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1. Introduction

In the 1960s and 1970s, physical oceanographers realized that mesoscale eddy flows
were an order of magnitude stronger than the mean currents, that such variability is
ubiquitous, and that the transport of momentum and heat by transient motions signif-
icantly altered the general circulation of the ocean (see Robinson, 1983). Evidence
that eddies can also profoundly alter the distributions and the dynamics of the biota
began to accumulate during the latter part of this period (e.g., Angel and Fasham,
1983). As biological measurement technologies continue to improve and interdisci-
plinary field studies to progress, we are developing a clearer picture of the spatial and
temporal structure of biological variability and its association with the mesoscale and
submesoscale band (corresponding to length scales of ten to hundreds of kilometers
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and time scales of days to years). In addition, biophysical modelling now provides
a valuable tool for examining the ways in which populations react to these flows.

Oceanic physics affects oceanic biology on a wide range of spatial and temporal
scales. Stommel (1963) classified physical oceanographic phenomena in such terms,
and Haury et al. (1978) built up an analogous view of the biology (see also Mar-
quet et al., 1993). If we focus on the interactions between physics and biology, we
can identify a number of distinct regimes in space–time. At the scale of an individ-
ual organism, the interaction is mediated through the forces the fluid applies to the
organism, and vice versa (drag, propulsion, pressure, buoyancy), through the delivery
of chemicals necessary for life and the removal of inimical ones, and through envi-
ronmental conditions such as temperature which affect biochemical rates. At scales
large enough to include multiple individuals, the fluid carries the signals that alert one
organism to the presence of others, alter the encounter rates (Rothschild and Osborn,
1988), and mix the populations.

For larger scales, ocean physics plays a significant role in setting the spatial and
temporal distributions of the biota. Primarily, the fluid flow acts to transport biologi-
cal quantities, both by translation of the material contained in a water parcel at the
flow velocity, advection, and by dispersal to neighboring parcels, diffusion. Both the
steady component such as the general circulation (global or regional) and the unsteady
parts such as surface and internal waves and mesoscale or submesoscale eddies can
contribute to transport of organisms. Although biological movements, especially in
the vertical, may overcome the fluid motions, most of the biota fit in the category of
plankton, meaning that they are carried along by the water in its movement.

Mesoscale and submesoscale flows accommodate a diverse set of physical–bio-
logical interactions which influence the distribution and variability of various plank-
ton populations in the sea. These complex, yet highly organized motions continually
deform and rearrange the hydrographic structure of the near-surface region in which
plankton reside. In the most general terms, the eddies have a twofold impact on the
biota; in addition to transport, they can also modulate the rates of biological processes.
The most common manifestations of the latter are associated with vertical move-
ments which can affect the availability of both nutrients and light to phytoplankton
and thereby alter the rate of primary production. Mesoscale and submesoscale flows
can produce vertical motions in two different ways: (1) directly, as part of the inher-
ent physics of baroclinic (vertically varying) flows and (2) indirectly, by interactions
within the surface boundary layer between the eddy flows and those forced by the
atmosphere.

In this chapter we examine mesoscale and submesoscale physical and biological
dynamics, review and synthesize our existing understanding of the local impacts of
the eddies, and discuss their effects on global-scale biological distributions.

2. Eulerian versus Lagrangian Models

2.1. Eulerian View

Some biological–physical models have been formulated in terms of the position,
velocity, and state of each individual (see Chapter 12); however, the more common
approach is to model the biological properties as fields, continuous functions of space
and time representing properties such as the biomass per unit volume or the density of
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particular species or even age/ weight classes within species. For this kind of model,
the governing equations simply state that changes in the amount of pi material in a
small volume are produced by fluxes across the surface bounding the volume and by
internal changes associated with the biological dynamics; in differential form, this
gives

∂
∂t

pi c −∇ . Ji + Pi(p, x, t)

where Ji is the flux (transport across a unit area normal to the vector per unit
time) and Pi represents the rate of biological creation or destruction of the quantity.1

The flux Ji includes the contributions from both the organized motion across the
surface and the stochastic mixing, produced by random swimming or by physical
processes—fluctuations in molecular motion or small-scale turbulence. The stochastic
transport will be represented by the product of a tensor diffusivity k i and the gradient
of the quantity. (We shall discuss the degree to which such a parameterization applies
to mesoscale eddies below.) The flux from the organized movement is Vipi, where the
velocity Vi is the sum of the fluid motion u and directed swimming/ sinking/ floating
ubio:

Ji c Vipi − k i ∇pi c upi + ubiopi − k i ∇pi

so that

∂
∂t

pi + ∇ . (Vipi) c Pi(p, x, t) + ∇ . k i ∇pi (1)

Although working with such field equations is routine, we should not forget that
many subtle and difficult questions arise in any attempt to derive them rigorously. For
example, how valid is the continuum approximation—are the organisms densely dis-
tributed enough that we can get a good estimate of pi and its derivatives. [See Siegel
(1998), who examines some of the implications of the discrete nature of plankton
distributions.] Are the encounter rates of predators and prey functions only of the
densities, or do the details of the spatial/ temporal probability distributions matter
(e.g., what role does patchiness play)? Can we really know the mean velocities ubio

or understand what they depend on? If the biological movements are an important
part of the diffusion, is the J c −k i ∇pi form really appropriate and is k i independent
of the densities of the predators or of the prey? We cannot deal with such questions
in any detail here, but wish to remind readers (especially modelers!) of the need for
critical review of the assumptions built into any biological model.

2.2. Advection: Lagrangian View

We have presented the Eulerian description above (equation 1); the fields are repre-
sented by the values at fixed spatial points as functions of time, p(x,t). This approach

1Boldface is used to represent vectors, either three-dimensional for spatial locations and velocities or
N-dimensional when used as a shorthand for the concentrations of N different biological variables, p c

( p1, p2, . . . , pN ).
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to continuum dynamics offers advantages for both numerical implementation and
incorporation of processes such as differential biological movement and diffusion,
which exchange material beween fluid parcels. However, since we are considering
complex space- and time-dependent flows and nonlinear biology, we are generally
forced to rely on numerical simulations of these equations. Although such calcula-
tions produce estimates of the transport by the flow directly, it can be quite difficult
to sort out the less direct effects—the interaction with the biological dynamics and
the alteration of the local densities, which, in turn, modifies the fluxes.

There is a second way of describing continuum fields in fluids—the Lagrangian
description—which can be helpful in understanding the effects of flow. Conceptually,
we think of marking a fluid parcel by putting dye in a small region and then record-
ing the time dependence of the biological quantities in the dyed area, wherever it
may move. The Lagrangian description generally assumes that any biologically deter-
mined velocities are the same for all interacting components (e.g., predator–prey)
occupying the volume; differential movement would imply that the interactions could
no longer be restricted to a single fluid parcel. Thus, this approach is appropriate
for an advection-dominated system, with either a homogeneous population or, more
likely, components that do not move with respect to the water.

We shall distinguish the Lagrangian description of a field p̃i(x0,t) by a tilde and
note that it is parameterized by the initial position of the fluid parcel, x0, and time.
The fluid physics and biological movement determine the trajectories x̃(t):

d
dt

x̃(x0, t) c Vi(x̃(x0, t), t), x̃(x0, 0) c x0

In this representation, the biological dynamics is simpler:

d
dt

p̃i(x0, t) c Pi(p̃, x̃(t), t) (2)

but the trajectory calculations can be difficult, processes that exchange properties
with the surroundings are not easily included, and building a picture of the spatial
distribution from information on a set of complex, intertwined trajectories can be
difficult. The Eulerian and Lagrangian descriptions are related by

p(x̃(t), t) c p̃(x0, t)

That is, if we track a parcel initially at x0 and find it is at a particular location at time
t, the Eulerian description must have the same value for the quantity at that particular
point and time.

The dynamical equation 2 makes it clear that the effects of advection are twofold:

1. The flow transfers temporal variability into spatial variability (i.e., equation
2 gives us p not at a fixed location but at a moving location). If we do wish
to know what value of p would be observed at a particular location xobs at
time tobs, we can, in principle, back the trajectory up to find the initial posi-
tion, apply the initial condition at that point, and then integrate forward to
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find p(xobs, tobs). Robinson (1997) considers several flow patterns and gives
an excellent summary of the types of temporal-spatial patterns which can arise
from pure advection.

2. The flow also converts spatial variation of the environment or parameters into
explicit time variations in the coefficients of the equation. If the biological
interaction terms do depend explicitly on space, meaning that one or more
parameters is a function of x, the motion of the parcel sweeps such a parameter
through a range of values over the time history of the parcel.

Both of these effects can be important. For example, we can think of the release
of pelagic larvae from a benthic organism as an example of temporal development
giving spatial patterns as the flow transports the larvae from the spawning site, so
that the different stages appear at different downstream locales. But the survival rate
could also depend on space (e.g., particular spots may harbor predators) so that the
second effect also comes into play. When discussing the influence of ocean eddies,
we must include both processes.

As an example, let us consider phytoplankton in a light field which decays expo-
nentially with depth subject to eddy-induced vertical motions, idealized as a near-
surface strain field varying sinusoidally in time:

u c a cos(qt) × (−x, 0, z)

The vertical position satisfies

d
dt

z̃ c a cos(qt)z̃

and the trajectories are given by

z̃ c z0 exp �
a

q
sin qt�

with z0 related to the average depth of the parcel by

〈z̃〉 c z0I0 �
a

q �

(I0 being the modified Bessel function); the ratio 〈z̃〉/ z0 increases as the amplitude
increases, since the parcels of fluid have larger downward excursions than upward
ones (Fig. 4.1).

Consider a simple biological model where we assume that phytoplankton grow at
a rate that is proportional to the light level and have a death rate that increases with
the population density

d
dt

P̃ c r0ez̃/ hP̃ − d0P̃ − d1P̃2 (3)
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Fig. 4.1. Trajectories under periodically varying strain field (dashed curves), the phytoplankton con-
centration (solid curves) and the difference between the time mean and P0. Left, purely advected case;
right, including biological dynamics. The lower middle picture shows 〈P〉.

In the absence of motion, the equilibrium distribution is simple:

P0(z) c





r0

d1
ez/ h

−

d0

d1
, z > −h(ln r0 − ln d0)

0, below

To illustrate just the transformation of spatial to temporal/ spatial variability, consider
the case in which we start with the state above and simply turn on advection without
permitting any biological changes (P c 0):

d
dt

P[no bio] c 0 e P̃[no bio](z0, t) c P0(z0) e P[no bio](z̃(z0, t), t) c P0(z0)

Figure 4.1 shows the time history of P[no bio] and the mean values observed at different
depths (note that these means will depend critically on the initial conditions).

When the biological terms are also active, so that the environmental variability
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along the path comes into play, the system comes into a final oscillatory state (Fig.
4.1) that is independent of the initial conditions (as long as P is nonzero along trajec-
tories that can support some population). In the surface regions, the biological terms
dominate and we see little effect from the movements; at the deepest level, advec-
tion is dominant and P is nearly constant on trajectories. At intermediate depths, both
factors enter, and P oscillates but is out of phase with the displacements because the
time scales for growth at these depths are comparable to the period of the motion.
The deviations from the rest state P0 now depend on ratios of the growth rate, r0 or
d0, the frequency, q, and amplitude, a, of the motion.

We can see from this example some of the differences between the Lagrangian
and Eulerian means. To find the average following the motion, we divide equation
3 by P̃ and integrate over the period (usually different from the Eulerian period, but
not in this case)

〈P̃〉 c
r0

d1T [ ∫T

0
dt exp � z̃(t)

h � ] − d0

d1

The Lagrangian average values are higher than P0 would be at the average depth of
the trajectory (Fig. 4.1) for the reasons given by Holloway (1984) and Joyce (1988):
The curvature in the light field implies that the increase while the phytoplankton are
near the surface is larger than the decrease while they are deep. The Eulerian picture
is more complicated: The deep mean values are increased because some plankton
are temporarily carried below the depths where they would normally die or do less
well, but then are returned to higher light levels. Nearer the surface, however, 〈P〉 is
reduced by the eddy fluxes, which are on average negative—downward-moving water
has higher P levels than upward-moving water, since the former has recently passed
through higher light levels (see the trajectory crossing 30 m in Fig. 4.1). In effect,
this loss acts as an increase in the death rate, reducing the supportable population.
The vertically integrated amount of phytoplankton is not significantly altered by the
fluid motion; however, changes in the mean properties do occur with more complex
biological models.

3. Biological Dynamics

The subject of biological modeling is, of course, huge (see Murray, 1990), and we
address only a few relevant aspects that arise when building a model of a biologi-
cal system for incorporation with a physical model. To be compatible with Eulerian
advection and diffusion, the variables must represent densities (amount per unit vol-
ume or per unit mass of water) of the property. If, for example, pk is the number per
unit volume of euphausiids of age k, we can mix water containing 5-day-old animals
with another parcel containing 10-day-olds to obtain water with nonzero values for
both p5 and p10. In contrast, a variable such as euphausiid age cannot really be dif-
fused properly (especially when we try to mix with water that has no euphausiids).
The biological reaction terms Pi must be local, expressing the rates of changes of
properties within a blob of fluid in terms of the values of all the variables in that
blob. Again, it is important to review and reexamine critically the choices built into
our models, so that we can develop a sense of how general the results might be.
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Modelers have approached biological dynamics in two different ways, depending
on their objectives. Food web models consider processes that transfer material such as
carbon or nitrogen from one group of organisms to another or to a particulate or dis-
solved phase. (Frequently, nitrogen is used because it may limit the uptake; however,
problems with more than one limiting substance are increasingly interesting.) Thus,
we might consider a model with several trophic levels, with phytoplankton, which
take up carbon from the inorganic pool, being consumed by zooplankton, which are,
in turn, eaten by fish (Fig. 4.2a); when these die, they produce detritus, which bacte-
ria turn back into inorganic material. As variables, we might use the carbon content
of each group. Structured population models represent the life cycle of a particular
species, such as a copepod, from hatching, through larval and copepodid stages, to
adults. The variables might be the number in each of the stages, and the dynam-
ics will represent the birth, death, and molting processes that alter these numbers
(Fig. 4.2b). Which of these approaches (or a hybrid such as splitting the zooplankton
into different stages and classifying the larval fish by their weight, etc.) one chooses
depends on the questions one wishes to answer. Unfortunately, we have no assurance
that the dynamics of interest is not strongly affected by our vast simplifications of
the natural system. Thus, we generally have to regard our models as ways of explor-
ing processes, rather than as exact simulations, especially for the long time scales
characterizing mesoscale eddies.

Fig. 4.2. (a) Food web and (b) structured population models. The solid arrows show transfers of carbon
or numbers per cubic meter from box to box. The dashed arrows represent losses by processes such as
excretion, predation, and death.
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3.1. Examples

In much of the rest of the chapter, we consider two examples: a typical
nutrient/ phytoplankton/ zooplankton system

∂
∂t

P + ∇ . (uP) c ∇ . k ∇P + uptake(P, N ) − grazing(P, Z) − death(P)

∂
∂t

Z + ∇ . (uZ + ẑwZZ) c ∇ . k ∇Z + assimilation(P, Z) − death(Z)

∂
∂t

N + ∇ . (uN ) c ∇ . k ∇N − uptake(P, N ) + supply(N )

+ regeneration(P, Z) (4)

(see Steele, 1974, Sarmiento et al., 1993, for two examples among many) and an
age-stage structured copepod model (Davis, 1984).

The NPZ equations 4 are similar to a wide variety of models that aggregate vari-
ous components of the planktonic ecosystem using a single currency (e.g., nitrogen).
Such models range in complexity from three components (e.g., Steele and Henderson,
1981; Frost, 1993) to more sophisticated formulations that treat dissolved organic
materials and the microbial loop (e.g., Fasham et al., 1990) and even species or
functional groups within particular classes of organisms (e.g., Moisan and Hofmann,
1996). We consider the conservative version of equations 4 with any nitrogen that
leaves the phytoplankton or zooplankton compartments turning immediately into dis-
solved nutrient. We use the Michaelis–Menten (1913) form for the uptake and the
Ivlev (1955) form for the grazing:

uptake(P, N ) c uez/ h PN
N + ks

grazing(P, Z) c
g
v

Z(1 − e−vP)

death(P) c dPP

assimilation(P, Z) c a × grazing(P, Z)

death(Z) c dZZ

supply(N ) c 0

regeneration(P, Z) c dPP + dZZ + (1 − a) × grazing(P, Z) (5)

with h being the e-folding depth for the light. The last two ensure that the NPZ system
is conservative, with the volume-integrated NT ≡ P + Z + N constant in time. Indeed,
we can replace the N equation with
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∂
∂t

NT + ∇ . (uNT + ẑwZZ) c ∇ . k ∇NT

which implies that NT will become uniform in the absence of zooplankton
swimming.2 Note that N c NT deep in the water column where the light level is
too low to support phytoplankton. In this biological model and, we might infer, in
much more complex models, biological transport (swimming, sinking of detritus, etc.)
plays an important role in setting the structure of the deep nutrient fields.

For the copepod model, the primary variables are the number per unit volume in
a particular age class within a particular stage (e.g., 3-day-old nauplii). The number
densities then satisfy

∂
∂t

ni + ∇ . (uni) c ∇ . k ∇ni + Lijnj (6)

with Lij a matrix containing the probabilities of surviving, molting, and reproducing.
In general, the elements in Lij, especially the reproduction terms, can depend on the
population density n; indeed, nonlinearity is essential to prevent indefinite growth of
the population in the long term. (Of course, it can also lead to complex dynamics;
see Caswell, 1989). We will be studying this model for shorter time scales and will
simply specify the new eggs n1 as a function of time and space. We can then use
constant values for the matrix elements. The complexity then arises from the large
number of variables, 150 to 200 age-stage classes in the Davis (1984) model.

3.2. Equilibria and Stability

In the absence of motion or mixing, the dynamics of the biological system is charac-
terized by the equilibria, their stability, and the attractors. The equilibria correspond
to points p c p, where

Pi(p, x, t) c 0 (7)

We cannot expect to find steady solutions when the interaction terms depend explic-
itly on time (although we can look at quasisteady cases); however, the equilibria even
in the time-independent case are still functions of x, so that the solutions will have
significant gradients that can be acted on by advection and diffusion.

For our NPZ model, we show the equilibrium solution as a function of depth
in Fig. 4.3. In the upper water column, the phytoplankton have a constant value,
fixed by the grazing, which reduces P down to the level where the zooplankton stop
growing. Higher nutrient uptake near the surface supports higher values of Z. At the
bottom of the euphotic zone, the zooplankton die out, leaving a very thin transition
region where there is enough light to support phytoplankton but not enough of them
to support zooplankton. A few meters deeper and the light level is too low, leaving
only nutrients.

2 Mathematically, the system is also reduced in order by one; we can solve just the P and Z equations,
using N c NT − P − Z in the uptake term.
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Fig. 4.3. Equilibria for equation 4 as functions of depth. The dotted line shows the growth rate j for
perturbations to the biological variables at the particular depth, ignoring any coupling between different
depth ranges. The parameter values (in units of mmol N and days) that we have used are: u c 0.6, ks c

0.1, NT c 5, dP c 0.016, g c 0.1, v c 0.1, a c 0.4, dZ c 0.08, h c 17 m.
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TABLE I
Stability of NPZ Model

Depth Range
(m) Basic State Eigenvalues Nonlinear Structure

0–10 P + Z Real, <0 monotonic stability Stable point
10–20 P + Z Complex, Re < 0, stable spiral Spiral to stable point
20–45 P + Z Complex, Re > 0, unstable spiral Stable limit cycle
45–55 P + Z Complex, Re < 0, stable spiral Spiral to stable point
55–60 P Real, < 0 monotonic Decay of Z
>60 N only Real, < 0 monotonic Decay to 0

Once we know the equilibria, we can compute their stability, using the linearized
equations

∂
∂t

p′i c
∂Pi

∂pj
p′j

The eigenvalues j of the matrix Pij ≡ ∂Pi/ ∂pj determine whether trajectories near
the equilibrium point will return to it (if all Re j < 0) either directly (Im j c 0)
or as damped oscillations (Im j � 0). Alternatively, the equilibrium point may be
unstable with some trajectories diverging from the neighborhood of the equilibrium
(some Re j > 0) directly or as a growing oscillation. For our example, the stability
calculation shows a complex structure (Table I) with monotonic stable points, stable
spirals, and unstable spirals. As is typical, the stability properties depend strongly on
the parameters; for example, the profile with NT c 3 is everywhere stable, while that
with NT c 10 is unstable from the surface to nearly the bottom of the euphotic zone.

3.3. Physically Induced Perturbations

We have looked at the effects of the flow with a Lagrangian approach; let us now
consider the ways they enter in the Eulerian system, equation 1. We can gain insight
into the dynamics by regarding the perturbations induced by the flow and diffusion
as small (even though this may not be always the case). If we write p c p(x) +
p′(x, t), where p(x) is the equilibrium state considering only the biological processes
described above, and then linearize the biological interaction terms, we have

∂
∂t

p′i c
∂Pi

∂pj
p′j − ∇ . (Vipi) + ∇ . k i ∇pi (8)

The spatial structure in the parameters leads to gradients in the equilibrium states;
the flow and diffusion working against these gradients generate time-dependent or
steady forcing of biological perturbations. The response to this forcing—the distance
the system moves away from equilibrium—is proportional (in a sense to be discussed
below) to the time scale for decay of biological perturbations to the local equilibrium.
For a particular biological model, there will be an entire set of such decay rates
(given by the eigenvalues of Pij) corresponding to different biological structures (the
associated eigenvectors), and both will vary from place to place. Since these time
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scales are sensitive to the exact choices for the biological reaction terms, we can
expect that response to eddy motions will be rather model-dependent.

To understand fully the impact of ocean eddies on the biology, then, we need to
examine both the processes that produce spatially variable biology in the absence
of flow (recognizing that temporal variability in Pi can be significant also) and the
development of biological perturbations. However, there are additional, more subtle
aspects that we may need to consider as well; in particular, the equilibrium states may
depend on quantities such as the amount of dissolved nutrient in the deep water,
which, in turn, is set by the remineralization process and transport by the general
circulation and by the eddies. To approach such problems, we write explicit equations
for both the mean field (which we can think of as the expected value when we take
lots of experiments from an ensemble of initial eddy field conditions) and for the
perturbations.

Mean Field Form
We shall consider a simple version of the mean field equations where we assume
that the system is statistically homogeneous in the horizontal directions and that the
biological component of the velocity—the swimming—is at most vertical and varies
only with depth: Vi c u + wẑ + ϖi(z)ẑ, where u is the horizontal component of
the fluid velocity, w the vertical component, ẑ the local vertical unit vector, and q i

represents the biological motion relative to the water. Then

∂
∂t

pi +
∂
∂z

ϖipi c Pi( p) +
1
2

∂2Pi

∂pj∂pk
p′jp′k −

∂
∂z

w′p′i +
∂
∂z

k i
∂
∂z

pi

∂
∂t

p′i + u . ∇p′i +
∂
∂z

ϖip′i c Pi( p + p′) − Pi( p) − w′ ∂
∂z

pi + ∇k ∇p′i

−∼ Pijp′j − w′ ∂
∂z

pi + ∇k ∇p′i (9)

Now the perturbations induced by the eddies acting upon the mean feed back upon
the structure of the mean. This interaction takes place in two ways: (1) the vertical
eddy flux of a property w′p′i can be convergent or divergent, and (2) the biologi-
cal nonlinearities are altered in the mean. The eddy flux can be understood simply:
Upwelling water will usually carry higher nutrients than downwelling water which
has passed through high-light regions where the phytoplankton are able to use and
deplete the dissolved nutrient. Even in a case with equal amounts of upwelling and
downwelling, there will be a net upward flux of nutrients. The eddy effects on the
biological reaction terms arise from the simple fact that the mean of the product of
two fluctuating series is not the same as the products of the means PN � P N.

In principle, when the biological dynamics is stable at every point, we should be
able to solve the forced problem (with the w′ ∂/ ∂z pi generating time- and space-
dependent fluctuations) and determine the mean and transient response. Several dif-
ficulties may occur with such a program: (1) the nonlinearity in the biological reaction
terms may be strong enough that the linearization of the perturbation equation may
not be valid, and (2) the assumption that the p equilibrium is stable may not hold.

In some cases, vertical diffusion can stabilize the system overall, by balancing the
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growth in the unstable region with outward diffusive fluxes. This can happen when
the diffusive time scale dz2/ k required to spread across the unstable band of width
dz is smaller than the growth time, 1/ Re(j ). To find the conditions more precisely,
we need to solve the stability problem, including the diffusion (and mean vertical
motions such as migration or sinking, as well):

jp′i c Pijp′j +
∂
∂z

k
∂
∂z

p′i

and look for globally growing modes. We have done this for the NPZ model by
discretizing in the vertical and finding the largest growth rate for coupled modes,
then adjusting k until j c 0; the result is k c 3 × 10−4 cm2 s−1 (smaller than the
estimate above, presumably because the diffusion couples the growing mode and the
damped modes present in the purely biological problem).

A second possibility is that the growing perturbations can change the mean values
in such a way that the mean fields become stable again. This happens in a number
of fluid problems; for example, convection alters the mean vertical profile until it is
very close to stable.

3.4. Unstable Points, Limit Cycles, and Chaos

What happens when the equilibrium is truly unstable? For the purely biological
dynamical system, we can examine the trajectories in phase space (which has p1,
p2, p3, . . . as coordinates). For a two-component system, the trajectories have a lim-
ited flexibility, since they cannot cross each other. They must either condense to a
point or to a stable limit cycle. These are known as attractors and are characterized
by the convergence of the rates-of-change vectors nearby.

We illustrate the nonlinear behavior of our example NPZ system by showing the
phase-plane diagrams at different vertical levels (Table 4.1, Fig. 4.4). The unstable
spirals (around depths of 30 m) can be seen to result in limit cycles; in other parts
of the water column, the equilibrium is stable and approached either monotonically
(though perhaps with a bloom in P) or in a damped oscillation.

The two-component system can exhibit other behaviors of interest for models of
ocean dynamics. For example, a so-called “type 3” grazing function

grazing(P, Z) c gZ
P2

P2 + kP

with curvature of both signs leads to a structure characterized as an excitable medium
(Truscott and Brindley, 1994). We can characterize the behavior by examining the
phase plane (Fig. 4.5), which shows the evolution from various initial values of P
and Z and also the null clines—lines (or surfaces) where Pi c 0. The equilibria are
intersections of these null clines; in the excitable medium case there is one such
intersection off the axes, and it corresponds to a stable equilibrium (but would be
unstable if it were on the right side of the minimum in the P1 null cline rather than on
the left). However, small perturbations that leave the system below the local minimum
in the null cline P1 c 0 will lead to large swings as P increases to the other branch
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Fig. 4.4. Phase-plane diagrams at different depths showing characteristic trajectories.

and then returns (Fig. 4.5a). Thus, this kind of system will be particularly sensitive
to the forcing provided by the physics.

Another form giving large responses is the multiple equilibria system (Fig. 4.5b)
which we construct by changing the zooplankton death to a quadratic function (Steele
and Henderson, 1981). For some parameter values, we find two stable states, with an
unstable equilibrium in between. For other parameters, we have only a single, non-
trivial, stable equilibrium or only the trivial solution. Small changes in the parameters
can lead to switching states. In both of these cases, the linear equations are not ade-
quate to describe the fluctuations.

As we move to three or more components, the trajectories can become much more
complex (see Hastings and Powell, 1991). Attractors may still exist, but they can be of
high enough dimension that trajectories can move chaotically on them. For example,
adding a higher trophic level (e.g., fish)
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Fig. 4.5. Null clines [dashed curves, P1 c 0 descends from upper left to a minimum, rises to a maximum,
and the proceeds toward P c 5; P2 c 0 is vertical on (a) and rises from the origin and levels out in (b)]
and trajectories for (a) excitable media case and (b) multiple equilibrium case.

∂
∂t

F + ∇ . (uF + uFF ) c ∇ . kF ∇F + feeding(F, Z) − death(F )

can give erratic cycles even in the absence of flow (Fig. 4.6).
Advection-diffusion acting on such more naturally time-dependent systems may

be expected to have significant effects, perhaps even causing chaotic motion (Pas-
cual, 1993). In such cases we can no longer ignore the nonlinearity in the fluctuation
equations and will have to examine the dynamics in detail, usually via numerical
simulation.

3.5. Time-Dependent Coefficients

As we have seen, one of the primary effects of the physics, viewed in the Lagrangian
frame, is to cause variations in the parameters of the biological model. For example,
the light levels alter as a parcel moves vertically, and these changes result in differ-
ent photosynthesis rates for phytoplankton. Variable coefficients can lead to periodic,
quasiperiodic, or chaotic behavior (Strogatz, 1994). Even in the two-component sys-
tem, variations in the coefficients allow trajectories starting from the same point to
have different histories, and a single trajectory can now fill (in the fractal sense) spa-
tial regions. In Fig. 4.7 we show an example in which the depth of a parcel oscillates
by 3.5 m around the nominal depth of 30 m with a period of 181 days. The biologi-
cal model is the NPZ model discussed above; it has a limit cycle in the unperturbed
case. We also show the excitable media and multiple equilibrium cases.

We close this section with some cautionary remarks. As modelers, we often do not
fully explore the dynamical system structure of a biological model to determine its
behavior over reasonable ranges of the parameters or consider seriously the effects
of using alternative functional forms. Indeed, we often assume that the ocean should
be rather regularly behaved and select a model that has a very stable equilibrium
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Fig. 4.6. Transition to chaos in the three-component model, with feeding c af gf ZF/ (kf + Z), death (F )
c df F, death (Z) c feeding/ af , and N c NT − P − Z − F. Plots show spiral approach to stable point, limit
cycles (including multiple periods) and chaos.

point (e.g., by using a Z2 death term); variability then arises from the physics and/ or
external imposed stochastic events (wind events, predation, anthropogenic influences,
etc.). However, it is quite likely that the biology of interest, when considered more
fully, may have intrinsic oscillatory or chaotic time dependence. Since the response
to physical variability will differ depending on the nature of the attractors, whether
equilibria, limit cycles, or chaotic, we may still be missing important elements of the
biophysical interactions.
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Fig. 4.7. Response of the phytoplankton (solid curves) and zooplankton (dashed curves) to depth varia-
tions z c 30 m + 3.5 m × cos(2pt/ 181 days). The light decreases exponentially with depth. (a) Standard
NPZ dynamics (see z c 30 m in Fig. 4.4); (b) excitable media (equation 5a); (c) multiple equilibria
(equation 5b).
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4. Review of Eddy Dynamics

We begin with a quick review of the dynamics of mesoscale eddies and jets with the
goal of understanding the velocity structures and transports in such features. Much of
the work in ocean modeling uses the primitive equations, which approximate the orig-
inal Navier–Stokes system by assuming that (1) the vertical force balance is hydro-
static and the fluid occupies a shell that is thin compared to Earth’s radius, (2) the
vertical component of the Coriolis force is neglected, and (3) the gravitational force
(which includes the centrifugal terms associated with Earth’s rotation and also defines
the vertical direction ẑ) is regarded as having constant magnitude. In observations,
the pressure serves as a measure of depth, and it is convenient to follow this in the
theoretical development as well. We define the vertical coordinate z to be −p/ r0g,
where r0 is a reference density. The vertical velocity w is defined as the rate of
change of this quantity following the fluid parcel. The isopycnal-following RAFOS
floats provide direct measurements of this quantity (see Bower, 1991). We shall use
the notation u for the horizontal velocities. With these definitions, the conservation
of mass equation

∇ . u +
∂
∂z

w c 0 (10)

simply states that horizontal convergence must be balanced by vertical stretching of
the distance between isobars. This follows from the fact that there is a constant mass
per unit area contained between two isobars for a hydrostatic fluid.

Newton’s equations relating forces to accelerations become

∂
∂t

u c −2�eff × (u + wẑ) − ∇(f + 1
2 u . u) + bẑ (11)

(neglecting viscosity and diffusion). The terms on the right-hand side (in reverse
order) represent

1. Buoyancy forces with light fluid tending to rise and heavy fluid to sink. The
buoyancy (actually, the potential buoyancy) is given by b c g(r0−r)/ r−g2/ c2

s ,
where the second term gives the compressibility effects, c2

s being the average
sound speed.

2. Pressure forces, including the Bernoulli effect. These are written in terms of
the geopotential anomaly f rather than the pressure—essentially, the compo-
nent of the gravitational force along the pressure surface acts to accelerate the
fluid horizontally. (The geopotential is the sum of the gravitational and cen-
trifugal potentials; thus, a particle on a surface of constant geopotential will
feel only forces normal to the surface—the mass times the gravitational accel-
eration vector g. For practical purposes, f is equal to |g | times the height.)

3. Acceleration associated with a reference frame that is rotating (locally) at a
rate

2�eff ≡ f ẑ + ∇ × u (12)
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where f is the Coriolis parameter 4p sin (latitude)/ day and ∇ × u is the curl
of the velocity, known as the vorticity. The Coriolis parameter is twice the
rotation rate of Earth (as felt by a pendulum, for example) at the given latitude,
and as we shall see, the vorticity is twice the rotation rate of a fluid parcel
relative to Earth.

Since vorticity plays a central role in eddy dynamics, let us consider what it means
in some detail. Suppose we lay out in the fluid a small circle of dye with radius e.
The rotation rate of this ring (ignoring the planetary rotation, which can be added
back in) would be

Q eff c
1
e

〈utangential〉 c
1

2pe2 ∫° u . ds

Stokes’ theorem then gives

Q eff c
1

2pe2 ∫ ∫ (∇ × u) . n̂ dA c

1
2pe2

pe2(∇ × u) . n̂ c
1
2

(∇ × u) . n̂

Since Q eff c n̂ . �eff, we can see that the vector vorticity is just twice the effective
rotation vector. Because the rotation time of Earth is short compared to the movement
and evolution of the eddies, we must include the effective rotation rate associated with
the spin of the planet; for a basically horizontal circuit, this is 2p sin(latitude)/ day,
giving a vorticity f ẑ.

The system of equations is closed by a thermodynamic equation (cf. Charney and
Flierl, 1981); we shall ignore the distinction between temperature and salinity strat-
ification to deal only with the buoyancy (which includes both). By using pressure
coordinates, we have avoided the traditional Boussinesq approximation that the vari-
ations in specific volume are small compared to the reference value. But we shall
make a similar simplification by assuming that buoyancy forces are weak compared
to gravity and the sound speed is nearly uniform. The thermodynamic equation then
becomes

∂
∂t

b + u . ∇b + w
∂
∂z

b c 0 (13)

We shall use the set of equations 10 to 13—the primitive equations—hereafter. In
general, because these equations have three time derivatives, three wavelike motions
occur: two gravity waves (traveling in opposite directions) and one Rossby wave.
Mesoscale dynamics is concerned with the latter, which is the low-frequency mode.

4.1. Geostrophic Flow

In the vertical, the gravitational and pressure forces are nearly in balance. In the
horizontal, we find a similar nearly balanced situation for mesoscale and larger-scale
flows: the Coriolis forces and the pressure forces (gradients in geopotential in the
equations above) balance to within order 20%:



MESOSCALE AND SUBMESOSCALE PHYSICAL–BIOLOGICAL INTERACTIONS 133

f ẑ × u −∼ −∇f e u c
1
f

ẑ × ∇f (14)

To see why this might be true, we adopt the approach of scale analysis, although
we shall not be formal about it. The basic idea is that we can estimate the sizes of
terms if we specify the velocity scale U (the characteristic magnitude of u and a
length scale L. By the latter, we really mean something like the maximum value of
f divided by the maximum value of ∇f (or similar quantities estimated from u or
b). We then estimate the size of each term using ∇ ∼ 1/ L and compare them. For a
time scale, we use the advective time L/ U. For the horizontal momentum equations,
we have

∂
∂t

u + (∇ × u + f ẑ) × (u + wẑ) c −∇ �f +
1
2

u . u�
UU/ L (U/ L, f ) × (U, W ) �/ L U 2/ L

U/ f L (U/ f L, 1) × (1, W/ U ) �/ fUL U/ f L

The second line shows the scales of each term, and the third line shows the ratio
to the Coriolis term. Mesoscale motions are characterized by a small value of the
Rossby number Ro c U/ f L; for example, a typical midocean eddy might have U ∼
0.2 m s−1 and L ∼ 50 km with f ∼ 10−4 s−1, giving Ro c 0.04. Even a strong current
such as the Gulf Stream with U ∼ 1 m s−1 has Ro only 0.2. As we shall see, W/ U
is small; thus the Coriolis term dominates and we must choose a magnitude fUL for
geopotential anomalies to balance Coriolis accelerations.

The geostrophic equation 14 with the hydrostatic equation

∂
∂z

f c b (15)

allow diagnosis of the horizontal velocities and density from the geopotential field;
however, hydrographic data really give us only b and, via the thermal wind equation
(derived by eliminating f from equations 14 and 15), the vertical shear:

∂
∂z

u c
1
f

ẑ × ∇b

The geostrophic/ hydrostatic equations do not provide any estimate of the vertical
velocity or any prediction for the changes in the flow. To find these we need to include
higher-order corrections.

One other important implication of geostrophic balance is that the divergence of
the horizontal velocities is small compared to the vorticity:

∇ . u −∼ ∇ . 1
f

ẑ × ∇f c −
1

f 2
∇f . ẑ × ∇f −∼ −

1
f

u . ∇f ∼
bU
f

so that |∇ . u | / | ẑ . (∇ × u) | is order b* c |∇f |L/ f ≡ bL/ f , where b measures the
gradient of f—the Coriolis parameter increases northward because of the sin(latitude)
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factor. The nondimensional parameter b* c bL/ f for the 50-km length scale and b

∼ 2 × 10−11 m−1 s−1 is about 10−2 which is O(Ro). The vertical velocity scale is
W c (bL/ f ) U (H/ L) where H is the depth scale; this is weaker than one would
expect from inspecting the mass conservation equation 10. Thus, vertical advection
[O(W/ H )] will generally be quite small compared to horizontal advection [O(U/ L)]
unless the property changes rapidly over a vertical scale that is small (order Ro)
compared to the fluid depth, as biological properties may well do.

4.2. Potential Vorticity

The component of effective rotation normal to buoyancy surfaces q c 2�eff . ∇b,
known as Ertel’s potential vorticity (PV), is the most significant dynamical variable
for mesoscale flows for several reasons: It is a scalar conserved property (cf. Ped-
losky, 1979), and if the flow is roughly in geostrophic balance, knowledge of the PV
(and boundary conditions) is enough to determine the velocities.

We can understand the conservation of PV fairly easily if we return to the concept
of a ring of dyed fluid. The net force arising from the ∇[f + 1

2 |u | 2] terms is given
by the difference of the quantity in brackets from the beginning to the end; for a
closed circuit, this is zero. The buoyancy forces could cause torques (if, e.g., we
tilt the ring up toward the north and have light fluid on the east side and heavy
fluid on the west), but we can eliminate these by embedding the ring in a constant b
surface. Then the integrated tangential velocity (the circulation) will not change with
time. What happens if the distance between buoyancy surfaces expands? The area
and circumference must shrink (of course, the circle will also generally distort, but
that is not a problem). To preserve the circulation, the tangential velocity must grow
as the circumference shrinks, implying that the vorticity grows. This is analogous
to the ice-skater effect: Spin increases as the moment of inertia decreases. Since the
circulation 2�eff . n̂A c 2�eff . ∇b/ |∇b | and the mass between neighboring buoyancy
surfaces A/ |∇b | are both conserved, we can indeed see that the potential vorticity q
does not change with time, following the fluid.

McWilliams (1976) has computed maps of potential vorticity (in the approxi-
mate quasigeostrophic (QG) sense described below) from the Mid-Ocean Dynamics
Experiment. The eddies appear as blobs of high PV, with cyclonic (counterclockwise
in the northern hemisphere) flow, and low PV with anticyclonic (clockwise) flow.
A section of Ertel’s PV, from cold- and warm-core rings [Olson (1980) and Flierl
(1987), respectively] shows similar high- or low-PV centers. With the identification
of high/ low PV with cyclonic/ anticyclonic flow, we can begin to view the ocean
eddy field as sets of vortices that interact with each other and with the gradient in
PV associated with the latitudinal variations of f.

4.3. Quasigeostrophic Equations

The QG equations state that an approximate form of the potential vorticity

Q c ∇2w + f +
∂
∂z

f 2

N 2

∂
∂z

w (16)

is conserved following the geostrophic flow
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∂
∂t

Q + u . ∇Q c 0, u c ẑ × ∇w (17)

Here w c f/ f is the stream function for the flow, meaning that w(x2, z) − w(x1,
z) measures the volume transport per unit depth between the two points x2 and x1.
The Brunt–Väisälä frequency (squared) N 2 is defined as the mean value of ∂b/ ∂z.
The assumptions required for the QG equations to be a good approximation are that
the b-effect is weak and the Rossby number is small, bL/ f ∼ U/ f L << 1 and that
the vertical and horizontal scales of the motion are related: NH/ f L ∼ 1. Like Ertel’s
potential vorticity, the QG PV has contributions from planetary rotation, local spin
of the parcels (the relative vorticity z c ẑ . (∇ × u) c ∇2w) and the thickness between
buoyancy surfaces [(∂/ ∂z) ( f 2/ N 2) (∂/ ∂z) w].

The QG equations have several advantages: the system is first order in time
(whereas the full dynamics is third order) and the relationship between the PV, Q, and
the flow, w, is linear so that the total flow is the superposition of the velocities associ-
ated with each vortex. Thus, intuition about how a vortex will be moved by its neigh-
bors, intuition that is only approximate in the full system of equations, corresponds
exactly to the mathematics in the QG system. (Of course, our intuition may not be
terribly reliable when dealing with a system with many vortices—indeed, only four
are required to produce chaotic motion; Aref, 1983.) Concomitantly, the QG equa-
tions are missing features of the original primitive equations system: asymmetries
between cyclones and anticyclones (see below), interactions with steep topography
and with gravity waves, rapid frontogenesis, and so on.

The QG equations can be split into two time evolution equations, one for the
vertical component of the relative vorticity,

ẑ . (∇ × u) c
∂
∂x

v −
∂
∂y

u c ∇2w

and one for the buoyancy anomalies. This form shows the role of the vertical velocity
explicitly:

∂
∂t

∇2w + J(w, ∇2w + f ) c f
∂w
∂z

∂
∂t

∂w

∂z
+ J �w,

∂w

∂z � + w
N 2

f
c 0 (18)

where J is the Jacobian derivative, J(A, B) ≡ ẑ . (∇A × ∇B), an antisymmetric, bilinear
form. These reduce to equations 16 and 17 when we eliminate the vertical velocity.
The content here is pretty much the same as discussed before: vertical stretching
of a water column (∂w/ ∂z > 0) causes closed contours to shrink and the vorticity
to increase; alternatively the parcel of fluid can change its planetary vorticity. The
vertical motions also uplift or depress the isopycnals (and, of course, the biota). We
can use either of these equations to estimate w.
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4.4. Level and Layer Models

Numerical studies of the dynamics require some form of discretization; often a fairly
fine vertical grid is used in the near-surface layers for accuracy. However, even the
coarsest resolution, a two-level or two-layer model, can offer significant insights into
the important physical processes at work. In this case, the vertical velocity (which is
constrained to be zero on the top and the bottom) has only one degree of freedom in
the vertical: its value at the middle (usually thermocline) depth. In the level model
we solve for w at a fixed depth and discretize the horizontal velocities above and
beneath the thermocline. For the layer model, we assume that the pycnocline [at z c
−h(x, y, t) is a material surface separating light, constant buoyancy fluid from heavier
fluid. The vertical velocity is calculated at this moving interface:

w c −

D
Dt

h,
∂w
∂z

c

1
h

D
Dt

h (19)

(in the upper layer) as sketched in Fig. 4.8. The horizontal velocities are independent
of depth within each layer, the vertical change in the horizontally varying pressures
can be related to the jump in buoyancy, and the total depth is assumed to be fixed:

∂
∂t

ui + (z i + f )ẑ × ui + ∇ 1
2 |ui | 2 c −∇fi, f1 c f2 + g′h

∂
∂t

hi + ∇ . (uihi) c 0, h1 c h, h2 c H − h (20)

with g′ c b1 − b2. The potential vorticity in each layer,

Fig. 4.8. Two-layer model, showing the vertical velocities and the divergent part of the horizontal veloc-
ities associated with deepening of the thermocline in the center of the feature.
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qi c
f + z i

hi

is conserved. This system of equations (or its quasigeostrophic analog) contains some
representation of the effects of stratification and has proved to be an excellent tool
for understanding the basic processes governing the eddy field.

4.5. Advection of Biological Properties

The primary effect of the fluid upon the biota is, of course, advection, which we can
represent as the material derivative

D
Dt

pi ≡
∂
∂t

pi + u . ∇pi + w
∂
∂z

pi

c

∂
∂t

pi + ∇ . (upi) +
∂
∂z

(wpi)

Primitive equation models represent the advection fully, often using the flux form to
ensure conservation of material. When we are using the quasigeostrophic approxi-
mation, the material derivative becomes

D
Dt

pi −∼
∂
∂t

pi + J(w, pi)

if the vertical scale of pi is similar to that of the flow. Often, however, the biological
fields will vary rapidly in the vertical, so that ∂/ ∂z of these quantities can easily be
order Ro−1 compared to the vertical derivatives of physical properties (e.g., for a
Rossby number of 0.05 and currents decaying over the top 1 km, we would require
a biological scale order 50 m). In that case we must also keep the vertical advection
term3

D
Dt

pi −∼
∂
∂t

pi + J(w, pi) + w
∂
∂z

pi

5. Rossby Waves and Biological Dynamics

To illustrate some of the basic aspects of mesoscale physical–biological coupling, we
begin with freely propagating Rossby waves, which are analytical solutions to the QG
equations 16 and 17. Although such motions do not exhibit the strong nonlinearity
characteristic of oceanic mesoscale and submesoscale phenomena, they constitute a
framework for examining some simple processes. In this first example we consider
the role of horizontal advection in a channel of length L with stress-free walls at

3 A somewhat tricky question is whether the last term should be written in flux form, given the fact
that the horizontal advection by the geostrophic flow can be so expressed. However, using flux form for
the vertical advection keeps some terms which are small while neglecting others of the same order, and
that appears to be problematical.
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y c 0 and y c W. The depth-independent (barotropic) Rossby wave solution to the
QG equations has a stream function

w c

U0

l
sin[k(x − ct) + v] sin ly (21)

and a PV field

Q c f −
U0

l(k2 + l2)
sin[k(x − ct) + v] sin ly

Substituting these into equations 16 and 17 gives the propagation speed or the fre-
quency of a wave:

c c −
b

k2 + l2
, q c −

bk
k2 + l2

(22)

The characteristic frequencies are small—order bL/ f —compared to the lowest
inertial-gravity frequencies (which run from f to N) and get smaller as the wave scale
decreases. We can understand fairly easily the physics behind the restoring forces that
make the system oscillate. Suppose that the contours of Q are shifted north and south
around the latitude circle (Fig. 4.9a); the relative vorticity on the northward-shifted
parts of the contours is negative (since f is higher and ∇2w + f is constant on the con-
tour), while the southward-shifted particles have positive relative vorticity. The flow
will be clockwise (positive w) around the negative-vorticity regions and counterclock-
wise (negative w) around the positive-vorticity regions—characteristically, when we
solve the Poisson equation 17, we find that w has the opposite sign from Q, is scaled
by L2, and is smoother. Thus the flow will tend to shift the Q contours (which move
like dye lines in the fluid) northward on the eastern side of the peaks and southward
on the western side, and the original pattern shifts westward with time.

As an example of the effects of the horizontal advection, consider the eddy trans-
port version of Wroblewski’s (1980) analysis of the offshore distribution of copepod
life stages. We will use the more complex life-stage model of Davis (1984) (equa-
tion 6) and suppose that there is a source of eggs at t c 0 in a nearshore strip. The
distribution of the various classes at later times is governed by

∂
∂t

ni + J(w, ni) c Lijnj + ∇k ∇ni + s(x)di1n(t)

with n1 representing the concentration of new eggs, n(t) being the temporal varia-
tion of spawning, and s(x) giving the spatial distribution. This linear problem can be
solved in terms of the Green’s function for the physics—the distribution that a pas-
sive tracer would have at time t if injected at time t′ with concentration s(x)—and
the biological evolution, which is exponential. The copepod distribution is given by
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Fig. 4.9. Rossby wave dynamics: (a) barotropic, showing the contours of constant Q c z + by at the
initial time, the sign of the relative vorticity z , and the position of the Q contours at a slightly later
time after the advection by the induced flows; (b) baroclinic, showing the Q contour in x and z and the
depth of the thermocline, deeper in low-surface Q regions (weak stratification), which occur where the
Q contour is displaced northward. The arrows show the flow above and below the thermocline.

ni(x, t) c ∫
t

0
dt′ eLij(t − t′)dj1n(t′)g(x, t, t′)

where the Green’s function satisfies

∂
∂t

g(x, t, t′) + J(w(x, t), g(x, t, t′)) c ∇k ∇g(x, t, t′)

g(x, t′, t′) c s(x)
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Note that the exponential in the integral above is a matrix exponential, not the expo-
nential of each element in the matrix (see Varga, 1962). In principle, this can be
found by writing the normal Taylor series for the exponential function, replacing Ln

by the product of n identical matrices, and summing the series.
For the smoothly propagating wave in a channel with the source function depend-

ing only on the distance y from the shore, the flow is steady in a translating reference
frame y c x − ct. In that frame, the Green’s function depends only upon the elapsed
time, not the start time, g c g(y, y, t − t′), and the copepod distribution is found from

ni(y, y, t) c ∫
t

0
dt eLijtdj1n(t − t)g(y, y,t) (23)

In Fig. 4.10 we show the distributions when the source of eggs is just a pulse n(t) c
d(t − t0) in a narrow Gaussian strip along one wall so that

ni(y, y, t) c eLij(t − t0)dj1g(y, y, t − t0)

The Green’s function has essentially the same shape; its amplitude decreases by 44%
over the 70-day period. Clearly, the waves gather material out of the edge strip and
carry it across the wave pattern quite effectively. Even with fairly weak waves (10
km day−1 currents), the nauplii and copepodid stages can be found well offshore,
while many of the adults have actually returned inshore.

When we maintain the egg source, so that n is constant in time, we can solve for
the long-term distribution (Fig. 4.11). Note that we can now take a time derivative
of equation 23 to find

∂
∂t

ni(y, y, t) c eLijtdj1g(y, y, t)

so that we can simply time-step the variables forward at each grid point without
having to advect the fields—that is taken care of by the local weighting factor g.
This represents a substantial gain in efficiency. Separable problems of this sort are
not uncommon when the biological dynamics is essentially linear. The cross-channel
distributions are set by the time scale for eddy transport and the development times.
For our example, the copepodids have a maximum offshore because that matches
with the transport time; however, the spread in physical times makes the distributions
quite broad.

Vertical Motion
Since the copepod model we are using does not have explicit light dependence, we
will turn to the NPZ model, which does, to examine the importance of motion up
and down in the light gradient. Equation 18 indicates that vertical velocities will
be associated with flows whose horizontal velocities are not uniform with depth. In
that case, the thermal wind equation implies that the local buoyancy will also vary
with time and space. Let us now consider a depth-dependent (baroclinic) wave in the
presence of a background zonal, vertically sheared flow. If the stream function has
the form
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Fig. 4.10. The first panel shows the time development (in days) of the copepods summed over the
variables representing concentrations in age-stage bins which fall into the categories of eggs (E), nauplii
(N), copepodids (C), and adults (A). The other panels show the spatial distribution of the predominant
class (indicated by the N, C or A in the plot title) at the labeled times. The distances are in kilometers
with the wave having a 250-km wavelength. The densities are normalized to the maximum egg density
at t c 0.
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Fig. 4.11. Steady-state distribution (comoving frame) for a constant source of eggs. The nauplii, cope-
podids, and adults shown are from the first generation only—reproduction is not being modeled. Since
we are keeping the egg source fixed in space and time, we can think of this as a case where the eggs
are entering the water column from a source on the bottom (i.e., resting eggs). The bottom panel shows
the channel-averaged values.
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w c −U(z)y +
V0

k
sin[k(x − ct) + ly]F(z)

we find two simple relationships between the meridional flow v c

∂
∂x

w and the
vertical velocity:

[c(k2 + l2) − U(z)(k2 + l2) + b]v c f
∂
∂z

w

[c − U(z)]
∂
∂z

v + v
∂
∂z

U(z) c
N 2

f
w

There is no nonlinear advection of the wave by itself, since the vorticity and buoy-
ancy fluctuations are proportional to w at each level, and therefore their gradients are
perpendicular to u c ẑ × ∇w. These equations, with the boundary conditions w c 0 at
z c 0, −H, specify the possible vertical structures and the phase speeds. In particular,
if we have no background flow [U(z) c 0], we find that

∂2

∂z2
w − �k2 + l2 +

b

c �
N 2

f 2
w c 0, w(0) c 0, w(−H ) c 0

which is a Sturm–Liouville problem having an infinite, nonnegative set of eigenvalues
g2

n, each associated with a vertical structure function wn(z) (the eigenfunction) and a
phase speed cm c −b/ (k2 + l2 + g2

n). Figure 4.12 shows the vertical modal structures.
Note the linearity of the vertical velocity through the upper 100 m.

The gravest (barotropic) mode has w c 0 and horizontal velocities that are inde-
pendent of depth. It travels with speed c c −b/ (k2 + l2). For the baroclinic modes,
the vertical velocity is not zero (implying that we will produce additional effects on
the biology via movement through the light field as we have seen in Section 2). For
short waves, the dynamics is essentially the same as that described above: trade-offs
between changes in planetary and relative vorticity. For long waves, however, the
relative vorticity is small, and the dominant contribution to the potential vorticity
comes from f (∂/ ∂z) b (Fig. 4.9b). Consider a region with northward motion in the
upper part of the water column and southward motion at depth. In the upper water,
f is increasing so the stratification must be decreasing, with the opposite being true
in deep water. Thus the thermocline will be deepening in this area. However, the
thermal wind equation tells us that the middepth water is denser to the east and less
dense to the west of the region, implying that the thermocline is shallower on the
east side of the region of positive v and deeper on the west. The temporal changes
again cause the deep thermocline anomaly to shift westward.

Rossby waves, then, are characterized by restoring forces (or tendencies) induced
by advection of the large-scale gradients in the potential vorticity. Linear waves char-
acteristically propagate parallel to the PV contours, but are dispersive, since compo-
nents with different scales will travel at different speeds. In addition, the nonlinear
terms (which exist when multiple waves are present—or when the terms neglected
in the OG approximation are not adequately small) will generally ensure that eddy
propagation is not so regular. We examine these processes further in the next section.
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Fig. 4.12. Gravest three-modal structures for v [second and third rows (upper 100 m)] and w [fourth
and fifth rows (upper 100 m)]. The modes have been normalized to have the rms v equal 10 km day−1.
The left figures are for U(z) c 0; the eigenvalues are g c 0, 1/ 44.8 km, 1/ 19.1 km, and the phase speeds
are c c −3.50, −1.74, −0.53 km day−1. On the right are the cases with mean flow shown on the top row;
the phase speeds are c c −3.50, −1.74, −0.59.
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Fig. 4.13. Response of the logistic equation to a traveling Rossby wave. The left upper panel shows
the zonal-vertical velocities, the density (contoured), and the meridional velocities (gray scale). Depths
are in meters and zonal distances in kilometers. The right panel shows the distribution of P and
trajectories/ density contours (dashed). The lower plots show 〈P〉 − P0, w′P′, and the two fluctuation
terms [(∂/ ∂z) w′P′ and P′2, dashed] which alter the mean. The dashed curve on the left shows the
simplest prediction of the alteration in the mean, the forcing terms divided by − | r0ez/ h

− d0 | .

The modal structures and phase speeds are altered somewhat in the presence of
mean shear. For near-surface shear (see McWilliams, 1974), the surface velocities
are increased (Fig. 4.12) and the westward phase speeds are decreased. The near-
surface vertical velocities are not very different. Shears that extend deeper into the
water column can excite baroclinic instabilities (Charney, 1947) as discussed below.

We now examine the effects of such a wave on the biology, taking the case without
mean shear as an example. The wave is assumed to have a zonal wavelength of 181
km, a first baroclinic mode vertical structure (corresponding to the dashed lines in Fig.
4.12), and no meridional variation. The surface velocity is chosen to be 40 km day−1,
giving (∂/ ∂z) w c cvg2

1/ f of 0.004 day−1, which is small compared to the fastest biologi-
cal time scales. (Although this velocity is strong for a single wave, the stretching val-
ues are comparable to those seen in more complex eddy fields.) The wave can have two
effects: first, if there is meridional variation of the biology, there will be rapid advection
by the v velocities, causing substantial temporal changes at a point. This effect is akin
to the copepod transport problem studied above. Second, even for a statistically homo-
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geneous region, the vertical advection will move the biota through the light field, and
the plankton will respond to the light variations. For the logistic equation 3, the result-
ing fields and the changes in the mean are quite similar to those shown in Fig. 4.1 if we
allow for the different values of (∂/ ∂z) w. Figure 4.13 shows the flow field, the phyto-
plankton distribution, and the terms in the mean equation

∂
∂z

w′P′ c P (P + P′)

c r0ez/ hP − d0P − d1P
2
− d1P′2

or

− |r0ez/ h
− d0 | (P − P0) − d1(P − P0)2

c

∂
∂z

w′P′ + d1P′2

The eddy flux is negative, reaching a minimum at about 45 m depth, so that the right-
hand side is positive in the upper water and the mean P must be smaller than P0.
In the deep water, the flux divergence is negative and larger than d1 (P − P0)2 (the
changes in the nonlinear biological rates associated with the fluctuations), so that the
mean is increased.

When we consider the more complex NPZ model, the response to the vertical
velocities becomes more striking (Fig. 4.14). The upwelling excites a transient bloom
near the base of the euphotic zone, in the depth ranges where the biological system
is least stable. The phytoplankton at the base of the euphotic zone can vary by about
a factor of 4 and are enhanced overall by 20%.

When we increase the velocities to 40 km day−1, the response strengthens as well,
so that the biomass of phytoplankton at the base of the euphotic zone varies by almost
a factor of 4. We emphasize the strong effects of these still quite weak vertical veloc-
ities by showing time series of P at various depths in Fig. 4.15.

6. Isolated Vortices

Mesoscale and submesoscale motion in the ocean include not only the eddy
field, which we tend to think of as having a broad spectrum of space and time
scales—turbulence on a planetary scale—but also coherent, isolated vortices. The
latter, called rings, are generally spawned by a strong boundary current forming a
loop that cuts off (see Richardson, 1983) or by outflows. They can be remarkably
persistent. In the case of the Gulf Stream cold-core rings (which were the sites of
some of the earliest interdisciplinary study; Ring Group, 1981), lifetimes of several
years and trajectories covering thousands of kilometers through the Sargasso Sea
have been documented; indeed, the biological signature—the presence of slope water
organisms—can serve as verification that significant volumes of water have come
along with the vortex. Warm-core rings, formed to the north of the Gulf Stream,
tend to have shorter lifetimes (order 8 months) since they are more tightly confined
between the shelf and the stream, but can still play a significant role in cross-stream
mixing of the biota (Olson, personal communication). Similar vortices are formed in
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Fig. 4.14. See color insert. Response of the NPZ system to a traveling Rossby wave. The zooplankton
respond only weakly, but the phytoplankton show a bloom during the upwelling phase. The left panels
show the x–z structure of P and Z; the right panels show the zonal means (solid curves) in comparison
to the equilibrium solutions (dashed curves).

the Kuroshio, Agulhas, Brazil, and East Australian currents, although the details of
the formation process differ from place to place.

Rings affect oceanic biology in a number of ways. Transport over large distances
has already been mentioned; however, the vortices are also clearly not closed systems;
some species are lost and replaced by others, which are entrained from the outside or
enter from below. Some species appear to be opportunists that thrive in the anomalous
environment (Ring Group, 1981). The movement of vortices, which is associated with
the background PV gradient as in the case of Rossby waves, also causes upwelling
and downwelling with the possibility of altering the biological balances. Finally, rings
can draw water off the continental shelf and force slope water onto the shelf; the off-
shelf transport may have significant influence on larval fish distributions (Flierl and
Wroblewski, 1985; Lobel and Robinson, 1986; Sinclair, 1988; Werner et al., 1996).

Meddies are another form of isolated vortex structure, generally found at middepth
and based on their temperature and salinity characteristics, formed by detachment
of a bolus of warm salty fluid from the Mediterranean outflow. Almost certainly,
generation of such features will occur in other overflows, but the resulting eddies may
not have such strong property anomalies and therefore may be less easy to detect.
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Fig. 4.15. Time series of P at the depths labeled (in meters). The shallow depths correspond to the
nearly straight lines at about 2.2, while the deepest series corresponds to the series with values that are
less than 1.

Again, lifetimes of over two years have been documented by float trajectories, and
persistence for longer is quite likely (Hebert et al., 1990).

Let us now consider models of such features and their biological impacts in more
detail.

6.1. Structure

As examples of the structure, we consider a two-layer model (equations 20) with
anomalous PV within a circle of radius a in one or both of the layers. The PV equa-
tions become

qi ≡
f +

1
r

∂
∂r

rvi

hi
c

f
Hi

{ 1 + Di, r < a
1, r > a

We combine these with the thermal wind equation, including the centrifugal terms
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Fig. 4.16. Structure of isolated vortices for various sizes (a, in kilometers) and PV anomalies (D1, D2).
The solid curves that go to zero at the center are the surface and (weaker) deep velocities in cm s−1; the
third line is the thermocline elevation in meters. The dashed curves show the QG approximation. If not
otherwise noted in the title, D2 c 0, a c 45 km, H1 c

1
5 H2, H1 + H2 c 5000 m.

f (v1 − v2) +
v2

1 − v2
2

r
c g′ ∂

∂r
h1

We can integrate these three equations numerically; Fig. 4.16 shows some examples
of eddies with various sizes, strengths, and vertical structures of the PV anomalies.
These examples imply:

1. Positive (negative) anomalies in one layer induce cyclonic (anticyclonic) cir-
culation in both layers, with the circulation being weaker in the layer without
anomalies.

2. Small eddies have proportionally larger velocity differences (are more baro-
clinic), while large anomalies have barotropic flows except right at the edge.
In essence, the inversion operator for calculating w from Q smooths the field
(and inverts the sign), with the changes occurring over the Rossby radius
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Rd c [ g′H1H2

f 2(H1 + H2) ] 1/ 2

Vertically, the signal is also smeared over a depth on the order of ( f / N ) a in
the stratified case. When the eddy is large compared to the Rossby radius, the
vertical smearing implies that the PV anomaly acts as though it filled the full
water column.

3. For circulations with the same speed, cyclones have a deeper low-pressure
anomaly and a larger displacement of the thermocline than anticyclones—the
pressure gradient has to balance both Coriolis and centrifugal forces. The dif-
ference increases as the Rossby number increases.

4. For typical oceanic eddy strengths, the difference between the quasi-
geostrophic model, which ignores the centrifugal terms and the product D(hi −

Hi), and the full equations is small.
5. The upper layer structure is not greatly altered by assuming that the lower

layer is infinitely deep and at rest.

6.2. Movement

Like Rossby waves, vortices will move when they are embedded in a large-scale PV
gradient. A cyclonic ring in the northern hemisphere, for example, advects fluid with
higher background potential vorticity from the north (where f is larger) down on its
western side and lower PV fluid up on the east. These changes with time correspond
to a westward shifting of the positive PV center of the vortex. Alternatively, we
note that the centers of the stream function, relative vorticity, and the upper layer
thickness coincide for a circular feature, but that the potential vorticity center will
be offset to the north (south) for a cyclone (anticyclone) by the northward increase
in PV associated with the b term. Thus, this center point will be advected westward.
However, the details are more complex than for the plane wave case: If we calculate
(∂/ ∂t) q, we find it is not exactly proportional to (∂/ ∂x) q so that the vortex distorts in
shape and the nonlinear terms begin to play a significant role (McWilliams and Flierl,
1979). Figure 4.17 shows the evolution of the various fields in a QG model, with the
initial condition being a circular cyclonic PV anomaly as above. The eddy moves
westward, but also northward; essentially, the dipole generated by the advection of
the background PV gradient becomes strong enough to move as a vortex pair.

6.3. Trapped Fluid

Fluid is carried along with the eddy when the swirl velocity exceeds the translational
speed; in a steadily propagating roughly circular eddy, there will be two critical points
where the vector flow velocity matches the translational velocity, one near the center
and one on the outer side. If we draw the trajectory of a parcel just inside the outer
critical point, it will make a loop and return to the same position relative to the
eddy center. Thus all the fluid within this trajectory will move along with the eddy
(Flierl, 1981). Clearly, this is happening in Fig. 4.17, since the PV follows material
particles. In the ocean, Lagrangian floats have stayed trapped within individual eddies
for periods exceeding one year (Richardson, 1993), indicating the nonlinear nature
of the propagation.
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Fig. 4.17. Evolution of the PV, w, and w(−h)/ h fields for a cyclonic vortex. Gray scale ranges (black to
white) correspond to (−3200, 700 km2 day−1), (−0.5, 4.5 day−1) and (−0.01, 0.01 day−1), respectively.
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6.4. Upwelling Flow Field

Propagating eddies transport nutrient into the euphotic zone by both kinematic and
dynamic effects. We can see how each of these works by looking at the terms in
equation 19 and noting that in the nearly geostrophic regime, the thermal wind gives

f ẑ × (u1 − u2) c −g′ ∇h

so that

∂
∂z

w −∼
1

H1

∂
∂t

h +
f

g′H1
ẑ . (u2 × u1)

The kinematic effects arise from the first term and are sketched in Fig. 4.18: Consider
a fluid parcel that lies just below the euphotic zone at the edge of a cyclonic eddy
(point a) at time t1. As the eddy moves to its new position at time t2, the fluid
parcel will be displaced. If the propagation of the eddy is purely linear, the parcel at
point a will be lifted vertically into the euphotic zone to point c. On the other hand,
if the propagation speed were negligible compared to the fluid velocity, the parcel
would move almost horizontally to point b. Nonlinearity does not strongly alter the
propagation speed of an isolated vortex, so we would expect the vertical stretching

∂w
∂z

−∼ −c
∂ ln h

∂x

to increase with eddy strength; however, the length of time a parcel spends in the
upwelling or downwelling phase decreases. The time-integrated stretching remains
similar for flow speeds in the range 20 to 100 cm s−1. An experiment with an infinitely
deep lower layer (so that u2 c 0) isolates the kinematic effect. The resulting vertical
velocities are purely dipolar. The dynamical effects from the second term clearly alter
the structure significantly; the vertical velocity now has a strong quadrupole moment
as well and is somewhat larger. As Bryden (1979) noted, turning of the horizontal
velocity with depth is diagnostic of vertical velocities in a steady flow; it allows the
velocity vector and the gradient of the buoyancy to be nonparallel, so that advection
of density contributes to w. Thus, the efficacy of the induced flux depends critically
on the details of the propagation mechanism (McGillicuddy et al., 1995).

As an example of the biological effects, we use the NPZ model of Section 1 but
take the light level to be averaged over the upper 50 m and presume that the upwelling
fluid has only nutrients, while the downwelling fluid carries phytoplankton and zoo-
plankton below the euphotic zone, whereupon they decay back to N. As Flierl and
Davis (1993; hereafter, FD93) show, this simple mixed layer model gives a sink term
on the P and Z equations:

∂
∂t

pi + u . ∇pi c Pi + { pi
∂w
∂z

, w > 0

0, w < 0
(24)

Figure 4.19 shows the phytoplankton and zooplankton fields at different times. We
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Fig. 4.18. Vertical motions associated with eddy translation. The upper panels show the motion of a
particle relative to a cyclonic eddy moving westward; the middle panels give a three-dimensional view
showing the vertical excursion as well. For the left sides, the maximum swirl velocity is 0.09 cm s−1;
for the right 0.4, with the translation speed being 0.2. The lower figure shows the response of the NPZ
model to a transient upwelling event.

can understand this behavior by considering the response to a single upwelling event
(Fig. 4.18; see also FD93, Fig. 6.1); initially, the concentration of P and Z is reduced
by dilution. But the upwelling brings nutrients up for the phytoplankton and they
respond quickly; the zooplankton are affected mostly by the dilution and have a
reduction in population overall. Maintained upwelling in essence increases the death
rates of both groups, which leads to higher phytoplankton and lower zooplankton
equilibria. When the upwelling shuts off, the populations spiral back to the original
equilibrium; this is the period in which the zooplankton may have temporary increases
in density. The figure shows this behavior with initial decreases in both, followed by
a phytoplankton increase and a banded zooplankton structure. The variation in P is
about 8% of the mean and in Z about 6%.
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Fig. 4.19. Evolution of P and Z in eddy. Greyscale ranges correspond to (2.15, 2.4) for P and (1.7,
1.85) for Z.
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6.5. Multiple Eddies

The dynamical contribution to upwelling becomes even more significant when mul-
tiple eddies interact [McGillicuddy et al., 1995; McGillicuddy and Robinson, 1997a
(hereafter MR97)]. Using a coupled quasigeostrophic and surface boundary layer
model, MR97 constructed long-term (multiyear) aseasonal (summertime) simulations
characteristic of the mesoscale eddy environment in the Sargasso Sea. Incorpora-
tion of a simplified biological model into these calculations facilitated study of the
mechanisms by which eddy processes can transport nutrients into the euphotic zone.
Results show that upwelling due to the formation of cyclonic eddies and subsequent
intensification caused by interaction with surrounding features cause sporadic nutrient
injections into the surface layer.

A typical eddy-driven nutrient injection event extracted from the MR97 simula-
tions is shown in Fig. 4.20. On day 2740, a cold eddy is entering the field of view
from the east. It is interacting with a pair of warm features to the northwest. Over the
next 15 days the two warm eddies merge and the cold eddy intensifies as the entire
interacting complex propagates westward. During this time the cold feature develops
an elongate tail which streams out to the northeast. By day 2770 the vortex tail has
dissipated and the cold eddy has intensified as it takes on a nearly circular form. The
interacting warm feature has also revolved counterclockwise around the cold eddy.
The nutrient flux distribution corresponds directly to the eddy dynamics. Upwelling
in the interior of the cold eddy due to its intensification associated with the warm
eddy interaction lifts nutrients into the euphotic zone.

The mechanism can be conceptualized by considering a density surface with mean
depth coincident with the base of the euphotic zone. This surface is perturbed verti-
cally by the formation, evolution, and destruction of mesoscale features. Shoaling
density surfaces lift nutrients into the euphotic zone, where they are rapidly uti-
lized by the biota. Deepening of the isopycnals pushes nutrient-depleted water out of
the well-illuminated surface layers. The asymmetric light field thus rectifies vertical
displacements of both directions into a net upward transport of nutrients, which is
presumably balanced by a commensurate flux of sinking particulate material. Two
aspects of this process favor complete utilization of the upwelled nutrients. First, the
time scale for biological uptake is fast (order of days) with respect to the physical
supply mechanism (eddy lifetimes on the order of months). Second, because the nutri-
ent enhancement takes place in the eddy’s interior, the circulation tends to isolate it
from the surrounding waters, which allows biomass to accumulate until the nutrients
are exhausted.

It is important to point out that the eddy-induced flux depends not only on the
vertical structure of the isopycnal displacements, but also on the sense in which they
are being perturbed by the eddy dynamics. The latter characteristic is largely deter-
mined by the developmental stage of the eddy within its lifetime (i.e., whether it
is in the process of formation/ intensification or decay). We can consider these two
stages of eddy development for three different characteristic vertical structures: a
cyclone (which lifts both the seasonal and main thermoclines), an anticyclone (which
depresses both the seasonal and main thermoclines), and a mode-water eddy (which
lifts the seasonal thermocline and depresses the main thermocline). The process of
eddy formation and intensification leads to upwelling in the near-surface region in
the cases of cyclones and mode-water eddies, and downwelling in the case of anticy-
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Fig. 4.20. See color insert. Typical eddy-driven nutrient injection event extracted from the MR97 sim-
ulations: temperature at 85 m (left column) and nitrate flux across the base of the euphotic zone (right
column). For convenience, temperature contours from the left-hand panels are overlaid on the nutrient
flux distributions. The area shown here is a 500-km2 subdomain.
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Fig. 4.21. Isopycnal displacements associated with three types of eddies in the process of
formation/ intensification (top row) and decay (bottom row). Two density surfaces are depicted in each
case: one in the seasonal thermocline (r1) and one in the main thermocline (r2).

clones (Fig. 4.21). Conversely, relaxation of the density perturbations associated with
eddy decay results in upper ocean downwelling in cyclonic features and mode-water
eddies, while causing upwelling within anticyclones.

Several different lines of evidence suggest that eddy-driven nutrient flux represents
a large portion of the annual nitrogen budget in the Sargasso Sea (McGillicuddy et
al., 1998). The high-resolution regional numerical simulations of MR97 indicate that
the magnitude of the eddy-induced upwelling caused by cyclonic eddy formation
and intensification is sufficient to balance the nutrient demand implied by geochemi-
cal estimates of new production. Nitrate flux calculations based on satellite altime-
try and a statistical model linking sea level anomaly to subsurface isopycnal dis-
placements provide estimates of comparable order (Siegel et al., 1999). Oschlies and
Garçon (1998) showed that including eddies in a basin-scale simulation of the North
Atlantic significantly increased productivity over a coarse resolution case. Observa-
tions of a nutrient pulse caused by the passage of a mesoscale eddy were obtained
using novel chemical sensing technology deployed on the Bermuda Testbed Mooring
(McNeil et al., 1999). Finally, mesoscale biogeochemical surveys in the Sargasso Sea
have revealed that variations in upper ocean nutrient and pigment distributions are
largely controlled by vertical isopycnal displacements associated with the eddy field
(McGillicuddy et al., 1999).

At least two types of eddies are involved in nutrient transport in the Sargasso
Sea. The mooring observations and shipboard surveys described above have revealed
evidence of eddy-induced upwelling associated with both cyclones and mode-water
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eddies. Analysis of the hydrographic time series at Bermuda suggests that mode-
water eddies are rare in comparison to more typical cyclones, occurring only four
times in 9 years of biweekly to monthly observations (Siegel et al., 1999), although
sampling remains an issue. Thus, the relative importance of the two types of features
remains an open question because so few events have been sampled directly.

Another example of eddy-induced upwelling comes from the frictional decay of
anticyclonic warm-core rings north of the Gulf Stream. Flierl and Mied (1985) formu-
lated a model of the vertical circulations that result from relaxation of the depressed
density surfaces in the interiors of such features. By incorporating a simple plankton
ecosystem into this model of warm-core ring 82B, Franks et al. (1986) demonstrated
how a lens of phytoplankton biomass enhancement could result from the nutrient
input caused by the approximately 1 m day−1 vertical velocities at ring center. Nel-
son et al. (1989) documented nitrate and silicic acid uptake rates by phytoplankton
in the same ring which were sufficient to utilize the upward flux of nutrients. Thus,
we have evidence for the biological ramifications of eddy-induced upwelling in at
least three different type of features.

7. Eddy Transport, Stirring, and Mixing

Since ocean eddies behave as a complex mix of waves and turbulence, we must
understand how each type of motion transports the biota. We begin with waves.

7.1. Stokes’ Drift and Displacements

Although our early science lessons may have taught that waves do not result in net
movement of particles, Stokes, in 1847, demonstrated that finite-amplitude gravity
waves actually can transport material. His results apply to other types of waves,
including the Rossby wave in a channel (Flierl, 1981), which we have used previ-
ously as an example flow (equation 21, Fig. 4.10). At the walls, the flows are purely
zonal, with the particles moving back and forth. But they spend more time in the
phase when they are moving prograde, because the relative velocity (wave–particle)
is smaller, and they spend less time in the retrograde phase when the relative velocity
is large. As a result, the average Lagrangian velocity is prograde. At the center of the
channel, the situation is quite different. In this case, the north–south flows (which are
908 out of phase with the east–west motions) push the particle into regions where the
flow is retrograde. The trajectories are shown in Fig. 4.22. For larger amplitude, the
paths become more complex, with trapped (prograde) regions in which the particles
return periodically to the same point relative to the wave (not offset by a wavelength)
interleaved by strongly retrograde regions.

Let us now consider small-amplitude motions in detail and see how the particle
drift relates to transport. We can solve for the displacement �(x, t) of a parcel initially
at position x by successive approximation:

d
dt

yi c ui(X + �, t) −∼ ui(x, t) + yj
∂

∂xj
ui(x, t) + · · ·

The estimated mean Lagrangian motion satisfies
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Fig. 4.22. Trajectories of particles in waves with various amplitudes. The title above each plot gives
the wave amplitude (U0 in equation 21) in km day−1. The particles are set across the channel at the
points marked by the +’s, one quarter wavelength apart (x c 75 km and x c 125 km). The trajectories
run for one year. The phase speed is −1.4 km day−1.

uL
i ≡ � d

dt
yi� c

∂
∂xj

〈ui(t)yj(t)〉 c
∂

∂xj
� ∫

t

0
ui(t)uj(t′) dt′� c

∂
∂xj ∫

t

0
Rij(t − t′)

(assuming zero mean Eulerian velocity). We can split the covariance matrix Rij(t)
into a symmetric part:

Kij c ∫
t

0

1
2

[Rij(t) + Rji(t)] dt (25)

which, as we shall see, corresponds to turbulent diffusion (Taylor, 1921) and an anti-
symmetric part Aij. The gradients of the latter can be viewed as an advective velocity:

uS
i c

∂
∂xj

Aij c
∂

∂xj ∫
t

0

1
2

[Rij(t) − Rji(t)] dt (26)

which is clearly nondivergent. Thus, we have two contributions to the drift:
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uL
i c

∂
∂xj

Kij + uS
i (27)

For the Rossby wave example (equation 21) we can find the covariance by aver-
aging over the phase v , giving

K11 c
U 2

0

2ck
sin kct cos2 ly, K22 c

U 2
0 k

2cl2
sin kct (1 − cos2 ly)

A12 c −A21 c
U 2

0

4lc
sin 2ly (1 − cos kct), uS

c

U 2
0

2c
cos 2ly (1 − cos kct)x̂

(28)

In the time average, the flow is nondiffusive, and there is an along-channel drift.
As a second, more complex example, consider a randomly forced channel wave.

Dynamically, this is presumed to satisfy

∂
∂t

∇2w + J(w , ∇2w + by) c l Re[r(t)eikx] sin ly − l∇2w (29)

where r(t) is a random time series taking values on a disk of radius r0 [i.e., 〈r(t)r*(t′)〉
c

1
2 r2

0d(t − t′)] and the parameter l represents bottom drag. The stream function is

w c Re[a(t)eikx] sin ly

with

d
dt

a + (l + iq)a c
ql

bk
r, q c −

bk
k2 + l2

(Rossby wave frequency)

We can find the correlation function for w and take suitable derivatives to obtain

Rij(t) c
1
2

U 2
0 e−lt 





cos qt cos2 ly
k
l

sin qt sin ly cos ly

−

k
l

sin qt sin ly cos ly
k2

l2
cos qt sin2 ly






with U0 c ql1/ 2r0l/ 2bk being the characteristic zonal velocity. Carrying out the inte-
grals in equations 25 and 26 gives the nonzero terms
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Fig. 4.23. Some trajectories in the randomly forced problem (upper) and the mean motions for an
ensemble of 200 experiments (lower): dashed lines are the mean trajectories predicted from 1.30. The
waves are weak (U0 c 0.5 km day−1), and the decorrelation time (1/l c 100 days) is shorter than the
wave period of 183 days.

K11 c
1
2

U 2
0

l

l2 + q2
cos2 ly, K22 c

1
2

U 2
0

k2

l2

l

l2 + q2
sin2 ly

A12 c −A21 c
1
2

U 2
0

k
l

q

l2 + q2
sin ly cos ly, uS

c

1
2

U 2
0 k

q

l2 + q2
cos 2ly

(30)

The finite decorrelation time for the flow now makes the motion dispersive (with
anisotropic eddy diffusivities). In Fig. 4.23 we show sample trajectories in a weakly
forced problem (U0/ c ∼ 0.2) which illustrate both the dispersion and the drift.

Now let us examine the transport of biological properties and passive scalars to
understand both the identification of Kij with diffusion and the modifications that
enter because of biological interactions. We assume that the perturbations induced
by the advection are small, that biological movements and mixing are unimportant,
and that the waves dominate over the mean flow. Then

∂
∂t

p′i − Pijp′j c −u′n
∂

∂xn
pi
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The solution

p′i (t) c − ∫
∞

0
etPiju′n(t − t)

∂
∂xn

pj

is well behaved as long as all the real parts of the eigenvalues of Pij are negative.
We can now evaluate the eddy fluxes of the biological properties

〈u′m(t)p′i (t)〉 c − [ ∫∞

0
etPijRmn(t)] ∂

∂xn
pj (31)

We can again split out the symmetric and antisymmetric parts,

〈ump′i 〉 c −Kmn; ij
∂

∂xn
pj + uS

m; ijpj

dropping a term that is spatially nondivergent and cannot affect the mean fields. Sum-
mation over both spatial coordinate index n and the biological variable number j is
implied here. The effective Stokes’ drift becomes

uS
m; ij c

∂
∂xn [ 1

2 ∫
∞

0
etPijRmn(t) −

1
2 ∫

∞

0
etPijRnm(t)]

and the effective diffusivity is

Kmn; ij c
1
2 ∫

∞

0
etPijRmn(t) +

1
2 ∫

∞

0
etPijRnm(t)

For a passive scalar, Pij c 0, these reduce to equations 25 and 26; thus, the flux is
indeed a combination of advection by the Stokes’ drift velocity uSp and eddy diffu-
sion −Kmn(∂/ ∂xn)p. For biologically active variables, the situation is quite different
for two reasons: We must sum over the biological variables and the coefficients will
depend on the decay times inherent in Pij. We can see two important properties of
the wave-induced transports and mixing:

1. The diffusive flux of one property (e.g., phytoplankton concentration) depends
not only on its gradient but the gradients of other properties as well. Advection
by the Stokes’ drift also depends on the values of the other variables. For
example, consider Figs. 4.3 and 4.7: even though P is uniform in the surface
layer, upward movement of a parcel will cause P to begin to increase, since
the uptake term is out of balance with the grazing—the parcel retains its lower
Z value. When the parcel moves back down, P will again change, but it will
generally not return to its original value, so that there will be a net flux of P
associated with the Z gradients.



MESOSCALE AND SUBMESOSCALE PHYSICAL–BIOLOGICAL INTERACTIONS 163

Fig. 4.24. Maximum values across the channel of the Stokes drift and diffusivity for different biological
time scales compared to physical decorrelation times (l/ d1P). These are found by taking the ratio of
the terms in 1.30 with l replaced by l + d1P to the terms as written; thus us[bio]/ us[scalar] c (l2 +
q2)/ ([l + d1P]2 + q2) and K[bio]/ K[scalar] c ([l + d1P]/l) × (us[bio]/ us[scalar]).

2. The transport coefficients are not the same as those applying to passive scalars.
For example, let us consider a single-variable system such as the logistic equa-
tion 3, where P11 c −d1P. The Stokes drift and diffusivities for our randomly
forced Rossby wave case can be found by replacing l with l + d1P in equa-
tion 30. Essentially, the biology decorrelates more rapidly than the passive
scalars (which are affected only by the decorrelation of the flow); as a result,
the effective diffusivities are higher and the Stokes’ drifts weaker (Fig. 4.24).

For complex biology, we can write Pij in terms of its eigenmodes:

Pij c Eikj kE−1
kj

and obtain complicated expressions for the transport coefficients:

uS
m; ij c

∂
∂xn

Eik [ 1
2 ∫

∞

0
etjk Rmn(t) −

1
2 ∫

∞

0
etjk Rnm(t)] E−1

kj

with similar expressions for Kmn; ij. Since each mode will have a different decay time,
it will advect and diffuse at rates different both from passive scalars and from other
modes. The net transport by eddies is therefore complex and also quite model depen-
dent (cf. Wroblewski and O’Brien, 1981). While the formulas above could provide
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a parameterization of the transport, the implication seems to us to be that resolving
the eddies explicitly in simulations is going to be more fruitful and illuminating.

7.2. Chaotic Mixing and Transport

When the wave amplitude becomes large (so that the fluid speeds exceed the propa-
gation speed of the wave), trapped regions develop where particles are carried along
with the wave in its motion (refer to Fig. 4.22). The boundary of the trapped fluid is a
streamline in the moving frame and passes from one stagnation point on the wall to a
second one farther east. Particles near this boundary spend a long time in the vicinity
of the stagnation point, with those on the bounding streamline taking an infinite time
to leave the wall on one end and to reach the wall on the other. Thus, we can antici-
pate that these regions play an important part in mixing (Dewar and Flierl, 1985). If
the flow is not a pure, steadily propagating wave but has some other weak variability
(even periodic), particles will be shifted across the bounding streamline. Which side
they end up on after passing by the stagnation point depends on the precise sequence
of back-and-forth motions. Figure 4.25 shows an example of this behavior, produced
by arranging the forcing in equation 29 so that the wave amplitude oscillates by 10%.
We see that fluid is entrained into and detrained from the trapped area near the rear
stagnation point. In essence, chaotic mixing occurs because particles approaching a
stagnation point will be ejected to one side or another, but which side is selected
depends very sensitively on the starting position and time, so that particles that are
initially close together or that pass the same point at different times can end up widely
separated.

8. Instabilities and Generation of Eddies

Ocean eddies can be formed by a number of different processes: direct generation
by wind, shedding from topography, localized convection (Legg and Marshall, 1993),
seasonal variability, and so on. But instability of the wind- and thermally driven cir-
culations (including, of course, the western boundary currents and other jets) is the
most probable cause of energetic mesoscale motions. These instabilities extract either
kinetic energy (from the horizontal shear) or potential energy (from the horizontal
density gradients, which, by the thermal wind relationship, are connected with the
vertical shears).

Some of the first investigations of mesoscale effects on upper ocean biota focused
on the dynamics of mesoscale jets (Woods, 1988). Jet meandering can lead to large
changes in relative vorticity which must be compensated by changes in layer thick-
ness in order to conserve potential vorticity. These vortex stretching terms give rise
to very high vertical velocities (order 10 to 100 m day−1) that occur in submesoscale
patches along the flanks of the meander systems. This type of vertical motion has
been measured directly with Lagrangian floats deployed in the Gulf Stream (Bower
and Rossby, 1989), inferred from hydrographic observations of fronts in the subtropi-
cal convergence zone (Pollard and Regier, 1992), and simulated numerically (Onken,
1992). Strass (1992) documented evidence of chlorophyll patchiness on the scale 10
to 20 km that is characteristic of mesoscale upwelling at fronts. Flierl and Davis
(1993) incorporated a simple ecosystem into a model of the Gulf Stream that included
intense vertical transports of this nature. Their results show that upwelling in the flank
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Fig. 4.25. Particle motion in a periodically varying wave. The beginning of the segment moves to the
left of the stagnation point, while the end part moves to the right. Eventually, the particles mix throughout
a band around the stagnation streamline. U0 c 10 km day−1, c c −1.4 km day−1, and the amplitude
oscillates with a period of 91 days.

of a meander can in fact stimulate the growth of phytoplankton. However, upwelled
fluid is subsequently advected downstream into a region of downwelling that tends
to suppress the biological response. The key question with respect to net impact on
the biota is how the time for transit between upwelling and downwelling patches
compares to the time required for full utilization of upwelled nutrients. In the Gulf
Stream case studied by FD93, relatively rapid horizontal advection prevents the bio-
logical response from going to completion, thereby limiting the net enhancement of
phytoplankton biomass and productivity to 10 to 20%. However, the upwelling and
development were also relatively weak because FD93 dealt with stable jets. We shall
extend their work to unstable jets, examining both barotropic and baroclinic growth
to see how each works and how each might affect the biology.

8.1. Barotropic Jet

Let us begin with a jet that has no vertical shear:

u c U0 sech2( y/ L), v c w c 0

For this flow the variable part of the potential vorticity is − (∂/ ∂y) u (Fig. 4.26a), so
that the PV gradient is negative on the sides of the jet and positive in the center.
Consider a wave that perturbs the PV contours as shown. If we calculate the flows
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induced by the anomalies in Q along the centerline, we see that they tend to increase
the disturbances in the wings of the jet. Similarly, the anomalies in the wings tend
to magnify the displacement of the centerline. Clearly, this configuration will lead to
growth in the disturbance if we can maintain the phase relationships shown (i.e., if
the waves in the wings slide by 1808 relative to the center, the induced flows would
instead mutually decrease the perturbations). The shear in the jet will try to shift the
central wave eastward while the Rossby wave processes will cause a westward prop-
agation in the center and eastward on the edges. For long-enough wavelengths, this
propagation is sufficiently fast that the waves can remain in phase. In the case when
the PV gradients are everywhere positive, the argument above fails because no organi-
zation of the waves in the different regions leads to increase in all perturbations—one
will always decrease while the others are increasing. This is the basic physics behind
Rayleigh’s theorem, which states that instability can occur only when the PV gradient
changes sign.

Fig. 4.26. (a) Instability mechanism for barotropic jet, showing the Q contours, sign of z , and induced
flows; (b) velocity and PV fields for a baroclinic jet and instability mechanism in terms of PV anomalies
and of buoyancy forces which have positive projections along the original displacement vector, thereby
tending to increase the displacement.
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Figures 4.27 and 4.28 show the evolution of the disturbance and the transport by
the developing instability. For the particular configuration we are using, the instability
has two phases, one in which the perturbations grow and break the jet into a vortex
street with the positive vortices on the north side and the negative ones on the south.
However, this configuration suffers a secondary instability and the vortices merge to
form a larger street. The flow is now constrained by the geometry (a channel), so
that the final larger-scale pattern decays only by viscosity. The tracer is entrained
somewhat into the initial street but is mixed much more effectively as the vortices
merge.

Fig. 4.27. Development of the instability of a barotropic jet. The Q field is shown with the gray scale
range from −2 to 2 day−1.
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Fig. 4.28. See color insert. Development of a copepod population in the unstable jet, beginning with
a cohort of eggs near the shore. The passive scalar pictures look almost the same, except the gray scale
would be the same (0 to 1) for all the pictures.

If we consider the development of a copepod population that is born near the
shore at the time when this wave is developing, we see patterns such as those in Fig.
4.28. The early stages appear nearshore, with entrained filaments extending around
the street, while the later stages are drawn far offshore by the turbulence induced
when the vortices merge. We have chosen a rather dramatic case in which the insta-
bility develops rather strongly during the time when the copepods are developing;
in general, we would expect to see many different patterns, depending on the exact
state of the flow when the eggs are produced.
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8.2. Baroclinic Jet

A second form of instability, associated with the vertical shear and the horizontal
density gradients, is also likely to be an important source of eddies. This type, called
baroclinic instability, draws its energy from the potential energy associated with the
jet. Since the density surfaces tilt, some heavier water is higher and some lighter water
is lower than they would be if the isopycnals were level. Thus potential energy will
be released if the isopycnals level out. To understand the instability process, we can
examine the potential vorticity structure of a baroclinic jet

u c sech2y
h1ez/ h1

− h2ez/ h2

h1 − h2

(Fig. 4.26b); the PV gradient is positive in the upper water column and negative in the
deep water. In essence, the uplifting of the thermocline to the north results in stronger
stratification (higher PV) near the surface compared to the southern side and weaker
stratification (lower PV) in the deep water. The mechanism for the instability is again
the mutual reinforcement of waves on the two PV gradients (Fig. 4.26b). Where the
upper front (sharp PV gradient region) is pushed northward, we have negative PV
anomalies, causing anticyclonic flow throughout the water column. If the crest in
the lower layer front lags behind (to the west), its displacement will be enhanced.
The flows induced by the perturbation in the lower layer front position in turn cause
cyclonic flows that enhance the upper disturbance (see Meacham, 1991). Figure 4.29
shows the development of such a disturbance calculated with a two-layer QG model;
pinched-off rings are formed and interact with each other and with the jet to form a
complex, turbulent flow.

Baroclinic instability also induces significant vertical motions. We can use an
energy argument to demonstrate this: Consider the perturbation momentum equations
(from equations 11 to 13)

∂
∂t

u′ c −2�eff × u′3 − 2�′eff × ux̂ − ∇(f′ + uu′) + b′ẑ

∂
∂t

b′ c −u
∂
∂x

b′ − v′ ∂b
∂y

− w′ � ∂b
∂z

+ N 2�
The evolution of the perturbation kinetic energy (K′ ≡ 〈 1

2 |u′ | 2〉, with the 〈.〉 repre-
senting a volume average) is found by dotting the momentum equation by u′ + w′ẑ
and integrating:

∂
∂t

K′ c � uv′ ∂
∂y

u′� + � uw′ ∂
∂z

u′� + 〈w′b′〉

c − � u′v′ ∂u
∂y � − � u′w′ ∂u

∂z � + 〈w′b′〉
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Fig. 4.29. Baroclinic instability of a jet. The field shown is the thermocline depth h. Gray scale range
is 200 to 1000 m.

assuming that the normal flow vanishes at the boundaries. A downgradient flux of
zonal momentum releases energy from the mean allowing growth of the perturbation.
In essence, a uniform flow has less kinetic energy than a nonuniform flow with the
same momentum 〈 1

2 u2〉 > 1
2 〈u〉2; hence, flattening the profile gives energy that can

be put into the perturbation. Perturbation kinetic energy can also be generated when
light fluid rises and heavy fluid sinks. The vertical flux of zonal momentum term is
important for Kelvin–Helmholtz instabilities (leading to growing and breaking inter-
nal gravity waves) but is negligible for mesoscale motions.

Similarly, we can examine the evolution of the available potential energy of the
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perturbation A′ ≡ 〈 1
2 b′2/ N 2〉, with N 2 ≡ N 2 + ∂b/ ∂z being the local stratification in

the unperturbed state:

∂
∂t

A′ c − � v′b′ 1

N 2

∂b
∂y � − 〈w′b′〉

Thus the kinetic energy gain from the 〈w′b′〉 term comes out of the eddy potential
energy. The latter is produced by north–south fluxes of buoyancy down the mean
gradient. Reduction of horizontal density gradients implies that the isopycnals are,
on the average, flattening out, so that the mean potential energy is decreasing.

In the simplest case of baroclinic instability, the zonal flow is independent of y;
growth of perturbation kinetic energy clearly requires vertical motions so that 〈w′b′〉
is positive and 〈v′b′ (1/ N 2) (∂b/ ∂y)〉 must be strongly negative. As Eady (1949) and
Charney (1947) showed, the particles tend to move at an angle to the horizontal which
is about half the angle that the sloping isotherms make, so that light fluid is still rising
through heavy fluid (Fig. 4.26b)—thus, this form of instability is sometimes called
slantwise convection.

The effects of the vertical motions associated with baroclinic instability on oceanic
biology appear in our extension of FD93 to an unstable jet. Figure 4.30 shows the
flow development and the biological effects (using the mixed layer model equation
24) when the lower layer is very deep and baroclinic instability is not able to act.
Even though the initial disturbance is quite large, the vertical velocities remain small
and the biological perturbations are about 36% and 25% of the means for P and
Z, respectively. Again as in FD93, the higher effective death rate of zooplankton
(from dilution and removal to beneath the mixed layer) gives a higher phytoplankton
equilibrium, while the increase in phytoplankton death rate reduces the sustainable
zooplankton population even though there is influx of nutrients.

In contrast, when we use a realistic lower layer depth, we see much stronger devel-
opment (Fig. 4.29) and much more biological variability (Fig. 4.31) since the vertical
velocity has been increased by a factor of 6. However, we caution that some of the
upwelling-induced changes may be difficult to see in the ocean; in particular, when
there is a gradient in properties across the jet, it can mask the dynamical changes.
Figure 4.32 illustrates this point by beginning with a change in the total nutrient by
a factor of 2

3 across the jet and a change in the equilibrium Z by a similar factor. The
phytoplankton field shows the meandering clearly, while the zooplankton distribution
looks much more like the temperature.

8.3. Instability Criterion

The generalization of Rayleigh’s theorem to the stratified QG jet states that the flow
will be stable if ∂q/ ∂y, − (∂b/ ∂y) | top, and (∂b/ ∂y) | bottom are everywhere the same sign.
(One or more of these fields may be uniformly zero, as well.) In the barotropic case,
the density is horizontally uniform and instability requires a change in sign of the
potential vorticity gradient, while baroclinic instability may occur when the PV gradi-
ent changes sign vertically or when the distance between the isopycnals which inter-
sect a boundary and the boundary itself increases northward. This, too, can be thought
of as a change in sign of the PV gradient:
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Fig. 4.30. Thermocline depth, P, and Z fields for a jet in the absence of instability. Gray scale range
is 2 to 3 for P, 1.4 to 2 for Z.

∂q
∂y

c

∂
∂y

f + z

h

In the interior, for the simplest case, ∂q/ ∂y is positive, dominated by b. But the north-
ward thickening of the layers near the boundary acts like a gradient that is negative.
Proofs of this theorem can be found in Pedlosky (1979) and have been extended to
the primitive equations by Ripa (1991). In effect, they imply that oceanic jets will be
unstable. Even slow interior flows may be susceptible to growing disturbances when
they are nonzonal (Charney and Flierl, 1981).
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Fig. 4.31. P and Z fields for a jet with baroclinic instability. Gray scale range is 1 to 5 for P and 0 to
2.5 for Z.

9. Near-Surface/ Deep-Ocean Interaction

The upper ocean plays host to a convolution of variability arising from three funda-
mental sources: atmospheric forcing, motions in the ocean’s interior, and their inter-
action. For the most part, the local effects of air–sea exchange of heat, salt, and
momentum are fairly well understood. These have been articulated into a set of one-
dimensional physical models which are quite capable of simulating atmospherically
driven changes in near-surface properties (Martin, 1985). Biological processes have
been incorporated into many such models, providing a framework for analysis of
the response of the plankton to these forcings (Evans and Garçon, 1997). Less well
known are the direct impacts of mesoscale and submesoscale flows on upper ocean
ecosystems, some of which have been described in the preceding sections. Probably
the most poorly understood class of physical–biological interactions has to do with
how the surface boundary layer interacts with the deep ocean. The nature of this
interplay has a twofold impact on upper ocean dynamics, in that it not only supports
additional mechanisms of vertical transport, but also modulates the air–sea fluxes,
creating spatial variability in near-surface stratification and the depth of the mixed
layer.
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Fig. 4.32. See color insert. P and Z fields for a jet with a background gradient in NT from 3 in the
south to 8 in the north. Gray scale range is 1.7 to 2.6 for P and 1 to 2.7 for Z.

9.1. Vertical Transport Processes

Eddy Motions and the Generalized Ekman Divergence
Various researchers recognized long ago that the superposition of a wind-driven
Ekman flow on a preexisting mesoscale velocity field gives rise to ageostrophic cir-
culations involving significant vertical transports (Stern, 1965; Niiler, 1969). Subme-
soscale patches of vertical velocity are implied by the generalized Ekman divergence,
which includes vortex stretching terms associated with advection of the interior vor-
ticity field by the boundary layer velocity. For the upper ocean, vertical momentum
transport can be represented as a stress-divergence term,
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1
r0

∂
∂z

t

added to the right-hand side of the momentum equations 11; alternatively, we can
write the friction in terms of the Ekman velocity:

f ẑ × ue ≡
1
r0

∂
∂z

t

We form the vertical vorticity equation by taking the curl of the momentum equations
and dotting with the vertical unit vector:

� ∂
∂t

+ u . ∇ + w
∂
∂z � (z + f ) c ( f ẑ + ∇ × u) . ∇w + ∇ . f ue

In the surface layers, the horizontal velocity can be written as the sum of the
geostrophic ug and Ekman ue flows, with the latter having large horizontal vorticity
but relatively little vertical vorticity because of the large scale of the winds.4 We can
average over the depth of the Ekman frictional layer, h, taking into account that the
variations in the geostrophic flow of this thin layer are negligible:

( f + zg)
w(−h)

h
−∼ ∇ . f 〈ue〉 − 〈ue〉 . ∇(zg + f ) + � ẑ . ∂

∂z
ue × ∇w�

− � ∂
∂t

+ ug . ∇� (zg + f )

Without the interior eddies, we would simply balance f (w/ h) with the divergence of
the Ekman flow; the eddies alter the proportionality factor as well as add additional
terms.

The detailed structure of these vertical circulations depends on the juxtaposition
of two velocity fields. When the wind is uniform, the vertical motion results from
vortex stretching caused by advection of the interior vorticity by the boundary layer
velocity (the second term on the right). An example of this type of motion is shown
in Fig. 4.33, which compares the vertical velocity patterns in an isolated eddy both
with and without wind. In the case without wind [panel (a)], the only source of ver-
tical velocity is vortex stretching in the interior. Alternating patches of very weak
upwelling and downwelling occur around the border of the eddy as it develops slight
asymmetries from its initially circular configuration. In the case with wind, a south-
ward Ekman transport advects low z fluid across the northern flank of the eddy into
an area of higher vorticity. The increase is produced by downwelling in that region,

4 Since the wind stress depends on the difference between the air and water velocities, there actually
can be stress variations on the oceanic mesoscale (Dewar, 1986); such processes represent another way
in which the eddies and the upper ocean interact.
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Fig. 4.33. Maps of nondimensional vorticity at 50 m and vertical velocity (m s−1) at 25 m for numerical
experiments (a) without wind and (b) with a 10 m s−1 westerly wind. Both cases are initialized with
an axially symmetric vorticity distribution and integrated for 37 days with a coupled quasigeostrophic
and surface boundary layer model. Numbers below each plot indicate minimum and maximum values
as well as the contour interval. Note that the contour interval for vertical velocity in the case with wind
is five times that used in the case without wind.

which results in vortex stretching. In the southern portion of the feature, high z water
is advected out of the feature toward lower vorticity areas, resulting in upwelling.

The net impact of these submesoscale patches of vertical velocity caused by the
interaction of the eddies and wind stress has been studied in a set of numerical exper-
iments extending the results of MR97 (in their Section 5.5). These seasonal simula-
tions are intended to represent a perpetual summertime situation in the oligotrophic
open ocean, in which the euphotic zone (the upper 100 m) is significantly deeper
than the average mixed layer (order 10 m). Any nutrients that are upwelled into the
upper part of the euphotic zone (the upper 75 m, where the observed mean nitrate
concentration goes to zero in summer) are assumed to be fully utilized by the biota.
Below the euphotic zone, nutrients are restored to their observed concentration as a
function of density via a first-order process with a remineralization time scale of three
months. This particular experimental design does not treat the mixed layer explicitly,
as upwelled nutrients are assumed to be fully utilized prior to reaching that depth.
Diapycnal processes are included only as a background diffusivity of 1.0 m2 s−1. For
more details on the numerics and general experimental design, see MR97.
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TABLE II
Eddy–Wind Stress Experiments

Stress × 10−2 Curl × 10−8 EKE Nutrient Flux
Run Wind Source Experiment (N m−2) (N m−3) (cm2 s−2) (mol N m−2 yr−1)

1 None Control 0.0 0.0 126.4 0.36 ± 0.0005
2 Climatology Mean summer stress 3.74 0.0 262.6 0.49 ± 0.001
3 Simulated NSCAT July–Sept. stress 1.34 2.98 90.4 0.31 ± 0.0005
4 Simulated NSCAT Mean stress 1.34 2.98 117.5 0.38 ± 0.0007
5 Simulated NSCAT Filtered stress 1.27 3.03 142.5 0.46 ± 0.0006
6 Simulated NSCAT Mean filtered stress 1.27 3.03 99.3 0.37 ± 0.001
7 NSCAT Nov. 1996 stress 6.43 10.35 130.0 0.40 ± 0.0008
8 NSCAT Mean stress, curl 6.43 10.35 204.8 0.41 ± 0.001
9 NSCAT Stress, no curl 6.43 10.35 83.8 0.38 ± 0.0009

10 NSCAT Stress, no vorticity 6.43 10.35 168.6 0.44 ± 0.0005
advection

A summary of the results is shown in Table II. Run 1 serves as the control, in
which no wind forcing was used; this is MR97’s central simulation. Their wind-driven
case (run 2) used steady climatological wind. We present here eight new experiments
using a variety of wind products, such as those provided by spaceborne scatterome-
ters, which resolve spatial variability in the wind stress. The first four were produced
prior to the availability of NASA’s NSCAT data and used the simulated NSCAT winds
described in Milliff et al. (1996). The first two (runs 3 and 4) allow us to compare
the response to forcing, which includes high-wavenumber spatial structure to one
having uniform winds over the domain. The average wind velocities in the two runs
are the same. We then forced the model using a filtered version of these winds, with
a wavenumber content like that of typical wind products derived from atmospheric
general circulation models. The last four experiments are based on objectively ana-
lyzed NSCAT winds observed during November 1996. This wind product is described
in Liu et al. (1998) and was kindly provided by W. Tang. The central NSCAT sim-
ulation (run 7) will be compared with one forced by the mean and two additional
experiments in which the two terms of the surface boundary condition calculation
are turned off, one at a time.

In this ensemble of simulations, no apparent relationship exists between either
wind stress or its curl and nutrient flux into the euphotic zone (Fig. 4.34a and b).
However, Figure 4.34c shows that nutrient flux is significantly correlated with eddy
kinetic energy (EKE). The control experiment demonstrates that the eddy-induced
nutrient flux is substantial, accounting for more than half the nitrogen demand in
the region. This result is described in detail in MR97. Climatological wind forcing
results in a 36% higher nutrient flux, which is the highest of all the experiments
described herein. The simulated NSCAT runs (3 to 6) are forced at stress values that
are intermediate between the control and climatological simulations, yet the result-
ing nutrient flux ranges from 14% lower to 28% higher than the control. Simulations
utilizing NSCAT winds are forced by significantly higher stresses and curl, since the
winds were derived from November observations rather than the summertime values
used in previous experiments. The nutrient flux in the central NSCAT simulation (run
7) is similar to, but slightly higher than, the control run. Surprisingly, the simulation
forced by the mean of these winds (run 8) results in a nutrient flux that is nearly
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identical to the previous case. The final two runs show that both terms in the gen-
eralized Ekman divergence comprising the surface boundary condition appear to be
important in determining EKE and nutrient flux. Elimination of the wind stress curl
term (run 9) decreases EKE and nutrient flux, whereas neglecting the advection of
interior vorticity by the boundary layer velocity increases them. From these exper-
iments we conclude that vertical transport processes associated with the interaction
of the wind-driven flow with the interior currents do play an important role in nutri-
ent supply. However, the primary mechanism by whch this occurs is indirect: The
eddy kinetic energy is sensitive to the wind and boundary forcing, and the nutrient
flux increases for larger energy. In other words, the eddy-driven nutrient flux tends to
overshadow the direct vertical transport caused by submesoscale upwelling patches
associated with wind interactions.

Winds and Fronts
The preceding analysis of eddy–wind interactions is based on quasigeostrophic
dynamics with a coupled surface boundary layer. Other studies have focused on wind
forcing and fronts, using more complete physics in two-dimensional models of cross-
frontal structure. Lee et al. (1994) used a nonhydrostatic model to simulate in more
detail Niiler’s (1969) problem of a mesoscale jet forced by steady winds. Diagnosis
of the solutions reveals complex secondary circulations that result from the nonlinear
interaction of the jet with the wind-driven flow in the Ekman layer. Franks and Wal-
stad (1997) examined the impact of such circulations on phytoplankton patches [the
subsurface chlorophyll maximum (SCM)] near fronts using a simple ecosystem model
embedded in a two-dimensional primitive equation model with a surface boundary
layer. Like Lee et al. (1994), they found that the orientation of the wind with respect
to the front has a strong impact on the cross-frontal density contrast. Winds along the
jet weaken the density gradient and tend to erode the SCM through vertical mixing.
Cross-frontal wind stress sharpens the front and effectively isolates the SCM from
vertical mixing. Simulations with transient forcing show that the cross-frontal scale
of the SCM at any one time depends critically on the recent history of wind stress
fluctuations.

9.2. Air–Sea Fluxes and Mixed Layer Depth

Mesoscale variability in the ocean can significantly affect the fluxes across the air–sea
interface of properties and their distribution throughout the water column. For exam-
ple, Klein and Hua (1988) showed how a steady wind-driven momentum flux operat-
ing on an eddy field can bring about spatial variations in near-surface shear, thereby
creating heterogeneity in entrainment and mixed layer depth. However, the relatively
low amplitude of the simulated fluctuations (order 1 m rms variation in mixed layer
depth) suggests that this process is not a controlling factor in most upper ocean
ecosystems. In contrast, strong mesoscale variations in mixed layer depth have been
observed in warm-core rings of the Gulf Stream (Dewar, 1986) and the East Aus-
tralian Current (Tranter et al., 1980). Waters in the interior of such features are more
prone to convection for two reasons. First, the near-surface stratification is reduced
because of the depression of the main thermocline associated with eddy formation
(a direct effect). Second, during periods of cooling, heat loss to the atmosphere is
enhanced relative to surrounding waters because fluid inside the eddy is so much
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Fig. 4.34. Nutrient flux plotted as a function of (a) wind stress, (b) wind stress curl and (c) eddy kinetic
energy for the simulations in Table II. The numerals in each panel refer to run number.
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warmer. Together, these factors can contribute to very deep mixing within such fea-
tures, greatly increasing nutrient supply and productivity.

Realistic simulation of the near-surface manifestation of mesoscale flows neces-
sitates accurate representation of the baroclinic structure of the upper ocean. This
requirement is particularly stringent in areas (such as the Sargasso Sea) where the
mean current profile causes eddies to be surface intensified (McWilliams, 1974).
MR97, for example, found six vertical levels to be adequate for the interior QG
model; however, their nested surface boundary layer model (Walstad and Robinson,
1993) extends from the surface down to 250 m with 10-m resolution. The calcu-
lated physical fields have statistical properties (spatial and temporal autocorrelation
functions and profiles of eddy kinetic energy) that are consistent with observations.

To determine the extent to which the MR97 calculations depend on high resolu-
tion in the near-surface region, we conducted an additional experiment, changing the
coupled QG–SBL configuration so that the interior is barotropic and recomputing
the MR97 simulations. The resulting amplitude of the eddy-induced nutrient flux is
reduced by an order of magnitude in comparison with the more realistic case. Thus,
the barotropic model is not sufficient to capture the ramifications of the cyclonic
eddy formation/ intensification mechanism in full. If they are to provide adequate
simulations of the impact of mesoscale or submesoscale processes on upper ocean
ecosystems, coupled interdisciplinary models require quite realistic physics.

10. Concluding Remarks

Wafted by a favouring gale
As one sometimes is in trances,
To a height that few can scale,
Save by long and weary dances;

W. S. Gilbert, 1885

The studies to date, including the ones presented here, argue that the mesoscale
and submesoscale eddy field—the oceanic weather—does indeed play an significant
role in the biological dynamics of the ocean. The vertical motions provide a mech-
anism for generating variability, while the horizontal motions transport and mix the
biota. These processes can be examined by analytical methods such as perturbation
theory (including weakly nonlinear effects), but such approaches, while providing
considerable insight, are generally restricted to very simple systems.

Numerical models, on the other hand, provide a powerful framework for testing
hypotheses concerning complex oceanic phenomena. Collections of diverse processes
can be articulated into prognostic mathematical expressions which form a basis for
simulating the behavior of the various mechanisms and their interaction. However, the
oceanographic conclusions that can be drawn from such numerical experiments are
also limited by the degree to which the essential characteristics of the natural system
are represented. If an important aspect has been omitted in the model formulation,
inferences based on the simulations can be compromised.

We have discussed a number of areas in which models are still rudimentary and
where we have much to learn. In the realm of physics, the interaction between the
eddy field and the surface boundary layer, especially if we factor in surface fronts
and winter convection, is not yet fully explored. Other topics that touch on biologi-
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cally important aspects of the eddies but which are not that well understood include
stratified turbulence in the presence of shear and/ or nonzonal flows, the interactions
between vortices, jets, waves, and turbulence, and the role of steep topography (e.g.,
the shelf or islands) in mesoscale dynamics.

In the biological arena, the questions run much deeper. Can we really represent
well enough the multitudinous species with different characteristics and life cycles
using only a typically small number of variables? Can we get the information to
parameterize the interactions in a model with many variables? To what degree does
the biological system by itself have cycles or chaotic behavior, and how does that
affect the eddy-driven variability? How significant is biological movement and patch-
iness?

As we have discussed, small changes in the biological models can make big differ-
ences in the response to the perturbations induced by the eddy movements. However,
we believe that the fundamental results described in this chapter are robust:

1. Advection by mesoscale and submesoscale features is a significant factor in
the local changes in biological properties. In addition, eddies produce local
variability by modulating air–sea processes in both strength and timing.

2. Rossby waves, coherent vortices, and geostrophic turbulence move the biota
vertically through the varying light field and can thereby generate considerable
biological variability.

3. Eddies are a major mechanism for horizontal transport, via both Stokes drift
and eddy diffusion.

4. The net vertical flux of nutrient induced by eddies can be significant. However,
it is not clear what fraction of the total global transport is accomplished by
eddies; such conclusions await better understanding of the global eddy field,
the interaction with the surface boundary layer, and the rates and pathways of
consumption and export.

As these points indicate, the influence of ocean eddies on the ecosystem has both
local and global aspects. While both data and models confirm that any attempt to
understand, simulate, or predict changes at a particular place must include the eddy
motions, their role in the biology of the world’s oceans is not yet clear. We now
have a few simulations of the global circulation including eddy effects; however, an
eddy-resolving, strongly nonlinear model is still a way off. Similarly, we have much
to understand about modeling oceanic biology. However, progress is being made in
both these areas, and we believe that the new and more complex experiments to come
will confirm the importance of the eddies in the structure of the general circulation
and in the distributions and dynamics of life in the sea.
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