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Abstract

Statistical interpolation of coastal oceanic fields is addressed within the general framework of Gauss–
Markov estimation. Computation of the prior covariance of the field to be estimated is posed as a
stochastically-forced differential equation subject to coastal boundary conditions with inhomogeneous,
anisotropic parameters. Solution is readily implemented in standard finite element methodology. Examples
illustrate the method for idealized one-dimensional situations. Analysis of real biological data from
Massachusetts and Cape Cod Bay is shown, using a covariance function derived from velocity and
diffusivity fields computed with a hydrodynamic model. The procedure defaults to standard OA methods
using distance-based covariance functions, far from boundaries and inhomogeneities. # 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Objective analysis (OA) is a contemporary synonym for statistical estimation based on the
Gauss–Markov theorem. This theorem provides a sound basis for interpolation of irregularly
spaced data. It was introduced to meteorology by Gandin (1963) and is widely used operationally.
Bretherton et al. (1976) introduced the theory to oceanography in the context of the Mid-Ocean
Dynamics Experiment. Good theoretical descriptions are provided by Daley (1991) and Wunsch
(1996).
The general theory requires a prior statistical description of the field being estimated, and of the

observational error or noise. Knowledge of the field statistics does not come easily in
oceanography, owing to the relative paucity of observations. Practical procedures try to fit
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simple analytic covariance functions to data. Almost universally, these are spatially homogeneous,
isotropic functions with a small (1 or 2) number of degrees of freedom. It is widely recognized that
this is a potentially serious limitation, especially in coastal regions and shelf seas. In these areas,
topography (bathymetry and coastline), local dynamics and transport processes exert strong local
influences on oceanographic fields; and the assumptions of homogeneity and isotropy are
basically inappropriate. Under these conditions, the prior knowledge is defective and the analysis
is compromised.
In this paper we develop a general approach to OA which relieves some of these deficiencies.

The central idea is the numerical construction of the field covariance in a way which recognizes
local variations and the coastal constraint. The approach involves posing these influences via a
discretized partial differential equation subject to stochastic forcing.

2. General theory

We wish to map an irregular array of observations {d} to an unstructured computational grid
of values {u} representing realistic coastal geometries. The base theory is Gauss–Markov
estimation. This theory treats the general linear mapping

fug ¼ ½B�fdg ð1Þ

which is optimal (i.e. u ¼ *u) when the estimator [B] is given by

½B� ¼ ½Cud �½Cdd ��1 ð2Þ

with [Cab] the covariance matrix among arrays {a} and {b}. [B] is a minimum variance estimator.
If {u} and {d} have zero means, [B] is unbiased (‘‘Best Linear Unbiased Estimator’’, Wunsch,
1996, p. 183; Bennett, 1992, p. 48.) The precision of the optimal estimate *u is given by its
covariance C *u *u:

½C *u *u� ¼ ½Cuu� � ½B�½C *
ud � ¼ ½Cuu� � ½Cud �½Cdd ��1½C *

ud �: ð3Þ

(Here and throughout, C	 indicates the transpose of C.)
We are especially interested in mapping {d} onto a continuous finite element representation

uðx; yÞ with finite number of degrees of freedom ui:

uðx; yÞ ¼
X

i

uifiðx; yÞ; ð4Þ

where fiðx; yÞ are the finite element (FE) basis functions providing a unique interpolant among
the nodal values ui of an FE grid. Sampling this function at the observation points gives

½E�fug þ fng ¼ fdg; ð5Þ

where [E] is a measurement operator incorporating interpolation of the f to the observation
points and local averaging appropriate to the data; and {n} is observational noise.1 Assuming
signal {u} and noise {n} to be uncorrelated, we have

½Cud � ¼ ½Cuu�½E * � and ½Cdd � ¼ ½E�½Cuu�½E * � þ ½Cnn� ð6Þ

1More precisely, n is the model–data misfit, which will be a priori ascribed to observational noise.
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and the optimal estimate is

f *ug ¼ ½Cuu�½E * �½½E�½Cuu�½E * � þ ½Cnn���1fdg ð7Þ

or, equivalently (Wunsch, 1996, p. 184)

½½Cuu��1 þ ½E * �½Cnn��1½E��f *ug ¼ ½E * �½Cnn��1fdg: ð8Þ

The precision of the estimate *u is given by2

½C *u *u� ¼ ½C *u *u� � ½B�½C *
ud � ¼ ½Cuu� � ½B�½E�½C *

uu�: ð9Þ

The key to objective analysis, then, is knowledge of [Cuu] and [Cnn], the signal and noise
covariances. Computing [Cuu] is our main interest.

3. Covariance and stochastically forced differential operators

Classically, the covariance of the underlying field [Cuu] has been expressed in simple analytical
forms with a few degrees of freedom, leading to practical procedures as in Bretherton et al. (1976).
Typical are covariances of the form CðrÞ, where r is scaled distance separating any two points.
Freeland and Gould (1976) estimated streamfunction from velocity measurements in the Mid-

Ocean Dynamics Experiment. Isotropic, homogeneous covariance functions CccðrÞ, CuuðrÞ, CvvðrÞ
describe the streamfunction and the longitudinal and transverse3 velocity covariances, as
functions of the spatial separation distance r. Constraining these functions are the physical
relations defining them (non-divergent, geostrophic flow) and several constraints representing
statistical realizability. The forms chosen are

CuuðrÞ ¼ ð1þ brÞe�br; ð10Þ

CvvðrÞ ¼ ð1þ br � b2r2Þe�br; ð11Þ

CccðrÞ ¼ ð1þ br þ b2r2=3Þe�br: ð12Þ

Thus we have one-parameter, homogeneous isotropic covariances. The MODE data were used to
estimate b. McWilliams (1976) made similar estimates using MODE data, assuming geostrophic,
non-divergent flow and homogeneous, isotropic covariance. Two-parameter functions were fitted
to the data:

CccðrÞ ¼ ð1� g2r2Þe�d2r2=2; ð13Þ

CuuðrÞ ¼ ð1� b2r2Þe�d2r2=2; ð14Þ

CvvðrÞ ¼ ð1� ½5þ d2=g2�b2r2 þ d2b2r4Þe�d2r2=2 ð15Þ

with the constraint b2 ¼ g2d2=ðg2 þ d2Þ.
Denman and Freeland (1985) estimated two-parameter covariance functions from observations

over the continental shelf west of Vancouver Island. Fitted functions are reported for geopotential

2Typically, u � *u� S, where S2 is the diagonal of ½C *u *u�.
3The directions are relative to the separation vector r.
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height and velocity under similar assumptions as Freeland and Gould (1976), plus temperature,
salinity, and chlorophyll. Functional forms used included

CðrÞ ¼ ð1� r2=b2Þe�r2=a2 ; ð16Þ

CðrÞ ¼ cosðr=bÞe�r2=a2 ; ð17Þ

CðrÞ ¼ J0ðr=bÞe�r2=a2 ð18Þ

(J0 is the Bessel function of the first kind.) Good fits to several of these two-parameter forms were
found; but the data were insufficient to support the estimation of anisotropic covariance functions
suitable for the shelf.
Hendry and He (2000) implemented OA for shelf estimations using the covariance function as

in Freeland and Gould (1976)

CuuðrÞ ¼ ð1þ rþ r2=3Þe�r: ð19Þ

In that implementation, r is an anisotropic, space-time pseudo-distance, with principal axes and
scaling defined locally, prior to the data. Several studies of the Gulf of Maine/Scotian Shelf
region, including Naimie et al. (1994), Lynch et al. (1996), Hannah et al. (1996), Loder et al.
(1997) and McGillicuddy et al. (1998) have used this procedure to estimate hydrographic and
biological fields. In those cases the local correlation axes were keyed to the local bathymetric
gradient with longer correlation scales along isobaths than across them.
Zhou (1998) studied space–time interpolation of plankton data, using the covariance function

CðrÞ ¼ ð1� rÞe�r; ð20Þ

where again r is a scaled pseudo-distance, in this case involving an isotropic two-dimensional
spatial scale and a temporal scale. This form was fit to the observed data. A key idea is the
Lagrangian correction of the spatial distribution. The observations were passively advected either
forward or backward to a common time, in an attempt to offset the spatial distortion associated
with the non-synoptic sampling. Following this advective adjustment, the correlation function
(20) was spatially isotropic and homogeneous. The advective field was itself based on geostrophic
diagnosis of objectively analyzed hydrography.
These types of covariance functions have served well in the studies cited. But in the coastal

regime, there are serious complications:

* coastline constraints: there is no direct distance relationship across landforms (islands,
peninsulas),

* anisotropy: advection creates locally anisotropic covariance, oriented to streamlines; other
dynamical processes may be oriented by the local bathymetric gradient,

* inhomogeneity: correlation scales and principal axes may vary locally, reflecting for example
differential mixing or advective regimes.

Practical incorporation of these effects into [Cuu] is our goal.
Our basic idea is to represent the underlying variability as the outcome of a stochastic process;

specifically, the result of a stochastically forced differential equation (SDE). For example, the
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simple equation

q2u
qx2

� k2u ¼ eðxÞ ð21Þ

with the process noise e a (0,1) random disturbance with no spatial correlation, has covariance

CuuðrÞ ¼ ð1þ krÞe�kr ð22Þ

when posed in an unbounded domain. Thus Eqs. (21) and (22) are equivalent statements of the
same problem. The 2-D pair

r2u � k2u ¼ eðx; yÞ; ð23Þ

CuuðrÞ ¼ krK1ðkrÞ ’
p
2
kr

� �1=2
1þ

3

8kr

� �
e�kr; kr ! 1 ð24Þ

are likewise equivalent statements (Balgovind et al., 1983). (K1 is the Bessel function of the second
kind.)
The importance of the SDE approach is that Cuu can be computed numerically for realistic

conditions } real topography, variable coefficients and resolution, boundary conditions}which
make analytic solutions impossible. And, the parameters and process noise model e can be chosen
to represent real processes affecting the field of interest. And, the limiting case, far from
boundaries and inhomogeneities, defaults to an equivalent CðrÞ structure. Balgovind et al. (1983)
used the SDE approach (specifically, the Helmholtz equation (23) with k2 varying with latitude) to
compute a realistic spatially varying covariance for meteorological forecast error. Here we use it
to analyze coastal oceanic fields.
Discretization of Eqs. (21) and (23) or any other differential operator on a finite element grid

leads to the matrix form

½A�fug ¼ feg ð25Þ

in which all coastal constraints (no transport across land boundaries) are incorporated
automatically. The covariance of the FE nodal variables is obtained directly:

½Cuu� ¼ ½A��1½Cee�½A��1* ; ð26Þ

½Cuu��1 ¼ ½A* �½Cee��1* ½A� ð27Þ

Immediately we have accounted, formally, for (a) realistic transport processes and BCs in [A], and
(b) realistic process errors in Cee, representing processes not modeled in [A] or in the prior
estimate. Knowledge of these two effects allows us to compute [Cuu] using standard finite element
solution techniques. Coupling Eq. (26) with Eqs. (7)–(9), we have objective analysis. This is the
central idea of this paper.4

Aside, note that use of Eqs. (7)–(9), with [Cuu] from Eq. (26) is equivalent to solving the
weighted least squares problem

Minimize ffng* ½Cnn��1fng þ feg* ½Cee��1fegg ð28Þ

4Two examples follow in Section 4 and 5.
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subject to the constraints (5) and (25) which define the model–data mismatch n and the process
noise e (Wunsch, 1996).

4. Example 1

Consider the SDE

d

dx
D
du

dx
þ V

du

dx
� k2u ¼ e ð29Þ

and its discretization (assuming constant D)

½1� Pe�ui�1 � ½2þ K2�ui þ ½1þ Pe�uiþ1 ¼ Ei ð30Þ

with dimensionless quantities

Pe ¼
Vh

2D
; K2 ¼

k2h2

D
; E ¼

eh2

D
ð31Þ

[A] is tridiagonal; [A	][A] is pentadiagonal with columns

0

..

.

0

ð1� P2eÞ

�2ð2þ K2Þ

2ð1þ P2eÞ þ ð2þ K2Þ2

�2ð2þ K2Þ

ð1� P2eÞ

0

..

.

0

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

: ð32Þ

The inverse of [A	][A], assuming ½CEE � ¼ ½I �, gives the covariance Cuu. This will be a full matrix,
with the covariance structure centered on the diagonal. It is plotted in Figs. 1 and 2, assuming
periodic boundary conditions. Note that K ¼ 1=N, where N is the number of grid cells per e-
folding length for the analytic solution; thus a reasonable discretization has K ¼ Oð1Þ or less.
Similarly, Pe ¼ 1 is a threshold for poor resolution of advection and accompanies loss of diagonal
dominance in the case K2 ¼ 0.
In Fig. 1 we show Cuu with periodic BCs, for Pe ¼ 0. From Eq. (22) we expect the decorrelation

scale to be 1=K grid cells. Fig. 1 confirms that for large K we have essentially an unbounded
domain. Decreasing K broadens the covariance. Fig. 1 also confirms that for large K we recover
the analytical result; while at small K (=0.01 in this example) the BCs have effect and the free-
space analytic solution becomes invalid.
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Fig. 2 shows Cuu, again with periodic BCs, for various values of Pe. The effect of advection is to
lengthen the correlation scale, increasing covariance in the along-stream direction. In the steady
state, the upstream and downstream effects are symmetric. Creative use of these two parameters
sets a baseline correlation scale via K and directional anisotropy via Pe, both of which can be
locally variable. Modulation near shoreline boundaries is naturally incorporated from the outset.

Fig. 1. Covariance for the advective–diffusive–reactive equation (30) with periodic boundary conditions (blue, dots),
compared with the analytic free-space result (red, solid). Three different values of K2 are shown. The plots have been
self-normalized.

Fig. 2. Covariance for the advective–diffusive–reactive equation, for five values of Pe. Periodic BCs.
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In Fig. 3 we show the effect of a spatial variation in diffusion coefficient. In this case, there is a
step change by a factor of 10 in D at node 19. The result is asymmetry (right curve) and
inhomogeneity (left curve versus right) in the covariance. Fig. 4 shows the result of an
impermeable land boundary between nodes 31 and 32. Disturbances introduced near this
boundary must diffuse around it by a much longer path; thus the covariance of geographic near-
neighbors is greatly reduced.
These results illustrate local control of the correlation length scales using physical parameters

and boundary conditions of the underlying differential equation.

Fig. 3. Effect of variable diffusion coefficient on covariance. To the left of node 19, D ¼ D0=10; to the right, D ¼ D0.
The two curves are associated with nodes 10 (left curve) and 25 (right curve). Periodic BCs; Pe ¼ 0; K20 ¼ 0:1.

Fig. 4. Effect of no-flux boundary condition between nodes 30 and 31 on covariance with nodes 10 (left curves) and 25
(right curves). Periodic BCs; Pe ¼ 0; K2 ¼ 0:01 (left) and 0.1 (right).
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Objective analyses of five data sampled at intervals of 10Dx are plotted in Fig. 5. The three
cases illustrate the significant variations among the interpolants, depending on the details of
boundary conditions. Also shown are the estimated standard deviations of the interpolations and
of the data. At Neumann boundaries, the interpolation is discontinuous and the interpolation
uncertainty grows where data need to be extrapolated. Another effect of the internal Neumann
boundary is the reduction of the interpolation maximum at node 35, due to its isolation from the
data to the left (bottom panel of Fig. 5).

Fig. 5. Objective analysis of five data with various boundary conditions. The data (red asterisks) are connected by a
solid blue line representing simple linear interpolation. The OA estimates are indicated by the circles. The standard

deviations of the data (blue error bars) and of the estimated interpolant (black solid lines) are also shown. Top left:
periodic BCs at left and right. Top right: Neumann BCs at left and right. Bottom: Neumann BCs in center of domain
(just left of Node 30) and periodic BC’s at left and right. Standard deviations of observational noise Sn and process
noise Se are indicated. The top right and bottom panels illustrate the successful blocking of interpolation across a

coastal boundary.
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5. Example 2

Next we consider the 2-D transport equation

1

h
r � hDru� V � ru� k2u ¼ es þ ep; ð33Þ

where u is the field anomaly, h the bathymetric depth, D the dispersion coefficient, V the fluid
velocity, k2 the first-order decay rate, es the surface forcing, and ep the isolated inputs from point
sources (e.g. river discharges).
We imagine for example that climatological estimates of all transport parameters are available,

and that a climatological prior estimate of the transported field has been subtracted from the data.
Standard Galerkin FE discretization leads to

½A�fug ¼ fesg þ fepg þ frg; ð34Þ

Aij ¼ h�hDrfj � rfi � hV � rfjfi � hk2fjfii; ð35Þ

ri ¼ �
I

hD
qu
qn

fi; ð36Þ

esi ¼ hhesfii; ð37Þ

epi ¼ hhepfii; ð38Þ

where h i indicates integration over the spatial domain, and
H
integration over its boundary. The

{es} vector might be constituted as random noise plus a highly structured response correlated with
weather; {ep} might be correlated with hydrological conditions or industrial activity.
To demonstrate the utility of this methodology, we applied it to a complex geometry in a

coastal domain off Massachusetts. Velocity and diffusivity fields were specified from a simulation
of the March–April climatological flow (Fig. 6). The basis of these simulations is a fully nonlinear,
three-dimensional primitive equation model with turbulence closure (Lynch et al., 1996). This
model has been used extensively to study coastal currents in this region, particularly in the area
north of Cape Cod (Lynch et al., 1997). Archived solutions (see http://www-nml.dartmouth.edu/
CircMods/) were vertically averaged to obtain D and V fields suitable for use in Eq. (33). The
circulation is dominated by a southward flowing coastal current, which partially bifurcates south
of Cape Ann. During this time period, a small portion of the current splits off and flows through
Massachusetts and Cape Cod Bays. This branch subsequently rejoins the bulk of the coastal
current off the northern tip of Cape Cod, where the southward flow intensifies (note that the fine
mesh on the steep topography east of Cape Cod makes the current appear more intensified in
Fig. 6 than it actually is). The highest diffusivities (in excess of 500m2s�1) are associated with
Martha’s Vineyard and Nantucket islands south of Cape Cod; another local maximum (on the
order of 400m2s�1) is located west–northwest of the northern tip of Cape Cod. Elsewhere,
diffusivity is on the order of 100m2s�1. Flow in the deeper areas offshore is generally sluggish
compared to the coastal current.
Covariance structures Cuu for various nodes off the Cape Cod shoreline illustrate the impact of

the coastal geometry and transport fields (Fig. 7). Information on nodes along the northeast coast
of Cape Cod (upper two panels) spreads southward with the coastal current. In addition, there is
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significant propagation of information in the ‘‘upstream’’ direction owing to the very high
diffusivity present along the northern tip of Cape Cod, with significant covariance penetrating all
the way into Cape Cod Bay. In contrast, the covariance structure associated with a node in the
southeast corner of Cape Cod Bay is confined to the bay itself, due to the weak currents and low
diffusivity present in that region. Similarly, covariance with a node off the southern shore of Cape
Cod is limited to Vineyard and Nantucket Sounds. These latter two examples highlight the fact
that the coastal geometry is built into the covariance structure, as information clearly does not
propagate across land boundaries.
An example Objective Analysis is shown in Fig. 8a. The data are observed concentrations of the

toxic dinoflagellate Alexandrium spp. from a survey conducted in 1993 as part of the Regional
Marine Research Program in the Gulf of Maine. Control parameters for the Objective Analysis
(Table 1) were chosen as follows. The observational noise n was set to the precision of the
measurement, which is 10 cells l�1. The first-order decay constant k2 in Eq. (33) sets the horizontal
scale of patchiness in the absence of advection and process noise. For a purely diffusive balance
ðDr2u � k2uÞ, the non-dimensional ratio

ffiffiffiffi
D

p
=k is the e-folding scale for patches of u. Assuming

a typical patch size of 1 km and a diffusivity of 100m2 s�1 yields k2 ¼ 1:0� 10�4. The process
noise is scaled to meet the variance of the observations (d) in the absence of hydrodynamic

Fig. 6. Climatological velocity and diffusivity fields for the March–April time period. The scale for the velocity vectors

appears in the upper left. Selected bathymetric contours are overlayed.
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transport in Eq. (33):

VarðeÞ � Varðk2dÞ:

This particular data set has a mean of 92 cells l�1 and a standard deviation of 142 cells l�1,
resulting in an estimated process noise size es ¼ 1:42� 10�2 cells l

�1 s�1. The covariance of the

Fig. 7. Normalized covariance structures of four nodes off the Cape Cod shoreline. In each case the covariance is
normalized to the value at the node in question (indicated by a white dot). In this example, k2 ¼ 2:0� 10�6 and
e ¼ 2:0� 10�6. The spatial scale of the process noise is specified to be 2.0� 103m.
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process noise is assumed to take the form of Eq. (19), with a 2 km spatial scale. The point source
noise ep was zero.
Although the observed distribution is quite patchy, abundance is generally high in

Massachusetts Bay and low elsewhere (Fig. 8a). The objectively analyzed field captures the
essence of this pattern, spreading information according to the covariance structure determined
by the hydrodynamics and assumptions about the underlying process. Note that the analyzed field
does not match the observations exactly; smoothing is implied by the first-order decay specified in
Eq. (33), and there is noise associated with both the observations and the process. The
accompanying map of standard error (Fig. 8b) is simply the square root of the diagonal of C *u *u.
Expected error is reduced in the vicinity of the observations, toward the level of the observational
noise. Far from the data, the posterior covariance C *u *u is no different from the prior covariance

Fig. 8. (a) Objective analysis of Alexandrium spp. concentration. Observed values are shown as colored dots, with the
same color scale used to map the objectively analyzed field. (b) Standard error estimate, C

1=2
*u *u .

Table 1
Objective analysis control parameters for Example 2

Parameter Value Definition

n 10 cells l�1 Observational noise

k2 1.0� 10�4 s�1 First-order decay coefficient
e 1.42� 10�2 cells l�1 s�1 Process noise
r 2 km Spatial scale of process noise
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Cuu. Note that there is structure in the far field standard error. This structure comes as a direct
result of the hydrodynamic field. For example, the very high diffusivity near Martha’s Vineyard
and Nantucket island would tend to smooth any patchiness in that area, thereby reducing the
expected variance.
Comparison of these objectively analyzed distributions with maps of the same data made with

straightforward interpolation techniques demonstrates the utility of this approach. For example,
cubic spline interpolation can be used to fill the gaps in between data points (Fig. 9). With such an
algorithm, the resolution of the mesh determines the spatial scale of the interpolated structures.
The resulting fields are typically truncated beyond the areas of data coverage (Fig. 9a). Various
techniques can be used to force the extrapolation problem, such as the introduction of artificial
data points in the far field (e.g., Fig. 9b). However, this ad hoc procedure has obvious
shortcomings. The objective analysis technique described herein thus has clear advantages in that
it accounts for coastal geometry, a specified hydrodynamic field, and an explicit mathematical
representation of the underlying processes assumed to control the distribution of the quantity
being mapped.

6. Conclusion

The observational data base for the coastal ocean is growing in sophistication and volume at a
remarkable rate. In parallel there is a growing need for state estimation procedures for coastal

Fig. 9. (a) Cubic interpolation of the same Alexandrium spp. concentration data shown in Fig. 8a. Observed values are
shown as colored dots. The field is truncated in areas where extrapolation is required. (b) Remapping of (a) in which

artificial data points (of zero concentration) are inserted at the corners of the mapping domain in order to force the
interpolator to fill the entire field.
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fields. Classical Gauss–Markov theory is readily adapted; but knowledge of the prior covariance
of the field to be estimated is problematic and potentially limiting. Conventional distance-based
covariance functions are not suited to the coastal ocean because of its inhomogeneous nature; but
stochastically forced differential equations representing coastal processes provide a natural
formulation, and numerical solution is readily obtained with standard finite element procedures.
The combination of Gauss–Markov estimation with SDE-based field covariance provides a
compact version of coastal OA.5 It focuses attention on (a) what processes are relevant to the
observed field variability; and (b) the nature of the stochastic forcing (the process noise).
The use of the simple Helmholtz SDE operator provides a locally variable, isotropic correlation

scale} in terms of number of grid cellsM, we haveM ¼ 1=K � ½D=k2A�1=2, with A the element
area. This SDE defaults to conventional distance-based covariance when far from boundaries and
inhomogeneities. Adding coastal boundary conditions (no normal transport) blocks interpolation
across land. Where a coastal boundary isolates an estimation point from the data, the local
estimation error increases. This Helmholtz operator alone is a significant advance over
conventional practice. Variation in the diffusion coefficient modulates the correlation scale.
Inclusion of an advective term elongates the covariance along streamlines. In the Massachusetts
Bays example shown, the climatological circulation and mixing provides a natural specification
for these parameters. Even better would be a circulation hindcast of ambient conditions during
the cruise.
It is important to pay attention to the spatial correlation in the process noise (e in Eqs. (21), (29)

and (33). Assuming white noise at the nodes of a finite element mesh amounts to large spatial
scales where there are big elements}a subtle side effect. In the field application here, we used a
distance-based autocorrelation for e which was successful. Naturally, a large spatial scale for e
overwhelms diffusion and smooths everything. A small spatial scale for e defaults to the mesh-
dependent [CEE ] implied by its finite element basis, and allows this to pass through the posterior
covariance ½C *u *u�. Relative to size, the process noise ought to be scaled to match the observed
variance of the data: VarðeÞ � k2 VarðdÞ. There is substance in the specification of this error
model and it deserves careful attention in any analysis.
Boundary conditions for the SDE also warrant attention. We have used homogeneous

Neumann BCs which are natural at the coast, with zero variance; these produce a buildup of ½C *u *u�,
essentially reflecting the covariance. More generally, boundary conditions need to have their own
error models explicitly incorporated into the e term in Eqs. (25)–(27).
Two other important OA issues remain unaddressed and should not be overlooked. First, there

is the need to describe the observational noise via a relevant error model Cnn. We have not looked
at this herein, and look forward to the development of error models for the many oceanographic
data products becoming available. Second, the data to be analyzed should in general be reduced
by removal of a structured prior estimate (spatially-variable mean), in the hope of achieving the
zero-mean condition for an unbiased estimate. Explicit recognition of this step is critical to success
with any OA procedure.
The Massachusetts Bays application is representative of contemporary shelf modeling; the

analyses shown were computed on an office-scale scientific workstation. However the matrices

5For an implementation, see the OAFE Users Guide and Software (Lynch and McGillicuddy, 1999).
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and inverses involved are, a priori, full; so as computational meshes grow in scope and refinement,
these methods may scale unfavorably. To avoid this, it would be practical to reduce the matrix
density by truncating the covariance matrices beyond some practical limit, and taking advantage
of the resulting sparse matrix structure. Some careful study of this and related ideas is justified,
especially in an operational setting.
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