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A major problem in biological oceanography is sparseness of data. Ocean observing systems are being
developed to fill this need. Design of these systems can benefit from optimal sampling analysis applied to
output of biological–physical models. This study describes a method for optimizing plankton surveys
through the use of Observing System Simulation Experiments (OSSEs). Using a coupled physical–biological
hindcast simulation for 1999 as “truth”, we applied the variance quadtree (VQT) algorithm to determine the
locations of a fixed number of samples to reduce error. The optimized sampling process derived by the VQT
algorithm is significantly better (at 95% confidence level) than simple random sampling. The relationship
between root mean square error (RMSE) and number of samples allows one to balance the number of
samples and the expected error, aiding the design of ocean observing systems. Compared with an existing
sampling strategy used in the Gulf of Maine region, a fixed VQT-derived sampling strategy for Pseudocalanus
alone can reduce expected errors by 20% on the annual average (range from 15% to 23%). While sampling for
combination of two variables (adult Pseudocalanus and phytoplankton), the errors are modestly reduced by
an annual average of 7% (range from −4% to 14%), suggesting that the ongoing operational observing
strategy is close to optimal for multi-constituent sampling. The VQT-derived sampling stations are more
densely (sparsely) spaced in areas having larger (lower) variance in the quantity of interest. Sampling
strategies differ for Pseudocalanus and phytoplankton, reflecting differences in the statistics of their
distributions. This kind of information can be used for directed sampling in the real ocean, which must
grapple with multiple physical and biological properties that vary on different scales. This methodology can
contribute to optimal sampling of biological–physical properties by ocean observing systems.
l rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Marine ecosystem dynamics are characterized by multiple species
interacting with each other and their chemical and physical
environment over multiple temporal and spatial scales (e.g. Haury
et al., 1978; Davis et al., 1992; Davis and McGillicuddy, 2006; Zhang
and Richardson, 2007). It is now widely recognized that existing data
streams must be expanded to provide more accurate estimates of
ecosystem status and to provide information for model simulation
and prediction. New ocean observing systems are being developed to
meet this need, but their designs are typically based more on expert
knowledge than quantitative assessment and optimization. The
advent of new high-resolution coupled biological–physical models
can help optimize sampling strategies used in ocean observing
systems. The model-based Observing System Simulation Experiment
(OSSE) is one possible solution to this problem (e.g. Arnold and Dey,
1986; Masutani et al., 2006; Zhang et al., 2009). OSSEs were originally
developed in meteorology (e.g. Charney et al., 1969) and have been
considered for some time as a potentially important method for
developing ocean observing systems (Smith, 1993; Robinson et al.,
1998).

OSSEs involve the following three major components. 1) “Nature
runs”. A high-resolution model incorporating the best available
knowledge on physics and biology is constructed, calibrated and
validated. The outputs of model simulations are treated as “truth”. 2)
Simulated observations. Various sampling systems (such as shipboard
surveys, fixed and profiling moorings, AUVs and gliders) are used to
collect simulated data from the nature run. The “data” collected by the
simulated sampling are analyzed in the sameways real data would be.
3) Quantification of sampling error. The error characteristics intrinsic
to the simulated observations are assessed by comparing the
difference between the original model output (i.e., “the truth”) and
the analyzed (in this case objectively mapped) data. The purpose of
the OSSE is to minimize the expected error through optimizing the
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sampling strategy (in this case the positions of the simulated ob-
servations in time and space).

OSSEs are now widely applied in meterological fields to assess
observing systems for numerical weather prediction (e.g. Atlas, 1997;
Masutani et al., 2009), the development of the data assimilation
technology (e.g. Errico et al., 2007), as well as to help design future
meteorological observing systems (e.g. Kuo et al., 1998; Bishop et al.,
2001). OSSEs also have been increasingly used to help design
sampling systems in physical oceanography. For instance, the optimal
arrays of tide gauge and optimal locations of moorings in the tropical
Atlantic have been designed using data assimilation method by
McIntosh (1987) and Hackert et al. (1998), respectively. Hirschi et al.
(2003) tested the design of a monitoring array for the Atlantic
meridional overturning circulation in eddy-permitting ocean models.
Recently, an observation array was designed and assessed in the
tropical Indian Ocean to monitor intraseasonal and interannual
variability in physical fields using an empirical orthogonal function
and data assimilation approach (Oke and Schiller, 2007; Ballabrera-
Poy et al., 2007; Vecchi and Harrison, 2007; Sakov and Oke, 2008).
Some other studies have been focused on placing and managing fixed
sensors for the coastal oceans (Frolov et al., 2008; Yildirim et al.,
2009). Although OSSEs have been increasingly used to design
sampling systems for physical properties, very few OSSEs have been
used in biological oceanography. An earlier study by McGillicuddy et
al. (2001) quantitatively assessed the synopticity of the broad-scale
survey of copepod populations on Georges Bank (GB) using OSSEs as
part of the Global Ocean Ecosystem Dynamics (GLOBEC) program.
This study revealed that simple mapping error in terms of root mean
square error (RMSE) could be as high as ∼50% but reduced by about
half when considering the effect of mean flow. This study has shown
the advantage of using OSSEs to estimate the survey error and point
out the value of optimizing survey strategy through simulated
observations.

In this study, we explore the utility of OSSEs to optimize simulated
observations for phytoplankton and copepod populations (Pseudoca-
lanus spp.), using a recently developed high-resolution biological–
physical model (Ji et al., 2009). The objectives of this study are to
quantify expected error characteristics and their dependence on the
Fig. 1. The studied area, bathymetric isolines and some locations appeared in the paper. NS
Nova Scotian Shelf. MB: Massachusetts Bay. CCB: Cape Cod Bay. BB: Buzzards Bay.
total number of stations and their spatial/temporal distribution, based
on the modeled spatio-temporal distribution pattern of plankton in
the Gulf of Maine (GoM, see Fig. 1).
2. Data and methods

2.1. Data

We use results of a 3-dimensional (3D) high-resolution biological–
physical coupled model to conduct OSSEs. The coupled model
includes a hydrodynamic model called the finite-volume coastal
ocean model (FVCOM, Chen et al., 2003, 2007), a 4-compartment
(nitrogen–phytoplankton–µzooplankton–detritus, NPZD) lower food
web model (to supply food for the copepod species), and a 4-stage
(mean-age) concentration-based copepod population dynamics
model (Hu et al., 2008; Ji et al., 2009).

For the hydrodynamic model, monthly averaged climatological
temperature and salinity fields in December (retrieved from the
National Oceanographic Data Center, NODC) were used as initial
conditions, and the model was integrated over 1 yr using surface heat
fluxes, vector wind and boundary forcing in 1999. Satellite-derived 5-
day averaged sea surface temperature (SST) data were assimilated
into the physical model. For the NPZDmodel, the initial distribution of
nitrogen and phytoplankton were specified using the climatology in
December derived from historical data; and the initial concentrations
for µzooplankton and detritus were assumed to be homogeneous (Ji
et al., 2008a,b). The copepod concentration was initialized based on
the observed climatological distribution in December, with high and
low concentrations in shallower and deep regions, respectively. The
coupled FVCOM-NPZD captured the major seasonal and 3D spatial
distributions of nutrient and phytoplankton across the GoM-GB
region, based on comparisons with both SeaWiFS and water sample
data, as a function of local and remote forcing (Ji et al., 2008a, b). Thus
it can provide a good first-order approximation of food availability for
the copepod model. The simulation used in this study is capable of
representing the observed spatio-temporal pattern of Pseudocalanus
spp. (Ji et al., 2009).
: Nantucket Shoals. GB: Georges Bank. WB: Wilkinson Basin. GoM: Gulf of Maine. NSS:
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2.2. Methods

In this study, we adopted a simple but computationally efficient
algorithm called variance quadtree (VQT) algorithm for optimizing
survey design. This algorithmwas first introduced by McBratney et al.
(1999) and improved by Minasny et al. (2007). The idea of VQT is
based upon the principle of quadtree decomposition (i.e. divide the
study area into quadrants or four equal sized strata). The stratum
(sub-region) with maximum variance (calculated using the following
equation) is chosen to conduct a subsequent quadtree decomposition,
and the process is iterated until a certain threshold is reached (either
the total number of strata or the minimum variance). The model
variance for a chosen sub-region Qh is defined as

Qh =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
∑
nh

i=1
∑
nh

j=1
z xið Þ−z xj

� �h i2s
ð1Þ

where nh is the number of model gridpoints xi and xj in stratum h, and
z is the study variable [see more details about the algorithm in
Minasny et al. (2007)]. Note that Qh is not normalized by nh, so Qh is
affected by both the underlying variance and the number of gridpoints
within each sub-region. In general, this algorithm places more
sampling stations in areas where the spatial variance is large. The
VQT algorithm considers the underlying variance in the quantity of
interest in addition to geographical space, as suggested by Minasny
and McBratney (2006). Although VQT requires complete access to the
field being sampled, the scheme does not require prior knowledge of
the spatial covariance function.

Although Minasny et al. (2007) gave examples using rectangular
quadrants, they also mentioned that the VQT algorithm can be used
with irregular geometries. The GoM domain is bounded by a
rectangle, which includes land points and seaward boundaries. The
domain is divided into quadrants using the VQT approach, and the
variance within each sub-region whose variable of interest is not
‘missing’ (locating on the land or other places) based on Eq. (1) is
computed. After the quadtree decomposition, the sampling point can
be located in the center of a grid cell (center-selected) or in any
random position within the cell (random-selected).

In this OSSE study, the surface fields of 3D high-resolution coupled
model output served as the temporal–spatial continuous representa-
tion of reality (“truth”), and “virtual” phytoplankton and zooplankton
samples were taken daily from the normalized model fields
(normalized by subtracting annual mean and dividing by the standard
deviation) using the VQT algorithm. The sampled data were mapped
onto the 9 km×9 km grids using an objective analysis method (OAX;
He et al., 1997) based on Bretherton et al. (1976), with the same
temporal and spatial correlation time scales used in McGillicuddy et
al. (2001). Other interpolation algorithms (Matlab functions such as
linear, cubic and V4) were tried for spatial mapping. The resulting
spatial pattern is very similar to that based on OAX, and therefore the
conclusion of this paper is robust with respect to the suite of
interpolation algorithms that were tested. Our aim is to reduce the
averaged RMSE over the entire sample domain. The averaged RMSE
over the entire domain was computed by comparing the objective
analysis of the simulated observations and the “truth”.

3. Results

As a test case for optimizing the copepod sampling strategy in the
GoM, we arbitrarily chose the modeled adult Pseudocalanus abun-
dance field for June 8 in 1999 as “truth” (Fig. 2a). A total of 50 samples
are taken based on the locations determined by the VQT algorithm. In
general, the modified VQT method positions stations more densely in
regions where the variance of Pseudocalanus abundance is higher,
such as on Georges Bank (GB), to the west of Wilkinson Basin (WB),
and west of Nantucket Shoals (NS). In contrast, in the regions such as
in the central GoM and on the Nova Scotian Shelf (NSS, Fig. 1), where
the gradient in abundance is lower, the stations are relatively sparse.

The general pattern of adult Pseudocalanus (Fig. 2b) from the
simulated observation (after OAX mapping of the “data” from 50
stations) matches reasonably well with the “truth” shown in Fig. 2a.
The absolute difference between the simulated distribution and the
“truth” (Fig. 2d) shows relatively large error on GB, to the west of WB,
west of NS and near the 400 m isobath, even with dense stations
located there. In low-abundance areas with more uniform distribu-
tions, such as the NSS and the central GoM, the absolute error is
relatively small, even with sparse stations.

The effectiveness of the modified VQT algorithm can be quantita-
tively estimated by comparing the results with simple random
sampling, using the same number of stations (50) for both approaches.
The random sampling was carried out 100 times, and the adult
Pseudocalanus distribution was mapped for each sampling scenario
using OAX (Fig. 2c). The general pattern of Pseudocalanus abundance
from the ensemble mean of random sampling is also similar to the
truth. The error in the regions with high spatial variability such as GB
(Fig. 2d), appears to be about 0.5 (unit: dimensionless) larger than that
using modified VQT algorithm (Fig. 2e, f), but smaller in regions with
lower spatial variability (the center of GoM or NSS, Fig. 2e, f). These
differences are attributable to the characteristics of the two sampling
strategies: compared to the VQT-derived sampling, the relatively
homogenous distribution of random stations results in more (less)
stations in low- (high-) variance areas.

The VQT-derived sampling scheme can significantly decrease
averaged RMSE of the Pseudocalanus survey in the region (Fig. 3).
The averaged RMSE for VQT is 0.62 (unit: dimensionless), significantly
lower (reduced by 0.38, pb0.05) than themean RMSE of 1.0 estimated
from random sampling cases.

Onewould expect the RMSE to decrease as the number of sampling
stations increases. The RMSE of VQT-derived sampling drops quickly
from N3 to b1 as the number of samples increases from 10 to 25, faster
than the randomsampling approach (Fig. 4, top panel). The decrease of
RMSE becomes more gradual as the number of samples continues to
increase using both approaches, but the ensemble mean of RMSE for
random sampling is larger than the VQT-based sampling when the
sampling number exceeds 25. As the number of samples goes beyond
100, the RMSE begins to level off and approaches 0.4, suggesting that
all the sub-regions have similar variance. The above analysis is only for
distribution of adult Pseudocalanus in a specific day (a snapshot).
Similar analysis was done for annual mean and standard deviation of
RMSE for year 1999 with varying number of total sampling stations.
The result (Fig. 4, bottom panel) shows that the annual mean RMSE
drops quickly from 1.4 to 0.5 when the total number of stations
increased from 5 to 40, and the decrease of RMSE is much slower with
additional stations. The standard deviation of RMSE decreased as the
number of stations increased. This information could be useful in
quantifying the marginal impact of additional stations on reducing
RMSE. Comparison of the VQT sampling approach with a more
traditionally designed oceanographic survey pattern follows below.

Due to the temporal variation of zooplankton distributions,
changing sampling stations with time can also reduce sampling
error. The daily VQT-derived survey position for adult Pseudocalanus
was determined for the entire simulated year of 1999 (an animation
can be found at the link http://www.whoi.edu/science/B/jilab/osse/
Za_0115y09a.gif). Using the daily sample positions and the
corresponding size of the sub-regions in each quadtree stratum, the
density of sampling station in each grid cell (i.e. 1.0/number of unit
grid in the sub-region) can be obtained. After averaging the daily
density over 1999 in each grid cell, a spatial map of sampling intensity
is obtained. The region with higher intensity is where survey efforts
should be focused to obtain more accurate measurement of annual
abundance patterns (Fig. 5a). Those regions are concentrated in
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Fig. 2. (a) The modeled adult Pseudocalanus abundance field (“truth”) on June 8 in 1999 (shaded, unit: dimensionless) and the 50 sample stations (red stars, center-selected) using
VQT algorithm. (b) the OAX-mapped distribution of adult Pseudocalanus from the simulated observation using the VQT-based stations. (c) The ensemble mean field of objective
analyses of 100 simulated surveys using random sampling with 50 stations (d) b–a; (e) c–a; (f)e–d.
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Massachusetts Bay, Cape Cod Bay, Buzzards Bay, west WB and west
GB. The sampling pattern changes when we applied the same analysis
to the normalized distribution of daily phytoplankton in 1999 from
the output of the NPZDmodel. (Fig. 5b). The key regions to survey are
now located in the southwest GoM and the boundary between the
east GoM and the Scotian Shelf.

Wemade a comparisonwith the survey strategy currently used for
the Ecosystem Monitoring (EcoMon) program in the GoM by NOAA's
National Marine Fisheries Service (NMFS), in which the stations are
chosen using a random stratified design with a predefined set of 87
tiles within the GoM [Fig. 6, see Sherman (1980) and Meise and
O'Reilly (1996) for programdetails and survey protocols]. The number
of stations varied from survey to survey because some tiles could be
missing in actual surveys. For comparison purpose we used the max-
imum number of stations (one station for each tile) for all the surveys
in our analysis. The positions of 87 fixed VQT-derived stations for
Pseudocalanus are more concentrated in the west GoM region;
whereas NMFS survey stations have more stations located in the
zone between 69.5 W and 67.5 W, and along the section around 66.5
W. Due to the difference in the spatial distribution between NMFS and
VQT-derived stations, their averaged RMSEs for Pseudocalanus in the
sample domain are different (Fig. 7). The VQT-derived RMSE ranges
from 15 to 23% smaller than that based on NMFS stations.

4. Discussion

There could be many options for selecting the sampling positions
(SPs) within each sub-region of the VQT algorithm. For the two
approaches we used, over the course of a year, about 80% and 73% of
averaged RMSEs of the center-selected SPs are smaller than that of
randomly selected SPs for adult Pseudocalanus and phytoplankton,
respectively (Fig. 8). Therefore, the center-selected SPs can be a



Fig. 3. The probability density function (PDF) of the averaged root mean square error
(RMSE) of the spatial distribution of adult Pseudocalanus. Black bars indicate the PDF of
averaged RMSE of 100 iterations of simple random sampling. The blue line is the mean
RMSE of 100-times simple random sampling. The red line is the averaged RMSE for
VQT-based sampling. 50 samples are used for both cases.
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simple sampling strategy with reasonably low sampling errors. It may
be possible to find other strategies with lower RMSEs by using higher
order statistical moments of the distribution, but those aspects are left
for future research.
Fig. 4. (Upper panel) Averaged root mean square error (RMSE) versus number of stations. Th
with triangles is the mean RMSE for simple random sampling repeated 100 times and the da
(Bottom panel) Mean VQT-derived RMSE versus number of stations. The black line with circ
RMSE±1STD of RMSE.
It can be seen that the RMSE varies with time even for the same
variable (Fig. 8), suggesting that the number of sampling stations
needs to be adjusted to satisfy a specific RMSE threshold. For instance,
more sampling stations for phytoplankton are probably needed to
keep the RMSE low during spring bloom time period.

The high correlation (N0.9) between RMSE and averaged spatial
gradient (Fig. 8) indicates the error can be related to the complexity of
spatial gradient.

The sampling strategy discussed above focuses on few specific
variables (surface adult Pseudocalanus or phytoplankton) only, with
an understanding that, in reality, a sampling strategy for multiple
variables is needed. In many cases, the spatial distribution of different
biological fields at different depths could vary significantly. Thus it is
necessary to explore whether the regions where sampling should be
focused are different. A simple comparison of the spatial distribution
of cumulative sampling frequency for phytoplankton and adult
Pseudocalanus (Fig. 5a and b) reveals that the areas for focused
sampling effort are not the same. For phytoplankton, more effort
should be placed in the southwest Gulf of Maine and the boundary
between the east GoM and the Scotian Shelf; whereas the effort for
adult Pseudocalanus should be focused on in Massachusetts Bay, Cape
Cod Bay, Buzzards Bay, west WB and west GB.

Our analysis suggests that theRMSE for Pseudocalanus is largerwhen
more than one variable (e.g. both Pseudocalanus and phytoplankton) is
considered when using the VQT method to design the survey strategy.
Based on VQT-derived stations (Fig. 6b) for the combined variable
(linear-combination of Pseudocalanus and phytoplankton), the aver-
agedRMSE is reducedmodestly (Fig. 7)when compared to the sampling
strategy with only Pseudocalanus being considered. In some cases, such
e black line with circles is spatial-averaged RMSE for VQT-based sample. The black line
shed line is 95% confidence interval about the mean RMSE of simple random sampling.
les is averaged RMSE over 1999 year for VQT-based sample. The dashed lines are mean



Fig. 5. (a) The VQT-derived sampling intensity for adult Pseudocalanus. (b) The same as (a) but for phytoplankton. The sampling intensity is defined as annual mean of station density
in each grid (1.0/number of unit grid in the sub-region) in 1999. The daily number of stations is 50.
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as January–February, the bimonthly mean RMSE based on VQT-derived
stations is even larger than that based on the NMFS survey stations.
Combining more variables in the VQT calculation (perhaps even non-
dynamic variables such as depth) may cause the RMSE reduction to be
even less significant, due to differences in the statistics of their spatial
distribution. This indicates that the sampling strategy based on NMFS
survey stations is essentially optimal in a multi-variable context.

Besides the seasonal scale, there are also interannual and decadal
variabilities in plankton communities. In the GoM, phytoplankton and
net primary production are characterized by strong interannual
variability from 1998 to 2006 because of the influence of ocean
freshening (Ji et al., 2007). In this study, only marine plankton at the
seasonal scale is examined for optimizing the survey strategy. It is
known that the key regions to monitor at different time scales
(intraseasonal and seasonal–interannual) could be different due to
distinct processes (e.g. Sakov and Oke, 2008). Further studies are
needed to identify the key regions for sampling at interannual and
decadal time scales in the GoM.

The model-based observing system design depends on the model
performance (Sakov and Oke, 2008). Although the general spatio-
temporal distribution pattern of biological variables can be captured
reasonably well (Ji et al., 2009), there are differences between the
modeled fields and reality. Typically, the modeled field is much
Fig. 6. The spatial distribution of 87 sample station positions based on (a) one variab
phytoplankton). Red stars are VQT-derived station positions based on the annual-averaged
(National Marine Fisheries Service) EcoMon station positions. The number of stations used f
VQT is defined as the rectangle limited by the maximum and minimum longitude/latitude of
each panel. The black line is the pair pathway between VQT-derived stations and NMFS EcoM
(Kuhn, 1956; Munkres, 1957).
smoother (less patchy) than the real distribution, due to the difficulties
in capturing the sub-grid advection/diffusion processes and complex
biological interactions not resolved by the model. There is also
smoothing intrinsic to the OAX algorithm used to analyze the
simulated data. Model bias can also be problematic in OSSE applica-
tions. Use of ensemble simulations may help reduce bias, but such
improvements are left for future research. In any case, the present
results must be interpreted with these caveats in mind. Even if the
biological field used for the OSSEs is based on observations with
reasonably high-resolution temporal and spatial coverage, such as
satellite data, the same caution needs to be taken due to inevitable
discrepancy between observation and reality (e.g. Stow et al., 2009).

5. Conclusions

In thepaper,we focus onoptimizingplankton sampling in theGulf of
Maine (GoM). The error is significantly smaller (pb0.05) and decreases
more quickly with the number of sample stations derived by VQT than
with simple random sampling. Furthermore, for long term measure-
ments, the regions where sampling should be focused are found. For
different variables, the corresponding focal regions can be different due
to differences in their underlying variance properties. For the example
distributions of phytoplankton, more effort should be placed in the
le (Pseudocalanus) and (b) linear-combination of two variables (Pseudocalanus and
effort. Blue triangles are climatological annual station position from bimonthly NMFS
or VQT sample is the same as that of NMFS stations in each case. The sample region for
NMFS EcoMon stations. The sample number of stations is shown at the bottom right on
on stations based on the global shortest distance computed using Hungarian algorithm



Fig. 7. The bimonthly-averaged normalized root mean square error (RMSE) for adult Pseudocalanus calculated by the climatological annual NMFS survey stations, fixed VQT-derived
stations based on normalized Pseudocalanus and linear-combination (equal weight) of Pseudocalanus and phytoplankton, respectively. The number of VQT-derived station is the
same as that of NMFS stations.
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southwest GoM and the boundary between the east GoM and the
Scotian Shelf; whereas the sampling effort for adult Pseudocalanus
should be focused on the southwest Gulf of Maine. Compared with
existing sampling strategy used in the Gulf of Maine region, the
expected errors are reduced by 20% on the annual average (range from
15% to 23%) using sampling strategy informed by an ensemble of VQTs
applied to the entire 1999 simulation for Pseudocalanus alone. While
Fig. 8. (a) The time-varying spatial-averaged root mean square error (RMSE) of simulate
sampling stations (50 stations each day). (b) The same as (a) but for normalized phytoplankt
RMSE for random-selected sample positions. Red dashed line is the averaged spatial gradie
sampling for combination of two variables (adult Pseudocalanus and
phytoplankton), the errors are modestly reduced by an annual average
of 7% (range from−4% to 14%), suggesting that the ongoing operational
observing strategy is close to optimal for multi-constituent sampling.
Although we have limited the OSSE method to the distributions of
plankton, it also can be applied to other biological variables in designing
an optimized sampling array in future ocean observing systems. This
d observation for normalized adult Pseudocalanus over a year based on VQT-derived
on. Black line is the averaged RMSE for center-selected sample positions. Blue line is the
nt.
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study also provides a direction for optimizing sampling in space/time
according to the previous survey information or validated-model
simulation. This method can be extended to examine optimal overall
sampling patterns for multiple variables and time scales.
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