less CO2 uptake in summer, or
more outgassing in winter, explaining the correlation between anomalies of SSH and CO2 flux (orange line
in Figure 3). A positive correlation in summer suggests that warm/cold anticyclonic/cyclonic eddies have
higher/lower CO2 flux into the ocean. In winter, anticyclones/cyclones release more/less CO2 into the atmo-
sphere than their surroundings.

Correlations between SSH anomaly and other biogeochemical variables are robust throughout the year. DIC
and NO3 anomalies are negatively correlated with SSH anomalies (light blue and red lines, respectively, in
Figure 3), suggesting that anticyclones/cyclones have lower/higher DIC and NO3. On the other hand, Fe and
community productivity have positive correlations with SSH anomalies (purple and green lines, respectively,
in Figure 3), indicating that enhanced levels of Fe and more community productivity occurs in anticyclones.
Since the Fe is the limiting nutrient in most of the model domain in the SO (see Appendix D), it is under-
standable that Fe and community productivity anomalies show a similar relationship with mesoscale
eddies.
3.3.2. Biogeochemical Fields Using Eddy-Centric Analysis
We compute the mean anomalies of biogeochemical variables using an eddy-centric coordinate. Using total
SSH fields, we identified 1268 anticyclones and 1624 cyclones with lifetimes longer than 20 days over 2
years (Appendix C). The eddy-centric composite average of the CO2 flux anomalies changes sign with SSH

Table 1. Parameter Names, Values, and Units for the Biogeochemical
Model

Parameter Name Value Units

Light
Light attenuation coefficient (kI) 0.02 m21

Self-shading coefficient (kChl) 0.02 m2 mg21

Photosynthetically active radiation 0.4 Dimensionless
Half saturation light constant 30 W m22

Net Community Productivity
Maximum consumption rate (a) 0.84 lM month21

Half saturation NO3 constant (kNO3 ) 8 lM
Half saturation Fe constant (kFe) 0.12 nM
Fraction of new production to DON pool 0.7 Dimensionless
Time scale for DON remineralization 3 month
N:Fe stoichometry 0.007 Dimensionless

Iron
Scavenging rate 0.231027 s21

Ratio of sediment Fe to NO3 flux (b) 1.153 Dimensionless
Minimum Fe flux from sediment (FFe;0) 1.031025 pM s21
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anomaly in different seasons (Figures 4a–4d), as revealed by the cross correlation in section 3.3.1. The com-
posite average of CO2 flux has a monopole structure and the maximum anomaly can be found within a cir-
cle of radius Ls whose size is the same as the one enclosed by SSH contour with the maximum mean
current speed. The CO2 flux anomalies are the largest in winter. Anomalous pCO2 in mesoscale eddies influ-
ences the CO2 flux anomalies in all seasons. A positive anomaly of pCO2 leads to less CO2 uptake in summer
and more outgassing in winter and thus a negative anomaly of CO2 flux. On the other hand, a negative
pCO2 anomaly results in a positive CO2 flux anomaly. Since the ocean receives CO2 in summer but emits in
winter, the CO2 flux anomaly indicates that anticyclones/cyclones take up more/less CO2 in summer and
releases more/less CO2 in winter. If one takes the modification of wind speed by warm/cold eddies into
account [Frenger et al., 2013], the CO2 flux anomaly can be amplified. It should be noted that the interaction
between SST and wind speed is not simulated in this study.

Variability of DIC on the mesoscale does not show a seasonal dependence (Figures 4i–4l). Anticyclones and
cyclones have lower and higher DIC levels, respectively, than the spatial mean in both summer and winter.
The DIC concentration generally increases with depth (Figure 5) and so the downward/upward displace-
ment of isopycnals in anticyclones/cyclones results in a negative/positive DIC anomaly in both seasons. DIC
has a negative meridional gradient, decreasing toward the north (Figure 5). Because the gradient of DIC
across the Antarctic Circumpolar Current is negative, eddy fluxes across the front can yield negative correla-
tion between SSH and DIC anomalies through the so-called ‘‘trapping’’ mechanism. Specifically, this effect is
produced by lateral cross-frontal transport of warm anticyclonic eddies (cold cyclonic eddies) with low
(high) DIC from the north (south) to the south (north).

Net community productivity is enhanced in anticyclones and reduced in cyclones in all seasons (Figures
6a–6d). The composite averages of the net community productivity anomaly have a sign opposite to that of
the NO3 anomaly (Figures 6e–6h), but the same sign as the Fe anomaly (Figures 6i–6l), reflecting the Fe-
limited environment. The NO3 spatial distribution is similar to that of DIC (Figure 5), suggesting that vertical
isopycnal displacement and the trapping mechanism are both potentially at work in shaping the NO3

anomalies. The Fe spatial distribution is quite different from those of DIC and NO3 and its anomalies are not
entirely determined by these two mechanisms, as will be discussed in section 4.2.

4. Proposed Mechanisms

4.1. Seasonal Cycle of CO2 Flux Anomalies
Both observed and simulated mesoscale variabilities of pCO2 show the same seasonal dependence as pre-
sented in section 3.3.1. Why does the correlation between anomalies of SST (or SSH) and pCO2 reverse with
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Figure 3. Solid lines are the modeled monthly averaged cross correlation coefficients of SST (teal), CO2 flux (orange), net community pro-
ductivity (green), Fe (purple), pCO2 (black), DIC (light blue) and NO3 (red) with the SSH anomaly associated with mesoscale eddies identi-
fied in our numerical model. The monthly averaged correlation coefficients are computed using spatially averaged anomalies of SSH and
biogeochemical variables from all mesoscale eddies for each month. The solid line with dots is the mean correlation coefficient between
SST and pCO2 across the Drake Passage from Laurence M. Gould as shown in Figure 1.
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season? We partitioned pCO2 into the temperature-driven (pCO2,T) and DIC-driven (pCO2,DIC) components
for both observation and model following Takahashi et al. [2002], Jiang et al. [2014] and Munro et al. [2015b]
and investigate the seasonality of mesoscale variability of pCO2.

Observations suggest that anomalies of pCO2,T and SST are positively correlated throughout the year (red
line in Figure 1c), indicating that warmer temperature in anticyclones increases pCO2 because of reduced
solubility. In contrast, cyclones with colder temperature have higher solubility and lower pCO2. On the other
hand, pCO2,DIC are negatively correlated with the SST anomaly (green line in Figure 1c). This suggests that
anomalously low and high pCO2 are expected in anticyclones and cyclones, respectively, owing to changes
in DIC. Hence the observed seasonal variability of the correlation between anomalies of SST and pCO2

results from a change in the balance between pCO2,T and pCO2,DIC. In summer, the modulation of pCO2 by
anomalous temperature in eddies is weaker than that by anomalous DIC, and the mesoscale variabilities of
pCO2 and CO2 flux are governed by anomalous aqueous CO2 of DIC. In winter, however, the temperature-
driven component dominates the pCO2 and CO2 flux anomalies.

Model simulations confirm relationships seen in the observations. The pCO2,T and SSH anomalies are posi-
tively correlated in both summer and winter (Figures 7a–7d). Warm eddies have low solubility, hence pCO2

increases, leading to a positive correlation between pCO2,T and SSH. The pCO2,DIC is negatively correlated
with SSH anomaly (Figures 7e–7h). The inverse relationship between pCO2,DIC and SSH can be anticipated
from the negative correlation between DIC and SSH anomalies (Figures 3 and 4i–4l)).

The eddy-centric analysis clearly shows that the balance between temperature and DIC tendencies varies
(Figure 7). In summer, the pCO2,DIC anomaly is greater and more robust than the pCO2,T anomaly, resulting
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Figure 4. Eddy-centric composite averages for anomalies of (a–d) CO2 flux (e–h) pCO2 and (i–l) DIC. From the left to right, columns represent anticyclones in summer, cyclones in
summer, anticyclones in winter and cyclones in winter. Eddies are mapped on the eddy-centric coordinate spanning 62Ls , hence the dashed circle with a unit radius corresponds to one
with a radius of Ls. Red, blue and black contours represent positive, negative and zero SSH anomalies with a 5 cm interval, respectively. The numbers on the lower right corner are the
percentage of eddies whose anomaly have the same sign as the composite average.
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Figure 5. The zonal mean DIC and NO3 from (top) the World Ocean Atlas 2009 climatology and (bottom) biogeochemical model.
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Figure 6. Eddy-centric composite averages for anomalies of (a–d) surface net community productivity (e–h) NO3 and (i–l) Fe. From the left to right, columns represent anticyclones in
summer, cyclones in summer, anticyclones in winter and cyclones in winter. Eddies are mapped on the eddy-centric coordinate spanning 62Ls , hence the dashed circle with a unit radi-
us corresponds to one with a radius of Ls. Red, blue and black contours represent positive, negative and zero SSH anomalies with a 5 cm interval, respectively. The numbers on the lower
right corner are the percentage of eddies whose anomaly have the same sign as the composite average.
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in a negative correlation between pCO2 and SSH anomalies. In winter, on the other hand, the pCO2,T anoma-
ly dominates the DIC effect on pCO2, leading to a positive correlation. The changes in the balance can be
understood using anomalies in the eddy centric composite averages. One can estimate effects on pCO2 due
to SST, DIC and alkalinity (Alk) changes thus:

DpCO2

pCO2
� 1

pCO2

@pCO2

@T
DT1

1
pCO2

@pCO2

@DIC
DDIC1

1
pCO2

@pCO2

@Alk
DAlk

5bDT1cDIC
DDIC
DIC

1cAlk
DAlk
Alk

;

(2)

when salinity changes are small [Takahashi et al., 1993; Mahadevan et al., 2004; Sarmiento and Gruber, 2006;
Lovenduski et al., 2007; Merlivat et al., 2015]. b is close to 0.0423�C21, and cDIC and cAlk are the Revelle factor and
alkalinity factor that are approximately 12 6 0.5 and 211 6 0.5 in the Drake Passage, respectively [Takahashi
et al., 2014a]. In the open Southern Ocean, changes driven by alkalinity perturbation are smaller than the other
two terms and have an insignificant contribution to DpCO2, while its contribution can be significant in other
ocean regions (e.g., North Atlantic) [Takahashi et al., 2014a]. Our analysis also shows that the impact of alkalinity
on pCO2 is insignificant (not shown). If we drop off the last term on the right-hand-side, equation (2) indicates
that the sign of DpCO2 in mesoscale eddies is determined by the sum of weighted SST and DIC anomalies. As

shown in Figures 4i–4l, anticyclonic eddies
are characterized by warmer SST and lower
DIC concentrations. Cyclonic eddies, by
contrast, have colder SSTs and higher DIC
concentrations. On the mesoscale, SST and
DIC anomalies averaged over the circular
area with the radius Ls vary by season
(Table 2). SST anomalies are larger in winter
while DIC anomalies are larger in summer.
Inserting these values in equation (2) for
anticyclones in Table 2 results in negative
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Figure 7. Eddy-centric composite averages for anomalies of (a–d) temperature-driven pCO2 and (e–h) DIC-driven pCO2. From the left to right, columns represent anticyclones in summer,
cyclones in summer, anticyclones in winter and cyclones in winter. Eddies are mapped on the eddy-centric coordinate spanning 62Ls , hence the dashed circle with a unit radius corre-
sponds to one with a radius of Ls. Red, blue and black contours represent positive, negative and zero SSH anomalies with a 5 cm interval, respectively. The numbers on the lower right
corner are the percentage of eddies whose anomaly have the same sign as the composite average.

Table 2. Spatially Averaged Eddy Composite Averages of SST Anomaly, DIC
Anomaly and DIC Concentration in Anticyclones and Cyclones in Summer
and Winter

Summer Winter

Anticyclone Cyclone Anticyclone Cyclone

DSST (�C) 0.37 20.20 0.76 20.71
DDIC (mmol C/m3) 25.91 4.46 23.88 3.23
DIC (mol C/m3) 2.09 2.12 2.10 2.13

aThe circular area with the radius Ls is considered in the spatial average.
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DpCO2 in summer but positive in winter.
In contrast, DpCO2 in cyclones becomes
positive in summer but negative in win-
ter. Hence, the seasonal change of corre-
lation coefficient between SSH and pCO2

anomalies is the consequence of the
seasonally varying magnitude in the
anomaly of SST and DIC.

4.2. Responses in Nitrate and Iron
It is interesting to note that simulated NO3 and Fe have opposite-signed anomalies in both summer and
winter (Figures 6e–6l): anticyclones have anomalously high Fe but low NO3, and cyclones have anomalously
low Fe and high NO3. Why do they display different responses driven by the same physical processes?

Mesoscale eddies displace vertical isopycnals and modulate the surface NO3. Doming of isopycnals in cyclo-
nes shoals subsurface water abundant with NO3 and creates a positive anomaly. The opposite is true for
anticyclones. Downward displacement of isopycnal in anticyclones results in a negative NO3 anomaly. The
trapping mechanism can also be applied to explain the NO3 anomalies seen in the eddy-centric composite
average in Figures 6e–6h. The meridional overturning circulation and the Fe-limited environment in the SO
set up warm water with low NO3 in the north and cold water with high NO3 in the south. Mesoscale eddies
can trap water parcels and transport them horizontally to other regions with different environments. If this
trapping mechanism is at work, warm anticyclonic eddies should carry waters with low NO3 and cold
cyclonic eddies waters with high NO3 across the Antarctic Circumpolar Current.

Similar to NO3, Fe concentration increases with depth near the surface. As such, isopycnal displacements by
mesoscale eddies would tend to produce the same sign of Fe anomalies as for NO3. However, Figures 6i–6l
show the anomalies with the opposite sign, indicating other processes are at work.

In order to evaluate the potential role of trapping, we examined the meridional gradient of Fe using the
data described in Tagliabue et al. [2014]. Although Fe concentration can be elevated near the shelf with sed-
imentary sources, Fe is mostly depleted at the surface in the open ocean. Dust input increases Fe concentra-
tion in the lee of the continent while intense vertical mixing at the north of ACC in winter supplies Fe to the
surface ocean. However these sources are limited to specific regions and Fe is quickly used up by biological
activity when light is available. All these complex sources and sinks make it difficult to anticipate the effect
of trapping on the composite average of Fe anomaly, which leads us to consider the role of vertical mixing.

The vertical diffusion of a tracer depends on the vertical diffusivity and the vertical gradient of that tracer.
Since the same vertical diffusivity is applied to both NO3 and Fe, it is the vertical gradient of the nutrients
that creates the different responses.

We computed the vertical gradient of nutrients at the base of the surface mixed layer and normalized it by
their concentration below the mixed layer. The normalized vertical gradients are all negative, suggesting
that vertical mixing supplies nutrients to the surface mixed layer (Table 3). However, the effect of vertical
mixing for NO3 is not strong enough to overcome the influence of the trapping and isopycnal displacement
mechanisms. The normalized vertical gradient of Fe is one order of magnitude greater than that of NO3. Fe
is the limiting nutrient in most of the eddy areas and becomes close to depletion when the productivity is
high. As a result, the vertical gradient for Fe is greater than NO3 and so vertical mixing of Fe is likely to have
greater impact. Although the simulated vertical gradients of nutrients can slightly differ from the climatolo-
gy, the observed vertical gradient of Fe [Tagliabue et al., 2014] is still greater than that of NO3 from World
Ocean Atlas 2009 climatology at the upstream of Drake Passage (not shown).

Even though the normalized vertical gradients of Fe are similar between anticyclones and cyclones, the sim-
ulated vertical diffusivity is much greater in anticyclones than in cyclones [see Song et al., 2015, Figure 3]. A
variety of processes may contribute to differences in the mixing environments within cyclonic and anticy-
clonic eddies. For example, warm anticyclonic eddies become less stable after losing buoyancy to the atmo-
sphere more quickly [e.g., Williams, 1988]. Also, the trapping of near-inertial waves promotes more vertical
mixing [Kunze, 1985; Kunze et al., 1995]. The weaker stratification also helps the wind energy to penetrate
deeper level [Koszalka et al., 2010].

Table 3. Normalized Vertical Gradient (31023) at the Base of the Mixed Layer
Depth

Summer Winter

Anticyclone Cyclone Anticyclone Cyclone

NO3 20.31 20.47 21.68 21.29
Fe 29.86 29.31 27.38 27.83
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5. Conclusion

We investigated the mesoscale modulation of CO2 flux and biogeochemical variables using both observa-
tions across the Drake Passage and an eddy-resolving numerical ocean model configured in the Drake Pas-
sage region. The 13 years (2002–2015) of SST and oceanic pCO2 observations with 246 crossings are
grouped by months after removing the linear trend across the Drake Passage. We computed the cross cor-
relation between SST and pCO2 anomalies to examine the observed mesoscale modulation. Using the eddy
detection algorithm, more than 2800 eddies with lifetimes longer than 20 days were identified from the
numerical model output and averaged after projecting to eddy-centric coordinate.

The cross correlation between SST and pCO2 anomalies reveals a marked seasonal variability: negative cor-
relation in summer and positive correlation in winter in both observations and model. The change in corre-
lation over the seasons suggests that anticyclones are more active in both taking up CO2 in summer and
releasing CO2 into the atmosphere in winter. Cyclones are less active than surrounding waters and behave
in the opposite sense to anticyclones.

pCO2 in the ocean changes with both physical and biogeochemical processes. The mesoscale modulation
of CO2 flux is thus determined by the balance between temperature-driven and DIC-driven effects. Warming
of the surface ocean reduces the solubility, hence the pCO2 increases. Warmer SST in anticyclones thus
leads to the pCO2 increase and either to less CO2 uptake in summer or more outgassing in winter. Anoma-
lously low DIC in anticyclones reduces pCO2 leading to either more uptake in summer or less outgassing in
winter. In summer, the DIC-driven effect is greater than the temperature-driven effect, resulting in a nega-
tive correlation between SST and pCO2 anomalies. In winter, however, the oceanic pCO2 is governed by the
temperature-driven effect, yielding a positive correlation.

Another interesting finding from the model analysis is the different responses of nutrients to the same physical
processes associated with mesoscale eddies. The vertical displacement of isopycnals and trapping mechanism
result in higher/lower NO3 concentration in cyclones/anticyclones with increasing NO3 concentration toward
the pole and depth. Although Fe concentration increases with depth, its anomalies have the sign opposite to
NO3, suggesting that the vertical displacement of isopycnals does not shape the anomalies. The meridional gra-
dient of Fe is not as clear as NO3, making the response of trapping mechanism complicated.

A hydrodynamic model simulation similar to that described here shows anomalous vertical mixing in meso-
scale eddies [Song et al., 2015]. From the present solutions we infer that stronger vertical mixing in deeper
mixed layers in anticyclones supplies Fe from the subsurface, resulting in a positive anomalies. Cyclones are
characterized by weaker vertical mixing, shallower mixed layers, and negative Fe anomalies. The footprint
of vertical mixing modulation by eddies, however, is not apparent in NO3 anomalies. The two nutrients dif-
fer in their responses to the same vertical mixing as their vertical gradients at the base of the surface mixed
layer are significantly different. As Fe is the limiting nutrient in the most of Southern Ocean, surface deple-
tion creates a greater vertical gradient than for NO3. NO3, on the other hand, is not fully utilized near the
surface, which reduces its vertical gradient. As a result, the same vertical mixing creates vastly different
fluxes for these two nutrients, bringing about mesoscale anomalies of opposite sign.

The observations show that temperature-driven and DIC-driven pCO2 are out of phase and compensate
one-another, resulting in smaller seasonal variability of pCO2. The compensation also occurs at the meso-
scale and shapes the seasonality of mesoscale modulation on CO2 flux. The strong seasonality of mesoscale
variability of CO2 flux suggests that an important mesoscale signal may be lost in annual averages.

Appendix A: Anomaly Computation

The anomalies of SST and pCO2 were obtained after removing the linear trend of each crossing across the Drake
Passage in this study. This separates an anomaly pattern from the sampled SST data if the meridional trend can
be depicted by a linear function (Figure A1a). However, this technique may not be optimal for pCO2 whose
meridional gradient is not always linear. Indeed, the pCO2 climatological mean distribution across the Drake Pas-
sage is not linear (Figure A1b). We therefore experimented by removing a quadratic trend and monthly mean.

The seasonality of cross correlation coefficients is robust regardless the methods for anomaly computation.
Correlation coefficients between SST and pCO2 remain negative in austral summer and positive in austral
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winter (Figure A1c). The seasonality becomes weak when the monthly mean was removed to compute the
anomaly, but the timing when the coefficient changes sign remains the same. The anomaly computation
for model data is explained in Appendix C.

Appendix B: Biogeochemical Model

The carbon cycle is simulated using a simple biogeochemical model, the DIC package in MITgcm. The CO2 air-
sea flux (FCO2 ) acts as a source/sink term in the equation for dissolved inorganic carbon (DIC) in the model.

@DIC
@t

52r � uDICð Þ1j
@2DIC
@z2

1FCO2 1RC:NSNO3 1SC; (B1)

where u is a vector that represents the three-dimensional velocity field, j is the vertical diffusivity, RC:N is the
Redfield ratio between carbon and nitrogen, SNO3 is the contribution from biological production and reminerali-
zation, and SC is the source term associated with calcium carbonate flux. The vertical mixing of the biogeochem-
ical variables is estimated by the nonlocal K-Profile Parameterization (KPP) scheme [Large et al., 1994].

The biological uptake of inorganic nutrients is parameterized as a function of light, NO3 and Fe.

B5a
I

I1kI
min

NO3

NO31kNO3

;
Fe

Fe1kFe

� �
; (B2)

where a is maximum uptake rate, kI, kNO3 and kFe are the half saturation values for light (I), NO3 and Fe,
respectively. The uptake of inorganic matter is subsequently divided between a dissolved organic pool in
the surface waters and the fraction exported to depth and remineralized. B can thus be likened to ‘‘commu-
nity production’’ as it includes the impact of herbivores as well as primary producers. This is similar, but dis-
tinct from primary production which only includes the impact of autotrophs.

The light decays exponentially with the e-folding scale of ðk1Chl3kChlÞ where k is the light attenuation
coefficient by water molecules, Chl is the chlorophyll concentration and kChl accounts for the absorption of

(a) SST (¡C) (b) pCO2 ( atm)

(-) quadratic trend

(-) linear trend

(-) monthly mean

(c) r(SSTÕ, pCO2Õ)

Figure A1. (a) Climatological mean SST, (b) pCO2 across the Drake Passage during the period 2002–2015, and (c) cross-correlation coeffi-
cients between SST and pCO2 anomalies when anomalies are computed with respect to the linear trend (brown), the quadratic trend (sky
blue) along the Drake Passage and the monthly mean (dark green). The monthly mean was computed after grouping data for each month
and latitude. The error bars in (c) represent the standard error.

Journal of Geophysical Research: Oceans 10.1002/2016JC011714

SONG ET AL MESOSCALE MODULATION OF CO2 FLUX 6646



light by chlorophyll [Song et al., 2016]. We used the annual mean of SeaWiFS chlorophyll concentration for
Chl. Fe has two sources: aeolian dust from the data set by Luo et al. [2008], and the sediments parameter-
ized following Elrod et al. [2004]. A list of parameter values is given in Table 1.

Appendix C: Eddy Centric Analysis

The first step for the eddy centric analysis is to detect eddies. We closely followed the procedure presented in
Chelton et al. [2011] and Song et al. [2015] for the identification of well-formed eddies using the SSH field. The
detection algorithm searches for the closed SSH contours and determines whether they are eddies by going
through the criteria given in Song et al. [2015]. The detected eddies and their trajectory are plotted in Figure C1a.

For each eddy, we estimate the radius Ls whose circle has the same size as the closed SSH contour with the
maximum mean current speed. Then V, the subset of a variable of interest ranging from 22:5Ls to 2:5Ls around
the eddy center, is extracted and its anomaly V 0 is computed as V 05V2½V�, where ½V� represents the regression
plane. The mean Ls is approximately 45 km, hence the mean subset size is 225 km 3 225 km. The anomaly V 0

is mapped onto the eddy-centric coordinate spanning 62Ls , and 4 composite averages were then computed:
anticyclones and cyclones in austral summer (December - March) and austral winter (June - September).

Figure C1. (a) Biological production simulated by the biogeochemical model and (b) the chlorophyll biomass from the SeaWiFS data set
averaged over December and January. The Patagonian shelf region with black dots in Figure C1a is where biological production is limited
by NO3 in the model. Light blue and red dots represent the initial location of cyclonic and anticyclonic eddies who live more than 20 days,
respectively, and lines are their trajectories.

Journal of Geophysical Research: Oceans 10.1002/2016JC011714

SONG ET AL MESOSCALE MODULATION OF CO2 FLUX 6647



Appendix D: Model Evaluation

Although the biogeochemical model for carbon flux is relatively simple, it captures the observed large scale
features of biogeochemical ocean states. The zonal mean of DIC and NO3 are close to World Ocean Atlas
2009 climatology (Figure 5). The simulated Fe level is also comparable to the observations upstream and
across the Drake Passage (not shown).

Net community productivity displays a similar spatial pattern as that of the chlorophyll biomass measured
from satellite. The model shows high production over the Patagonian Shelf and near the Antarctic in austral
summer, which is in a good agreement with observed chlorophyll biomass spatial distribution (Figure C1).
The simulated community activity is mainly limited by Fe in most areas of the model domain, except over
the Patagonian shelf where NO3 is the limiting nutrient. This is consistent with the observations presented
in Paparazzo et al. [2010].
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