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T H E  R O L E  O F  T H E  O C E A N S  in Earth systems ecology, and the effects of cli-

mate variability on the ocean and its ecosystems, can be understood only by observ-

ing, describing, and ultimately predicting the state of the ocean as a physically forced 

ecological and biogeochemical system. This is a daunting but exciting challenge, be-

cause the ocean-atmosphere system is dynamically linked, and oceanic habitats are 

both diverse and complex, providing tremendous variety in environmental conditions 

and associated life forms. And paradoxically, as we learn more and more about ocean 

life, for example, through the genomics revolution (Doney et al., 2004), the number 

of unanswered questions increases. 

Models, be they conceptual, statistical, or numerical simulations, are useful and 

necessary tools for studying the complex interactions that infl uence ecosystem struc-

ture and function. Originally, a primary function of marine ecosystem models was to 

help in the development of understanding; also, they were applied in fi sheries mod-

els to predict the abundance of specifi c commercial fi sh stocks. Now, they are being 

asked to do much more. On local and regional scales, there is growing recognition 

that management of marine resources and assessment of human perturbations must 

encompass the whole ecosystem, not individual species. Extending further to basin 

and global scales, the potential impacts of global change present an immediate chal-

lenge, nationally and globally, to defi ne and execute responsive strategies, based to a 

large extent on the predictions of interdisciplinary global models that must be vali-

dated by comparison with measurements. Consequently, the ultimate objective of any 

comprehensive marine ecosystem modeling program must be the development and 

implementation of reliable forecast systems, guided by and validated with systematic 

observations of the sea. 
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Rapid development of capabilities 

in marine modeling, supported by in-

creased computer power and technical 

innovation in ocean observations, has 

set the stage for development of reliable 

interdisciplinary ocean forecast systems

—but the goal is ambitious and the 

challenges are great. Faithful and quan-

titative description and prediction of  

real ocean ecosystems requires an inter-

disciplinary, coupled, and data-assimila-

tive observation and modeling system. 

In other words, we must develop a holis-

tic modeling approach that describes  

environmental complexity with interact-

ing physical, ecological, biogeochemi-

cal, and optical component models that 

directly incorporate observations from 

a wide range of measurement systems. 

Each component of this systematic  

approach has its own stand-alone issues 

that are being addressed by specialists 

exploiting the latest research in their 

disciplines. Rapid and effective develop-

ment of ocean ecosystem models will 

depend on integration of this leading-

edge research through communication 

and coordination among a broad range 

of ocean scientists.

The PARtnership for ADvancing In-

terdisciplinary Global Modeling (PARA-

DIGM), a National Ocean Partnership 

Program (NOPP) funded entity, was 

established in response to this need. It is 

a coordinated, multidisciplinary team of 

scientists that is developing the model-

ing infrastructure to go beyond present 

approaches in pursuit of interdisciplin-

ary, predictive models of ocean ecosys-

tems that are guided by and validated 

with observations of the ocean over a 

broad range of scales. Toward this end, 

our immediate scientifi c objective is to 

improve our understanding of the mean 

state, seasonal cycle, and natural interan-

nual-to-decadal variability of global and 

basin-scale biogeographical patterns. This 

goal focuses our efforts on fundamen-

tally important questions: What factors 

combine to establish the makeup of the 

marine ecosystem in a given location? 

What combination of physical forcing 

and biological responses drives the ob-

served long-term variability and appar-

ent ecosystem regime shifts? How will 

ecosystems respond to future climatic 

and anthropogenic perturbations? The 

questions are addressed with a range of 

approaches; the synergies are achieved 

when results are considered together and 

applied to the development of the next 

generation of marine ecosystem models. 

Here, we describe some of our efforts 

and our vision of how they might be ap-

plied in the future.

Much of our research concerns fun-

damental problems confronting con-

temporary approaches to modeling 

marine ecosystems. At the forefront is 

the problem of complexity, driven by 

the growing recognition of (1) the var-

ied and distinct ecological and biogeo-

chemical functions of groups of marine 

microbes, and (2) details of planktonic 

behavior (e.g., grazing by different spe-

cies of zooplankton) that defy simple 

representations. Models can account for 

ecological complexity by incorporat-

ing more and more biological compo-

nents—functional groups—with dis-

tinct ecological roles, and by developing 

complicated mathematical descriptions 

of plankton behavior. However, these 

solutions confl ict directly with another 

primary problem in contemporary 

ecosystem modeling—the evaluation 

of models by direct comparison with 

observations. As described below, com-

plicated models have too many “knobs 

to turn” to be constrained with available 

observations, so that only the simplest 

simulations with only a few variables 

can be rigorously tested with compari-

sons to real-world measurements, and 

ultimately used in data-assimilation ap-

plications. Further, it is impractical to 

implement complicated models in glob-

al simulations because the computation-

al demands are too high. Fortunately, 

we are often not required to describe the 

specifi c details of ecological interactions 

The role of the oceans in Earth systems ecology, 

and the effects of climate variabil ity on the ocean

and its ecosystems, can be understood only by

observing , describing , and ultimately predicting

the state of the ocean as a physically forced

 ecological and biogeochemical system.
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(e.g., feeding history of an individual 

zooplankter) but rather the overall im-

pact at a larger scale (e.g., total grazing 

by zooplankton). The solution, then, is 

to fi nd robust, manageable rules to de-

scribe (i.e., parameterize) the integrated 

behavior of complex systems. Address-

ing the tension between the recognition 

of ecological complexity and the need 

for testable models is a major stimulus 

in the PARADIGM program. 

The intrinsic scales of ocean ecology 

present another challenge to interdis-

ciplinary ocean modeling. They are set 

by the growth and removal of the pri-

mary producers (phytoplankton) with 

time scales of one to a few days, and by 

the broad spatial-temporal spectrum 

of physical processes that infl uence pe-

lagic ecosystems (all together defi ned as 

a “multi-scale” problem). Our project 

scope, therefore, is inherently multi-

scale and encompasses the range of 

coupled dynamics of ocean ecology, bio-

geochemistry, and physics on time scales 

from hours to decades and horizontal 

scales from kilometers to global. Because 

of that, we employ a carefully construct-

ed hierarchy of regional, basin-scale, and 

global modeling efforts.

The goal of model-data fusion in in-

tegrated ocean observation and predic-

tion systems is a driver of PARADIGM. 

So, real data are important. The program 

includes a strong component of retro-

spective analysis for model development 

and evaluation, complemented with ex-

plicit efforts to exploit data from existing 

and planned ocean observation systems 

in model evaluation and for designing 

advanced data assimilation systems. Our 

models are designed to take advantage 

of global ocean color products (chlo-

rophyll a, primary production, water 

clarity indices, and others), sea surface 

temperature, surface winds, and surface 

height data (currents and eddies) that 

are routinely produced and distributed. 

New products, such as ocean surface sa-

linity (presently scheduled for 2009), are 

anxiously awaited. 

As we address the challenges of eco-

logical complexity, scales of variability, 

and model-data fusion, we collaborate 

on the development of novel approaches 

to ocean modeling, designed to exploit 

new information (e.g., from genomics), 

ideas (e.g., computer-generated natural 

selection) and technologies (e.g., inter-

disciplinary ocean observation systems). 

Our perspectives on future directions are 

presented here in the hope that they will 

contribute to the development of a truly 

revolutionary capability in oceanogra-

phy—reliable, data-driven predictions of 

climate and marine ecosystems. 

Lewis M. Rothstein (lrothstein@gso.uri.edu) is Professor, Graduate School of Oceanography, University of Rhode Island, Narragansett, 

RI, USA. John J. Cullen is Professor, Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada. Mark Abbott is 

Dean, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA. Eric P. Chassignet is Professor, Rosenstiel 

School for Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA. Ken Denman is Senior Scientist, Fisheries and Oceans 

Canada, Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada. Scott C. Doney is 

Senior Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. Hugh 

Ducklow is Professor, Virginia Institute of Marine Science, Gloucester Point, VA, USA. Katja Fennel is Assistant Professor, Institute of Marine 

and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA. Mick Follows is Principal Research Scientist, Department of Earth, 

Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Dale Haidvogel is Professor, Institute of 

Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA. Eileen Hofmann is Professor, Ocean, Earth and Atmospheric Sci-

ences, Old Dominion University, Norfolk, VA, USA. David M. Karl is Professor, Department of Oceanography, University of Hawaii, Hono-

lulu, HI, USA. John Kindle is Oceanographer, Naval Research Laboratory, Stennis Space Center, MS, USA. Ivan Lima is Information Systems 

Associate III, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. Mathew 

Maltrud is Technical Staff  Member, Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM, USA. Chuck McClain is 

SeaWIFS Project Scientist, NASA/Goddard Space Flight Center, Greenbelt, MD, USA. Dennis McGillicuddy is Associate Scientist, Depart-

ment of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. M. Josefi na Olascoaga is 

Assistant Scientist, Rosenstiel School for Marine and Atmospheric Sciences/Applied Marine Physics, University of Miami, Miami, FL, USA. 

Yvette Spitz is Associate Professor, Oregon State University, College of Oceanic and Atmospheric Sciences, Corvallis, OR, USA. Jerry Wiggert

is Research Assistant Professor, Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA. James Yoder is Vice 

President for Academic Programs and Dean, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.



Oceanography  Vol. 19, No. 1, Mar. 200626

CONTEMPOR ARY 
APPROACHES TO MODELING 
MARINE ECOSYSTEMS
Marine ecological modeling has under-

gone an exciting renaissance during the 

last decade (Doney, 1999). Concurrently, 

our understanding of marine ecosys-

tems has been continually challenged by 

knowledge gained through the applica-

tion of new tools to probe the ocean 

depths. In little more than a decade, a 

new group of microbial organisms, Ar-

chaea, has been found to inhabit much of 

the global ocean, a previously unknown 

group of microbes has been discovered 

that converts atmospheric nitrogen into 

the chemical forms that support ocean 

food webs and biogeochemical cycling, 

and new molecular and genomic tech-

niques are rendering obsolete many of 

our strongly held views of the form and 

function of marine ecosystems, such as 

our concept of a species (e.g., Venter et 

al., 2004; Doney et al., 2004; DeLong and 

Karl, 2005; Giovannoni and Stingl, 2005). 

As scientists developing and applying 

numerical models, we are confronted 

with this explosion of new knowledge 

and at the same time we are struggling 

to include “essential” complexity that we 

already know cannot be properly con-

strained with existing observations (e.g., 

Denman, 2003). If we are to incorporate 

realistic models of marine ecosystems 

into complex simulations of ocean cir-

culation and biogeochemistry in order 

to forecast the future state and behavior 

of our oceans, then we must overcome 

three daunting challenges. First, we must 

introduce suffi cient complexity to repro-

duce observed patterns of ocean phys-

ics, chemistry, and biology with some 

degree of confi dence. Second, we must 

learn how to capture the essentials of 

marine ecosystems in a suffi ciently par-

simonious manner so that these models 

can be constrained and evaluated with 

observations. That is, models must be 

simple enough that a suffi cient num-

ber of simulations can be performed to 

document the sensitivity of verifi able 

results to input data and parameteriza-

tions, so that multi-member ensembles 

can be generated to provide confi dence 

intervals on our forecasts, nowcasts, and 

hindcasts. Finally, for long-term climate 

projections, we must include the basic 

set of mechanisms that we think are rel-

evant on these longer time scales—even 

if they are not signifi cant on seasonal 

to interannual scales—and construct a 

system with enough adaptability to re-

produce ecosystem shifts in a changing 

climate. All along, we must be mindful 

of biological reality: the wonderful com-

plexity of ocean ecosystems will never be 

fully described with numerical models of 

the global ocean.

Specifying “Functional Groups”
The earliest models of marine ecosys-

tems (e.g., Riley, 1946) explored the fun-

damental drivers of food-web dynamics 

using an idealized system comprising 

three components: nutrients, phyto-

plankton, and zooplankton (NPZ). Now, 

the preferred approach to modeling 

marine ecosystems has been to include 

a distinct compartment for each “func-

tional group,” loosely defi ned as a group 

of organisms or species that performs 

a particular role within the ecosystem, 

with respect to the problem being ad-

dressed (Hood et al., accepted). For eco-

system-based models of ocean biogeo-

chemistry, it has been necessary, but not 

necessarily suffi cient, to include a priori 

the following four groups, because of 

their distinct but important roles, both 

in food-web interactions and biogeo-

chemical cycling (Figure 1). 

1. Small phytoplankton (<10 µm) that 

grow and are consumed by small 

grazers in the surface layer, tying up 

nutrients and energy in a microbial 

food web, described below. We usually 

consider these to be the “background” 

community of phytoplankton in the 

open ocean, contributing signifi cantly 

to primary production but little to 

new production (including fi sher-

ies) or export of organic matter to the 

deep sea (Peinert et al., 1989). In nu-

trient-poor subtropical gyres, the phy-

toplankton assemblage is often domi-

nated by the tiny (<2 µm) cyanobacte-

ria Prochlorococcus and Synechococcus.

2. Nitrogen-fi xing bacteria and archaea 

(diazotrophs), which convert atmo-

spheric nitrogen gas to an organic 

form that ultimately increases the 

ocean inventory of nitrogen nutrients. 

Some diazotrophs fi x both CO
2
 and 

N
2
 and can therefore have a major 

impact on ecosystem productivity, 

leading to a decoupling of nitrogen 

and phosphorus cycles. That is, if suf-

fi cient phosphorus is present, the new 

N delivered by N
2 
fi xation processes 

can lead to a net export of organic 

carbon from the surface layer over 

and above what might be supported 

by nitrate that is mixed from below, 

accompanied by dissolved inorganic 

carbon (Hood et al., 2004). Diazo-

trophs have a large requirement for 

iron, leading to important biogeo-

chemical feedbacks between atmo-

spheric dust deposition and the car-
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bon and nitrogen cycles.

3. Larger eukaryotic phytoplankton   

(>10 µm), which are responsible for 

most sinking of organic carbon par-

ticles, either through direct sedimen-

tation or incorporation into fecal pel-

lets of larger zooplankton. Often, the 

large phytoplankton are dominated 

by diatoms, microalgae encased in 

beautiful siliceous frustules, that, if 

thick enough, can protect them from 

being crushed and eaten. Diatoms in 

iron-poor waters tend to be heavily 

silicifi ed, suggesting that protection 

from being eaten compensates for low 

growth rates (Smetacek et al., 2004); 

in turn, diatoms in iron-rich waters 

require less Si relative to N to grow. 

The interactions among iron supply, 

nutrient cycling, food-web structure, 

and the vertical fl ux of carbon are 

thus complex and delightfully chal-

lenging to model. 

4. Coccolithophorids are generally smaller 

phytoplankton, which produce CaCO
3
 

in addition to organic carbon. By re-

moving Ca2+ ions they reduce surface 

Figure 1. Oceanic photosynthetic microorganisms: (a) the prokaryotic Synechococcus, a key oceanic picoplankton species, especially in nutrient poor subtropical 
gyres, and one of the most abundant organisms on the planet; (b) colony of the cyanobacterium Trichodesmium (scale of image ~4 mm), a nitrogen fi xing spe-
cies common in warm, well-stratifi ed tropical and subtropical environments; (c) the diatom Fragilariopsis kerguelensis, which has a thick, strong siliceous frustule 
that can protect it from being crushed and eaten by small crustacean zooplankton (Hamm et al., 2003)—it dominates the silica ooze accumulating under the 
Antarctic Circumpolar Current; (d) the coccolithophorid Emiliania huxleyi, which forms intricate calcium carbonate plates (liths), changing alkalinity and sur-
face pCO2. Top two photos courtesy of E. Webb and J. Waterbury, Woods Hole Oceanographic Institution, USA. Bottom two photos courtesy of National Centre 
for Oceanography, Southampton, UK.
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alkalinity, increasing surface pCO
2
 and 

potentially reducing the ability of the 

oceans to take up atmospheric carbon. 

The sensitivities of coccolithophores 

to decreased pH in a high-CO
2
 future 

could have major consequences on the 

ocean’s capacity to sequester atmo-

spheric CO
2
 (Feely et al., 2004). 

These four functional groups of phy-

toplankton, incorporated into a model 

with multiple nutrients (N, P, Si, Fe), can 

describe many features of marine bio-

geochemical cycling (e.g., Moore et al., 

2002a). However, the set is by no means 

unique or universally applicable, because 

the problem being addressed should 

strongly infl uence the structure of the 

model that is being developed. The par-

simonious approach to model building 

could lead to simpler models for more 

limited questions, whereas more or dif-

ferent functional groups might be need-

ed to describe complex food webs or 

species succession.

The Microbial Food Web—
Microzooplankton and Bacteria
Defi ning and/or generating functional 

groups of phytoplankton with their dis-

tinct biogeochemical functions and en-

vironmental sensitivities is only one step 

in the process of modeling the biological 

components of marine ecosystems. Eco-

logical processes must be described by 

modeling the fate of materials produced 

by each functional group. There are two 

basic pathways of material fl ow from the 

phytoplankton in a functional or bio-

geochemical view of the marine ecosys-

tem. The fi rst is the export pathway by 

which biogenic particles and dissolved 

organic matter are transferred from the 

surface ocean to the ocean interior be-

low. The second, and usually the larger, 

is the recycling pathway within the up-

per ocean, whereby respiration remin-

eralizes organic matter into inorganic 

nutrients and CO
2
; unicellular hetero-

trophic microbes (protozoans) and mi-

crozooplankton dominate this nutrient 

recycling. As a consequence of domi-

nance of primary production and recy-

cling by microbes, the ocean ecosystem 

has in essence a background recycling 

web of microbes and an episodic export 

food web of larger organisms (diatoms 

and copepods) (Figure 2). A major chal-

lenge is to represent the functions of ex-

port and recycling, and their control and 

variability in space and time, without 

expanding model complexity beyond 

tractable limits. 

The challenge is compounded by the 

realization that a wide range of physi-

ological and trophic capabilities exists 

besides the traditional autotroph and 

heterotroph modes—photoheterotro-

phy, for example (Doney et al., 2004). 

Current models now lag considerably 

behind new observations as far as incor-

porating recent genomic and ecological 

discoveries of the diverse and compli-

cated food webs in the open sea (Karl, 

2002). Despite the exploding genomic 

information on microbial organisms, 

our understanding of their role in regu-

lating elemental cycles is still insuffi cient 

to produce more than a crude “black 

box approach” to incorporating micro-

bial processes in models. One tactic is 

to apply the “background state hypoth-

esis,” whereby the microbial food web 

is a relatively stable presence in surface 

waters, through which nutrients escape 

to fuel larger cells, higher trophic lev-

els, and vertical fl ux only when physi-

cal and biogeochemical perturbations 

supply nutrients to the surface layer in 

excess of the microbes’ ability to absorb 

them (reviewed by Cullen et al., 2002). 

This hypothesis is being tested within 

PARADIGM by analysis of fi eld data, 

along with complementary modeling of 

food-web responses to varying nutrient 

supply, including purposeful fertilization 

with iron (Denman et al., in press). 

Model Closure and Mesozoo-
plankton—Emergent Behavior
Biogeochemical models typically include 

rather rudimentary representations of 

zooplankton dynamics, parameterizing 

the ensemble of all grazing processes 

with simple mathematical formulae. 

Moreover, zooplankton are typically the 

highest explicitly represented trophic 

level; thus they also act to “close” the 

set of model equations. Model results 

are known to be highly sensitive to the 

form of this closure (Fasham et al., 1990; 

Steele and Henderson, 1992). Critical 

questions that PARADIGM scientists 

are investigating include: Can we con-

tinue to develop biogeochemical models 

with little or no evaluation of predicted 

zooplankton dynamics or parameteriza-

tions? Can we represent mesozooplank-

ton meaningfully without any life history 

development? If not, can we represent 

the essence of life history development 

in a compact form? Such an alternative 

approach is now being attempted with 

behaviorally explicit numerical models 

that explore how zooplankton feeding 

strategies and morphological differences 

contribute to the effi ciency of consump-

tion and recycling of particulate organic 

material in pelagic ecosystems.

Spurred by the need to simplify the 
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modeling of ecological interactions, a 

goal of the PARADIGM program is to 

capture emergent behavior (i.e., the de-

velopment of complex patterns from 

simple rules) that can manifest over the 

full range of spatial and temporal scales 

included in our model systems. For the 

modeling of grazing by zooplankton, our 

approach consists of realizing complex 

species and trophic interactions through 

the implementation of a computation-

ally effi cient set of rules that govern 

the behavior and feeding of the indi-

vidual copepod species. This fi rst step 

toward formulating these rules consists 

of developing simulations that explic-

itly track the distinct feeding methods 

of individual organisms representing 

three prominent tropical copepod spe-

cies: Clausocalanus furcatus, Paracala-

nus aculeatus, and Oithona plumifera. 

Three components of copepod foraging 

are specifi ed in this individual-based 

model—sampling ambit, area(s) of 

perception (sensory regions), and prey 

perception (size preference). The fi rst 

two components utilize characteristics 

ascertained through careful behavioral 

studies (Figure 3) while the preference of 

grazers for larger prey is represented as 

increasingly reduced capture effi ciency 

when prey diameter ranges below 15 µm. 

Accurate simulation of copepod foraging 

also requires a realistic prey fi eld—one 

that is based on observed size spectra 

(Paffenhöfer et al., 2003). With these 

components in place, species-specifi c, 

size-partitioned grazing rates from the 

individual-based model results com-

pared well with the observational data 

(see Figure 4 in Wiggert et al., 2005). 

The simulation results indicate that 

adult copepod populations in an oligo-

trophic environment are limited by prey 

concentration and/or predation but not 

by resource competition—though this 

question must remain open until the 

full range of larval and juvenile growth 

stages is included (Wiggert et al., 2005). 

Additionally, the simulations demon-

strate that their various foraging behav-

iors allow each species to access distinct 

sub-domains of the prey spectrum; yet 

all three have the same prey concentra-

tion threshold above which their meta-

bolic needs can be attained. This implies 

that behaviorally induced prey size pref-

erences contribute to the coexistence of 

these copepod species in the dilute prey 

environment that they inhabit. 

External
“New” 

Nutrients

Inorganic
Nutrients

Large
Phytoplankton

Filter
Feeders Carnivores

Sinking
POM

ExportCiliates
Micro-

flagellates
Small

Phytoplankton

BacteriaDOM

Figure 2. Oceanic plankton 
food web, after Laws et al. 
(2000). Th e upper pathway 
initiated by large phytoplank-
ton contributes primarily to 
export from the upper ocean. 
Th e lower pathway starting 
with small phytoplankton 
results mainly in the recycling 
of nutrients. Solid arrows: 
fl ows of organisms and par-
ticulate matter (detritus and 
fecal pellets). Dashed arrows: 
fl ows of dissolved organic 
matter (DOM). Dotted ar-
rows: fl ows of regenerated 
inorganic nutrients. Note that 
all organisms leak DOM but 
not all fl ows are depicted for 
clarity. All consumers release 
inorganic nutrients but not all 
arrows are shown.
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Figure 3. Individual-based modeling of grazing by co-
pepods. Clausocalanus furcatus (a) is a fast continuous 
swimmer (Mazzocchi and Paff enhöfer, 1999). Para-
calanus aculeatus (b) is a slow continuous swimmer 
that employs chemoreception and generates a feed-
ing current (Paff enhöfer, 1998). Oithona plumifera (c) 
is an ambush predator that uses long feathered setae 
to sense for hydrodynamic signals emitted by its prey 
(Paff enhöfer and Mazzocchi, 2002; Svensen and Kiør-
boe, 2000). Representative simulated sampling ambits 
are shown for each copepod species, with the cor-
responding sampling method illustrated in the inset 
diagram. Th e start (large green star) and end (large 
blue star) points of each ambit are shown, along with 
intermediate steps (small black stars) at 50 second 
intervals. Th e individual trajectories represent 5, 30, 
and 12 minutes respectively, with corresponding travel 
distances of 4.2, 1.3, and 0.6 meters. Redrawn from 
Figure 3 in Wiggert et al. (2005), with permission from 
Oxford University Press.

How Much Complexity is Enough?
Functional groups, generalized repre-

sentations of the microbial loop, and 

effi cient representations of grazing rela-

tionships are all simplifi cations (i.e., pa-

rameterizations) of ecological complex-

ity that are needed to construct models 

that can describe regional to global vari-

ability in ecological processes. Recogniz-

ing the complexity of marine food webs 

and biogeochemical cycles, one could 

easily defi ne many more functional 

groups, food-web links, and grazing 

modes. However, each will require one 

or more new compartments in a model, 

and these must exchange material with 

many other compartments. Complexity 

rapidly becomes a problem: the number 

of parameters that must be specifi ed and 

constrained to regulate one-way fl uxes 

between X compartments increases basi-

cally as X2/2 (Denman, 2003), assuming 

as well that only a single parameter is 

required to specify each fl ux. 

Experience suggests that decisions to 

increase or decrease complexity depend 
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essentially upon the specifi c context. 

Fundamentally, we are trying to model 

both the behavior of living organisms 

and the processes that trigger changes 

in that behavior. In many ecosystem 

models, phytoplankton or zooplankton 

are treated not as individual cells or or-

ganisms but as an aggregated biomass 

concentration (e.g., mol phytoplankton 

carbon per cubic meter). A question to 

ask is whether there are alternative ap-

proaches to this so-called compartment 

or continuum method that might better 

capture changes both in ecosystem struc-

ture and in the behavior of individuals 

or groups of organisms, in response to 

changes in the ocean environment. 

So how can we proceed? Borrowing 

from the experience of other scientifi c 

communities studying complex systems 

(e.g., climate dynamics), we need to ad-

dress the problem from two distinct but 

complementary directions. First, using 

targeted observations and laboratory and 

fi eld experiments, we need to continue 

to test and improve the functional forms 

and parameter values used to simulate 

specifi c processes. Second, we need to 

develop a comprehensive approach for 

evaluating the overall system behavior 

that results from coupling together the 

individual components (including phys-

ics). Because of the strong interaction 

among model components, individual 

parameterizations cannot be studied 

solely in isolation. Changes to one pa-

rameterization may require adjustments 

or “tuning” of other model parameters, 

many of which are not specifi cally well 

constrained from the available data. The 

data assimilation and parameter opti-

mization methods discussed below are 

invaluable in this regard because they 

provide an automated, objective method 

for judging the improved skill of a new 

parameterization in the context of the 

entire coupled system. 

We should aim to add complexity 

only where there are appropriate obser-

vations by which it can be constrained or 

evaluated (see Figure 4). As ocean obser-

vation systems develop and relevant data 

become more available, direct evalua-

tion of model results during incremental 

development of models will become an 

increasingly important tool. 

Ecosystem model development is 

problem-driven, and it is thus not sur-

prising that application of these prin-

ciples has followed two streams: one for 

biogeochemical or carbon cycle models, 

and one for fi sheries-food web models. 

In PARADIGM, we are exploring and 

developing general principles of ocean 

ecosystem modeling that can be applied 

to both applications. Forging linkages 

between these two disciplines is espe-

cially timely given recent trends toward 

ecosystem-based approaches to fi sheries 

management (NMFS, 1999).

A HIER ARCHY OF COUPLED 
MODEL S SPANNING MULTIPLE 
SCALES
Given the recognition that physically and 

chemically infl uenced ecological inter-

actions in the plankton occur on small 

scales, but that they are intimately linked 

with processes on larger scales extending 

to the global scale, a central PARADIGM 

challenge is to implement new and evolv-

Figure 4. Top-down approach to developing coupled ocean biogeochemical plus general circulation mod-
els: Start with a model aimed at improving our understanding, depicted by the solid line with arrows. 
“Iterate” denotes many repetitions through this loop of developing, testing, and comparing with observa-
tions in a “hindcast” or retrospective mode. Eventually, modelers will step into the loop with the dashed 
line, where the objective is to simulate the future. Again, “iterate” indicates traveling around this loop 
many times, evaluating where the forecasts fail, identifying the weakness(es) in the model, then stepping 
back into the fi rst loop to add complexity to address the weakness(es) that have been identifi ed. Ulti-
mately, data-assimilation modeling will be used as an integral component of the forecast itself. 
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ing ecological concepts within a hierarchy 

of coupled physical-biological numerical 

models representing a range of spatial 

and temporal scales. Due to both com-

putational constraints and limitations in 

our mechanistic understanding, no single 

modeling framework can capture the full 

range of relevant scales, which extend 

from millimeters to thousands of kilome-

ters in space, and from seconds to millen-

nia in time (Dickey, 2003). Global climate 

models resolve oceanic spatial scales from 

a few hundred kilometers to global, and 

temporal scales from a few days to many 

centuries. These models thus include dis-

tinct marine biogeographical regimes as 

well as the dominant modes of climate 

variability (e.g., the El Niño–Southern 

Oscillation, the North Atlantic Oscilla-

tion). Higher-resolution eddy-resolving 

regional models are being used on do-

mains ranging from coastal- to basin-

scales to explore the impact of specifi c 

physical and biogeochemical dynamics 

including the role of mesoscale eddies, 

continental-shelf processes, and coastal-

open ocean exchange. For any given 

framework, the sub-grid-scale processes 

(smaller or more frequent than that 

which can be explicitly resolved), and in 

some cases super-grid scale processes, 

must be parameterized, with often criti-

cal but poorly understood impacts on 

overall system behavior (Doney, 1999). 

PARADIGM uses models of several scales 

to explore these consequences.

Global BEC Community Model
An example of a model in the global cli-

mate-scale class is the PARADIGM cou-

pled Biogeochemistry-Ecosystem-Circu-

lation (BEC) “community” model. The 

BEC is a “community model” in the sense 

that the model code and solutions will be 

fully accessible by scientists within and 

outside of PARADIGM, and the model 

will evolve with time—and hopefully 

improve—based upon community input. 

(Model results are available at the web 

address http://usjgofs.whoi.edu/mzweb/

smppi/doney3.html.) This model ad-

dresses a major objective of the project, 

namely to assess our ability to construct 

an ecosystem model that contains the 

minimum ecological functions and state 

variables required to credibly represent 

major biomes from oligotrophic subtrop-

ical gyres to the iron-limited Southern 

Ocean, using a single set of model func-

tions and parameters. The global BEC 

simulation embeds a generalized multi-

element, multi-functional group ecosys-

tem module (Moore et al., 2004) and a 

marine biogeochemistry code (Doney et 

al., 2001, 2004) into the global three-di-

mensional physics of the Parallel Ocean 

Program (POP). It partitions primary 

production among small pico/nano-phy-

toplankton, siliceous diatoms, and nitro-

gen-fi xing diazotrophs. Iron limitation 

is included in an explicitly modeled iron 

cycle. Calcifi cation rates are incorporated 

to mimic the observed distribution and 

production of coccolithophorids and de-

pend on temperature and the growth rate 

and biomass of the model pico/nano-

phytoplankton compartment. 

The resulting coupled simulations 

reproduce known basin-scale patterns 

of primary and export production, air-

sea CO
2
 and O

2
 fl uxes, biogenic silica 

production, calcifi cation, nitrogen fi xa-

tion, and the concentrations of chlo-

rophyll, macronutrients, and dissolved 

iron (Moore et al., 2004). The model 

solutions also capture the observed high 

nitrate, low chlorophyll (HNLC) condi-

tions in the Southern Ocean, subarctic, 

and equatorial Pacifi c. These HNLC con-

ditions are generated in the simulation 

by low atmospheric dust deposition, low 

surface iron concentrations, and iron 

limitation of phytoplankton growth, par-

ticularly for the functional group of large 

diatoms that contribute the majority of 

the particle export fl ux (Figure 5). 

Signifi cant biases, in particular exces-

sively broad HNLC conditions, arise in 

the Equatorial Pacifi c in the coarse-reso-

lution simulations (3.6° longitude and 

0.9°–2.0° latitude); the errors are likely 

due to problems with the physical up-

welling patterns and model-derived ver-

tical fi elds of nutrients along the equator. 

To more fully understand these biases, 

we performed an additional high-resolu-

tion (4/10° grid) simulation, confi gured 

the same way as one of the low-resolu-

tion experiments, and compared the 

results of both to satellite-based esti-

mates of chlorophyll (Figure 6). Clearly, 

increased spatial resolution of the model 

led to better fi delity with observations in 

the tropics. Other comparisons are being 

conducted to discern which characteris-

tics of the solutions (e.g., errors) depend 

more on the formulation of the biologi-

cal model than on the spatial resolution 

of the simulation. 

The BEC model is a baseline for as-

sessing against fi eld observations and 

remote-sensing data our current capabil-

ities in simulating coupled physical-bio-

logical dynamics across a range of differ-

ent biogeographical regimes. In addition, 

it is a laboratory within PARADIGM, also 

intended for use by the external scientifi c 

community, for applying and testing the 

lessons learned from more sophisticated 
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a) Diatom Growth Limitation in Mixed Layer (Annual Mean)

b) Diazotrophs Growth Limitation in Mixed Layer (Annual Mean)
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Figure 5. Spatial maps of the dominant factor limiting phytoplankton growth over the annual mean for (a) diatoms and (b) diazo-
trophs (nitrogen fi xers) from the PARADIGM global Biogeochemistry-Ecology-Circulation (BEC) simulations. Diazotrophs gener-
ate less than 1 percent of the total global primary production directly but indirectly support more than 10 percent of the global 
production through the creation and release of new bioavailable nitrogen into the nutrient-poor subtropical gyres. Th e diazo-
trophs are predicted to be iron limited over much of the Indo-Pacifi c.
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ecological simulations, emergent behav-

ior, data assimilation experiments, and 

targeted regional simulations. 

Basin-Scale Regional Simulations 
As indicated in the comparison of re-

sults for models with differing spatial 

resolution (Figure 6), explicit descrip-

tion of processes on the scale of ten to a 

few hundred kilometers (the mesoscale) 

can greatly improve model performance. 

PARADIGM investigators are exploring 

the role of mesoscale processes in basin-

scale biogeochemical cycling (McGil-

licuddy et al., 2003). This research was 

originally motivated by the question of 

what processes supply the nutrients re-

quired to sustain levels of new produc-

tion implied by oxygen budgets in the 

main subtropical gyres (Shulenberger 

and Reid, 1981; Jenkins and Goldman, 

1985). Regional studies suggested that 

eddy-driven upwelling could supply the 

“missing” nutrients (McGillicuddy et al., 

1998). To test this hypothesis, a nitrate-

based model of new production has been 

incorporated into eddy-resolving (0.1°) 

POP simulations (Figure 7). The biologi-

cal model includes light- and nutrient-

limited production within the euphotic 

zone, and relaxation of the nitrate fi eld to 

Figure 6. Five-year averages of surface chlorophyll (mg/m3) from the 
3º POP simulation, the 4/10º POP simulation, and the SeaWiFS 

satellite. In all cases where there are signifi cant diff erences in the 
model simulations, such as the width of the equatorial regions 
and the eastern basin upwelling zones, the higher-resolution 
model agrees more closely with the data. Note that the diff er-
ences between the model and SeaWiFS chlorophyll concen-
trations should not necessarily be taken as problems with the 
model because the remote-sensing algorithms may be too high 
in some places, for example, northern high latitudes, because 
of the confounding eff ects of colored dissolved organic matter 

(Siegel et al., 2005).
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climatology below. Model skill was quan-

titatively evaluated with observations us-

ing an objective error metric; simulated 

new production falls within the range of 

observed values at several sites through-

out the basin. Detailed diagnosis of the 

“best fi t” model indicates that eddy-

driven vertical advection of nutrients is 

suffi cient to overcome the mean wind-

driven downwelling in the subtropical 

gyre. These simulations are thus consis-

tent with the hypothesis that mesoscale 

dynamics fuel a signifi cant fraction of the 

annual new production in that area. 

This model also revealed another as-

pect that was particularly surprising: ed-

dies constitute a net sink of nutrients in 

the subpolar gyre (Figure 8). Diagnosis 

of the solutions indicates that the down-

ward nutrient fl ux results from mesoscale 

processes associated with restratifi cation 

following deep convection. In essence, 

a portion of the nutrients supplied to 

the surface layer by convective mixing is 

downwelled before it is utilized by the 

biota. The magnitude of the sink appears 

to be consistent with that estimated from 

Marshall’s (1997) kinematic model of 

eddy-driven transport applied to deep 

convection in the North Atlantic. In some 

ways this eddy-driven sink of nutrients 

is related to the mechanism described by 

Levy et al. (1998, 1999), in which meso-

scale restratifi cation increases produc-

tivity following convection by releasing 

phytoplankton from light limitation. 

What we have described here is the coun-

terpart to that process deeper in the wa-

ter column: the same mesoscale dynam-

ics that restratify the near-surface region 

also pump nutrients downward through 

the base of the euphotic zone. This fl ux 

occurs at a time when the ambient nutri-
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Figure 7. Snapshots of temperature (top) and new production (bottom) in a 0.1° resolution 
simulation of the North Atlantic. Th e temperature fi eld reveals active mesoscale processes 
throughout the basin; biological uptake of nutrients is replete with mesoscale structure in 
nearly all areas except for the subpolar region, where production is still light limited in early 
July. Eddies play an important role in determining the mean.
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ents are well in excess of limiting concen-

trations, so the infl uence on productivity 

is not felt immediately. However, the im-

pact on the nutrient budgets is signifi cant 

and does lead to decreased productivity 

on seasonal time scales. Surprisingly, the 

magnitude of this sink is suffi cient to 

counterbalance the mean wind-driven 

upwelling of nutrients over much of the 

subpolar gyre. Based on these simula-

tions, it appears that the oceanic me-

soscale has major impacts on nutrient 

supply to, and removal from, the eupho-

tic zone (McGillicuddy et al., 2003). An 

important next step is to develop mecha-

nistic parameterizations of these pro-

cesses to facilitate their representation in 

coarse-resolution climate models.

Coastal-Open Ocean Exchange
PARADIGM is concerned with assessing 

the role of coastal and continental shelf 

processes, which are known to be key 

components in the biogeochemical cy-

cling of nitrogen and carbon, but which 

have historically been poorly resolved in 

basin-wide and global models. Challeng-

es in modeling these systems arise from 

the high spatial and temporal resolution 

that is required to capture the inherent 

physical and biogeochemical variability, 

from the tight benthic-pelagic coupling 

that must be quantitatively described, 

and from the problem of accounting for 

input of material from the terrestrial 

biosphere through river and ground-

water infl ow and atmospheric deposi-

tion. Coupled models are now becoming 

available that are capable of addressing 

multi-scale variability by employing 

multiple nested spatial domains of vari-

able resolution (see Box 1 on Advanced 

An Eddy-driven Nutrient Sink:
Mesoscale Restratification After Deep Convection
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Figure 8. Schematic of the 
eddy-driven processes 
that tend to restratify an 
area of deep convection 
in the open ocean. Inward 
fl ux near the surface and 
outward fl ux at depth 
imply a downward eddy-
driven transport that 
removes nutrients from 
the euphotic zone. Note 
that the convective area 
does not represent an in-
dividual chimney but the 
larger region over which 
mesoscale and submeso-
scale convective events 
take place.
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Numerical Techniques). Examples in-

clude the PARADIGM regional models 

for both the U.S. East Coast continental 

shelf and the U.S. West Coast. 

The East Coast regional model is 

comprised of a high-resolution (~10 km 

in the horizontal direction) ocean circu-

lation model (ROMS v.2) implemented 

for the North Atlantic shelf and adjacent 

deep ocean and coupled with a nutri-

ent-phytoplankton-zooplankton-detri-

tus (NPZD) biogeochemical model. The 

shelf domain is nested within a larger-

scale circulation model for the North 

Atlantic basin that allows us a high 

spatial and temporal resolution for the 

shelf region while retaining large-scale 

variability and remotely forced deep-

ocean/shelf exchange processes. Spatial 

and temporal patterns in chlorophyll 

dynamics and primary productivity on 

the shelves are captured, for example, 

increasing chlorophyll concentrations 

and higher levels of primary productivi-

ty on the inner shelf, spring and autumn 

blooms, and a phytoplankton maximum 

near the pycnocline in summer.

The West Coast regional model con-

sists of an NPZD ecosystem model em-

bedded in HYCOM (Hybrid Coordinate 

Ocean Model) confi gured with 1/12° 

resolution, to be enhanced to 1/24° 

resolution in 2006. The regional model 

extends from 30°N to 50°N and from 

115°W to 135°W and is nested within 

the 1/12° Pacifi c Basin HYCOM. The 

model is being used to examine coastal-

open ocean exchanges as well as to help 

evaluate the ability of the coarser-reso-

lution global PARADIGM model to 

represent mesoscale processes near the 

coastal boundaries.

BOX 1: ADVANCED NUMERICAL TECHNIQUES: ADAPTIVE AND NESTED GRIDS

Coupled modeling of the ocean and its biogeochemical cycles 

is inherently a multi-scale activity, with the interplay between 

spatial approximation and numerical resolution taking central 

stage. Th e natural scales of variability for biogeochemical in-

teractions are often much fi ner than those characterizing the 

physical system itself and, furthermore, the regional distribution 

of biogeochemical interactions is heterogeneous (“hot spots” of 

activity are often highly localized spatially, for example, on the 

narrow continental shelves of the world’s oceans). Several spe-

cialized approaches are being developed within PARADIGM to 

broaden the window of spatial and temporal scales that can be 

simulated, without the computational requirements of resolv-

ing all the scales. Th e fi rst of these technologies, and by far the 

most widely practiced today, is spatial nesting or embedding of 

multiple fi xed grids. Nesting has long been used in mesoscale 

atmospheric modeling for fi ne-scale, limited-area forecasting. In 

common with their atmospheric counterparts, the majority of 

regional-, basin-, and global-scale ocean models use traditional 

approximation methods characterized by structured horizontal 

and vertical meshes. Th e nesting of fi ner-resolution, sub-regional 

grids within a larger-scale “parent,” with an appropriate exchange 

of information between the two, is therefore an attractive multi-

scale alternative to more traditional “telescoping” (i.e., increasing 

resolution towards boundaries) grid techniques, which are limit-

ed to increasing resolution towards real (coastal) and dynamical 

(equatorial) boundaries only. Th e nested grid approach has been 

employed to obtain results presented elsewhere in this article 

(see the Coastal-Open Ocean Exchange section).

Despite the overall simplicity of spatially structured grids, the 

inherent advantages of regionally enhanced resolution, and ul-

timately the adaptivity of that resolution as the simulation pro-

gresses, continue to spur the development and exploration of 

alternate spatial approximations. One such future alternative is 

the use of heterogeneous, unstructured spatial grids (see Chen et 

al., this issue). Such grids, based upon either triangular or quad-

rilateral decomposition, may be generated to place maximum 

resolution in perhaps changing regions of interest (as the simu-

lation progresses), while preserving global coverage at reduced 

grid spacing. Prototype unstructured-grid ocean models are now 

in the early stages of deployment. Finally, these fi xed-grid spatial 

representations may be extended using time adaptivity to more 

faithfully follow the time evolution of fi ne-scale features, again 

with feedback from the evolving simulation.
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Figure 9. Model-predicted mean surface chlorophyll for July 1994 in the Middle Atlantic Bight (MAB) overlain by a model-derived nitro-
gen budget for the MAB shelf region. Th e annual mean nitrogen budget for the MAB shelf region (indicated by the solid black lines) was 
derived by diagnosing the fl uxes of total nitrogen (TN, red numbers and arrows), dissolved inorganic nitrogen (DIN, yellow) and particu-
late organic nitrogen (PON, yellow) across two cross-shelf transects at Cape Cod and Cape Hatteras and across the 200 m isobath (the 40, 
100, 200, and 500 m isobaths are indicated by dotted black lines) in addition to the annual river input and the denitrifi cation (DNF) loss.

Annual mean nitrogen budgets have 

been derived for the east coast Middle 

Atlantic Bight (MAB) and the West 

Coast California Current System (CCS) 

by diagnosing model-simulated fl uxes 

of particulate and dissolved nitrogen 

(Figures 9 and 10). Nitrogen enters the 

MAB from the north (in currents across 

Nantucket Shoals and around Georges 

Bank), mostly in the form of nitrate 

(Figure 9). The nitrogen load of the 

along-shore southwest mean current 

is then modifi ed by river and estuarine 

inputs, by sediment denitrifi cation, and 

by an exchange across the shelf-break 

front that is mostly due to mesoscale 

processes. The majority of total nitrogen 

entering the MAB shelf is removed by 

sediment denitrifi cation (~90 percent) 

while the remainder is exported across 

the shelf break in the form of particulate 

organic nitrogen (PON). There is signifi -

cant exchange across the shelf break with 

a net on-welling of inorganic nitrogen 

and net export of particulate nitrogen. 

Denitrifi cation removes 90 percent of 

all the nitrogen entering the MAB, sig-
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nifi cantly more than enters from riv-

ers and estuaries, thus making the shelf 

of the MAB a net sink of bio-available 

fi xed nitrogen. Extrapolation of the sedi-

ment denitrifi cation fl ux to the whole 

North Atlantic shelf area results in a sink 

that exceeds the most recent estimate of 

North Atlantic N
2
 fi xation (by Hansell 

et al., 2004) by an order of magnitude 

(Fennel et al., accepted). The existence 

of such a signifi cant nitrogen sink on the 

continental shelf is consistent with ob-

servational-based estimates (Seitzinger 

and Giblin, 1996). 

In the CCS region, more than half of 

the (mostly) inorganic nitrogen gained 

via upwelling is found to be transported 

offshore as PON. The computed carbon 

fl ux offshore is roughly 1260 g C m-2 y-1 

of the western boundary of the box 

model (Figure 10). Similar values were 

obtained by Moisan et al. (1996), who 

estimated that the California Cur-

rent fi laments can carry between 158–

1890 g C m-2 y-1 offshore. 

So far our results emphasize the im-

portance of proper representation of 

coastal upwelling regions and continen-

tal-shelf processes in biogeochemical 

models and suggest that spatial nesting 

of regional and larger-scale models is a 

feasible approach. Different processes 

regulate nutrient supply, primary pro-

duction, and export on the relatively 

narrow upwelling shelves of the U.S. 

West Coast versus the wider passive 

margin shelves of the East Coast. The 

large-scale biogeochemical impact of 

these two coastal domains is also fun-

damentally different. The East Coast 

shelves appear to remove bio-available 

fi xed nitrogen, thus acting as a nutrient 

sink, while the West Coast region sup-

ports upwelling-fuelled production and 

export of organic matter—with qualita-

tively and quantitatively different conse-

quences for carbon export.

Figure 10. Model-predicted mean surface phytoplankton 
concentration for July in the California Current System 
overlain by a model-derived annual mean nitrogen budget 
within a near-surface box delimited from below by the σ25 
isopycnal and horizontally as indicated by the white dashed 
lines. Shown in the fi gure are transports of total nitrogen 
(TN) and particulate organic nitrogen (PON). Note that 
more than a half of the upwelled inorganic nitrogen (as 
indicated by the up-arrow symbol) is exported off shore as 
PON, manly via fi laments of the California Current.



Oceanography  Vol. 19, No. 1, Mar. 200640

DATA ASSIMILATION AND 
MODELDATA FUSION 
The development of predictive models 

must be guided by quantitative compari-

son of the predictions with observations. 

Ideally, we should validate not only the 

variables predicted by the model (e.g., 

biomass of functional groups, concen-

trations of nutrients), but also the fl uxes 

and rates that determine their variability, 

and the parameters that defi ne model 

functions, by direct comparison with 

measurements. This is not easy. Many 

model variables can be measured by gen-

erally agreed-upon protocols; the accu-

racy and precision of methods have been 

defi ned, if not always realized (Knap, et 

al., 1994). Some other processes of inter-

est (e.g., N
2
 fi xation, bactivory [feeding 

by ingesting bacteria]) can be measured, 

but seldom at the frequency and reso-

lution needed for oceanographic un-

derstanding. Important physiological 

parameters can be determined either  

in situ or in controlled laboratory experi-

ments (e.g., half saturation coeffi cients, 

phytoplankton maximum growth rates, 

grazing rates), and others can be esti-

mated from satellite-based remote sens-

ing (e.g., the upwelled visible light in a 

few wavelength bands from the upper 

optical depth can be used to estimate 

the amount of chlorophyll, and more 

recently, carbon biomass and physiologi-

cal status of phytoplankton [Behrenfeld 

et al., 2005]). But many other param-

eters (e.g., specifi c mortality coeffi cients, 

remineralization and detritus sinking 

rates, bioavailability of iron) are diffi -

cult, if not impossible, to measure and 

are traditionally adjusted subjectively 

in the model until the “best” agreement 

between the simulation and the observa-

tions is reached. Further, as biogeochem-

ical/ecosystem models become more 

complex, they require the specifi cation 

of an increasing number of parameters, 

many of which are poorly known, much 

less directly observed. Validation and 

guidance of models with data are clearly 

diffi cult tasks. All of this combines with 

the equally daunting issues of measure-

ment capability and resolution that fur-

ther complicate model evaluation.

Model-data fusion is thus confronted 

with two major issues, largely related 

to the realities of dealing with sparse 

and inaccurate data: (1) fi nding ways 

to make the best use of observations to 

minimize discrepancies between pre-

dicted and observed variables and (2) 

using observations to constrain param-

eters of the models so they better pre-

dict variability in nature. These issues 

have been addressed using techniques of 

data assimilation and inverse modeling 

(Fasham and Evans, 1995; Matear, 1995; 

Harmon and Challenor, 1996; Spitz et 

al., 2001). Although traditional data as-

similation led to improvement of model 

simulated biomass and fl uxes at specifi c 

research sites, there has been no study 

to our knowledge that has focused on 

the quantifi cation of the coupled circu-

lation/ecosystem model errors, or the 

basin-wide errors in the observations 

and forcing (e.g., wind stress, solar and 

non-solar radiation) (see Box 2: Repre-

sentation Error). In addition, one should 

recognize the changing landscape of di-

rect ocean observables, with ocean optics 

playing a more central role, and then 

begin to adjust traditional approaches 

to data assimilation to directly account 

for these valuable data sets. Ultimately, 

data assimilation will be used in real 

time to incorporate information from 

ocean-observing systems directly into 

models of ocean circulation, ecology, and 

biogeochemistry—this is our vision of 

model-data fusion. Toward this end, the 

rigorous evaluation of the performance 

of a coupled BEC model needs careful 

attention. PARADIGM researchers are 

taking the following approaches to mod-

el evaluation and data assimilation.

Parameter Optimization
The U.S. Joint Global Ocean Flux Study 

(JGOFS) long-term time series (e.g., the 

Hawaii Ocean Time-series [HOT] and 

the Bermuda Atlantic Time-series Study 

[BATS]) and process-oriented studies 

(e.g., EqPac, Arabian Sea, and Southern 

Ocean) have allowed the development 

Models ,  be they conceptual,  statistical ,  or

numerical simulations ,  are useful and necessary

tools for studying the complex interactions that

  inf luence ecosystem structure and function.
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of data assimilative ecosystem modeling 

using techniques such as the variational 

adjoint method (Lawson et al., 1995). 

This method consists of minimizing the 

misfi t between the model solution and 

the available observations by systemati-

cally modifying the values assigned to 

ecosystem parameters, such as growth 

and mortality rates. Once a specifi ed 

misfi t tolerance has been achieved, an 

objectively determined set of optimized 

ecosystem parameters is recovered. For 

example, using data from BATS, and ap-

plying this method to an eleven-compo-

nent nitrogen-based ecosystem model 

for the upper-ocean mixed layer, Spitz et 

al. (2001) found that the microbial loop 

as defi ned in Fasham et al. (1990) was 

not adequate to simulate the behavior 

of the ecosystem at BATS. Further, the 

assimilation of data from both BATS 

and HOT (Figure 11) revealed that the 

parameters determined through the 

optimization process were slightly dif-

ferent from one site to the other, which 

is consistent with the dominance of Syn-

ecococcus at BATS and Prochlorococcus at 

HOT. In addition, it was found neces-

sary to include N
2
 fi xation to simulate 

the annual nitrogen cycle in the upper 

mixed layer at HOT. Nitrogen fi xation 

was modeled as its end result—a source 

of ammonium and dissolved organic 

nitrogen in the system; the annual mean 

modeled N
2
 fi xation rate (Figure 12) 

over the climatological mixed layer 

(25.81±15.32 mmol N m-2 yr-1) com-

pared well with the estimated rates from 

the abundance of Trichodesmium tri-

chomes (21.90±10.95 mmol N m-2 yr-1). 

This assimilative modeling approach is a 

powerful tool to determine missing mod-

el pathways, improve model parameter-

ization, estimate optimal parameters of 

the model (values of the parameters that 

lead to a minimum of the data-model 

output misfi t) and increase our under-

standing of the biological system under 

study. PARADIGM is using this approach 

to refi ne the ecosystem model and to ad-

dress the issue of model complexity.

BOX 2:  REPRESENTATION ERROR

Our current capabilities in using models for simulating coupled 

physical-biological dynamics across various temporal and spatial 

scales must be assessed against the limitations of not only the 

in situ and remotely sensed observations, but also against the 

errors inherent in the model itself. An estimate of the “represen-

tation error” of model simulations includes not only that part 

of the signal that cannot be represented by the model itself, but 

also the errors due to observational sampling variability and in-

strument error. In recent years, data assimilative techniques have 

been developed to estimate the error of representation. Because 

estimating the error of representation in coupled circulation/

biogeochemistry models shares many of the same issues with the 

problem of assimilating remotely sensed sea surface temperature 

(e.g., sampling issues, atmospheric forcing, and the ambiguity of 

representation of the observed quantity in terms of the model 

state), the Reduced State Space Kalman Filter (fi rst devised 

and implemented for assimilating remotely sensed sea surface 

temperature [SST] data [Richman et al., 2005] into a circulation 

model of the North Pacifi c basin) is a good choice for estimating 

representation error. Th is technique is based on the computa-

tion of model-data misfi t using the principal components of the 

model. For example, using statistical tests on the principal com-

ponents of multidecadal circulation model simulations and the 

misfi ts between model simulations and remotely sensed data 

(SST), it was found that the model and data have a small num-

ber of independent degrees of freedom (approximately 30–40), 

which is much less than the dimension of the model or data. 

Th is approach for estimating the error of representation can be 

further applied to objectively evaluate both the performance of 

the coupled BEC model and the associated explicit error bounds 

to the model outputs. In addition, this analysis will identify re-

gions where observations will be most valuable and will identify 

those types of observations that have the greatest impact on the 

assessment of coupled BEC models and the understanding of 

coupled physical-biological processes.
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Figure 11. Modeled (black line) and observed (red line) particulate organic carbon (POC) for the climatological upper mixed layer at the Hawaii Ocean 
Time-series station (HOT). Th e upper number in the right corner of the fi gure represents the RMS error while the lower number represents the correla-
tion coeffi  cient. In (a), model parameters were derived from assimilation of observations at the Bermuda Atlantic Time-series Study (BATS) as in Spitz 
et al. (2001), which led to a poor agreement with the observations at HOT. (b) corresponds to the assimilation of the HOT observations, which led to a 
diff erent set of parameters than the fi rst assimilation and to a better fi t with the observations. In both cases, N2 fi xation was included in the model. Th is 
fi gure indicates that while the HOT and BATS stations are both in an oligotrophic environment (North Pacifi c and North Atlantic subtropical gyres), 
they are dominated by physiologically diff erent plankton species. Th is approach of parameter optimization will guide us in the development of an eco-
system model that can be applied to the global ocean.

Figure 12. Nitrogen fi xation rate in the upper 
45 m as estimated from data assimilation of the 
HOT observations (black line) and from in situ 
measurements of trichome biomass (Letelier and 
Karl, 1996; Karl et al., 1997) (red crosses). In the 
model, the nitrogen-fi xation rate was obtained by 
estimating via data assimilation (variational ad-
joint method) the external sources of ammonium 
and dissolved inorganic nitrogen (end result of 
N2 fi xation) every fi ve days. Th e external source 
as defi ned in the model is indeed representative 
of nitrogen fi xation because the time evolution 
shows the observed trend of high rates in the late 
summer early fall and a low rate in the winter. A 
similar approach could be used to estimate miss-
ing model pathways when little information is 
available and a comprehensive parameterization 
of the pathway might not be possible. 
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Figure 13. Flow diagram of carbon exchanges for the Ross Sea, Antarctica, obtained by an 
inverse technique. Th e living compartments include three size classes of phytoplankton: 
small fl agellates, phS; Phaeocystis, pha; and diatoms, phD; and three classes of grazers: 
protozoans, pro; microzooplankton, mic; and krill, kri. Other compartments are mycto-
phid fi sh, penguins, and bacteria (myc, pen, and bac respectively). Th e nonliving compart-
ments are detritus and dissolved organic carbon. Exports from the system pass through 
the external (ext) compartment. Th e radial grey arrows are respiration. Flow magnitudes 
are proportional to the width of the arrows. Th in black arrows are fl ows permitted in the 
model that had a value of zero in the solution. No fl ows exist or were allowed where no 
arrow exists (e.g., krill do not ingest Phaeocystis). Note the lack of grazing and preponder-
ance of fl ow to detritus (mortality) in this model.

More recently, the variational adjoint 

method has been used to assimilate 

JGOFS Arabian Sea Process Study data 

into three ecosystem models of varying 

complexity in order to objectively assess 

which model structure best represents 

the fundamental underlying biogeo-

chemical processes (Friedrichs et al., ac-

cepted). The systematic identifi cation 

and optimization of an uncorrelated sub-

set of model parameters led to ecosystem 

models that exhibit greater predictive 

skill. Subsequent quantitative compari-

sons of the optimized models indicated 

that at a single location additional model 

complexity did not provide an advan-

tage. However, when data are assimilated 

simultaneously from multiple sites with 

distinct environments, the more complex 

models do demonstrate greater portabil-

ity (Friedrichs et al., accepted). PARA-

DIGM is using parameter optimization 

approaches such as these to refi ne the 

ecosystem models we employ and to ad-

dress the issue of model complexity.

Inverse Analysis 
Inverse modeling of ecosystems is an 

effective and objective method to attain 

new understanding of ocean ecosystem 

structure and trophic interactions by 

melding observations with models. This 

approach consists of a family of ana-

lytical techniques that are used to infer 

properties of a system when insuffi cient 

data are available for attaining a full 

characterization (Parker, 1977; Wunsch, 

1978). The practical application of this 

technique consists of defi ning mass-bal-

ance equations that describe each system 

component, and the equations that con-

strain the individual exchanges between 

each component. The resulting set of 

equations is then solved.

For a marine application, system 

components may include, for example, 

size classes of phytoplankton and graz-

ers, bacteria, and nutrient and detrital 

pools, while the constraint equations 

defi ne such quantities as the assimilation 

and production effi ciencies of different 

groups of organisms. Vézina and Platt 

(1988) were the fi rst to apply an inverse 

model to solve a marine food web of 

the Celtic Sea. For the Ross Sea system 

depicted in Figure 13, a total of 12 bal-

ance equations (one per component) 
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and 30 constraint equations were solved 

to defi ne the fl ow structure. Solutions 

are required to respect the observations 

and other constraints within some speci-

fi ed tolerance. In these approaches and 

subsequent studies, information such as 

trophic pathways and physiological pa-

rameters were used along with observed 

fl ows to constrain a complete system of 

material exchanges among components 

of a marine or lake ecosystem (e.g., Fig-

ure 13; Ducklow et al., 1989; Jackson and 

Eldridge, 1992; Niquil et al., 1998; Rich-

ardson et al., 2004).

The complete ecosystem descriptions 

provided by inverse solutions offer a sig-

nifi cant enhancement over observation-

based descriptions for a variety of pur-

poses. Data on rates of processes provide 

powerful validation tools for simulation 

models, preferable to the much more 

commonly used time series of standing 

stock observations (Fasham, 1984). Once 

a complete solution is in hand, a battery 

of network-based analyses (Leontief, 

1966; Ulanowicz, 1986; Ducklow et al., 

1989) can be applied to reveal higher-

level structure and properties of the sys-

tem, and different systems can be com-

pared (Moloney and Field, 1991; Legen-

dre and Rassoulzedegan, 1996; Daniels 

et al., accepted). For example, Daniels et 

al. (accepted) showed that spring phyto-

plankton blooms in the North Atlantic 

and Antarctic that differed greatly in 

size composition of phytoplankton and 

grazers were both dominated by micro-

bial food-web processes and detritus 

utilization. These comparisons were 

not evident from observations alone. In 

PARADIGM we are synthesizing abun-

dant measurements from JGOFS, Global 

Ocean Ecosystem Dynamics (GLOBEC), 

Long-Term Ecological Research (LTER), 

and other observational programs using 

inverse analysis to provide a uniform and 

consistent family of fl ow networks. The 

information these analyses provide will 

be invaluable for subsequent modeling-

oriented ecosystem studies. 

A Light/Energy Data Assimilation 
Framework: Bio-Optics 
As we have described above, regional and 

global ecological and biogeochemical 

models have increased in their relevance 

to processes in the real ocean by incor-

porating greatly enhanced spatial resolu-

tion and more sophisticated representa-

tions of functional groups. Still, most 

simulations of pelagic ecosystems retain 

basic structures that trace back to the 

earliest models (Riley, 1946; Ryther and 

Yentsch, 1957) that, in turn, were strong-

ly constrained by the observational ca-

pabilities of the day. In particular, phy-

toplankton is represented as chlorophyll 

(Chl), photosynthesis is calculated from 

relationships between photosynthe-

sis per unit chlorophyll and irradiance 

(PB vs. E), the chemical composition of 

phytoplankton (C:N:P:Fe:Chl) is either 

assumed or modeled as a function of 

nutrition and light, and results are com-

pared to fi elds of Chl, often from remote 

sensing of ocean color. 

As we contemplate oceanography’s 

near future in which data from ocean-

observing systems will be assimilated di-

rectly into highly resolved models of pe-

lagic ecosystems, it is time to reconsider 

the conventional approach. Phytoplank-

ton biomass is no longer assessed global-

ly by direct measurements of chlorophyll 

pigment—it is estimated from measure-

ments of ocean color, which are funda-

mentally infl uenced by the absorption of 

light by phytoplankton. Likewise, photo-

synthesis is directly related to this same 

absorption of light: we can calculate pho-

tosynthesis as the product of irradiance 

(E), absorption by phytoplankton (a
p
), 

and its quantum effi ciency (
p
). So, if one 

is to compare models to measurements 

(and assimilate measurements into mod-

els), why not model the absorption of 

light by phytoplankton as a state variable, 

represent photosynthesis using functions 

of 
p
 vs. E (cf. Bidigare et al., 1987; Lee et 

al., 1996) and compare results directly to 

estimates of phytoplankton absorption 

from ocean color or other optical-ob-

serving technologies? Conversion of phy-

toplankton absorption to other measures 

of biomass, such as carbon or nitrogen, 

is no more complicated than calculating 

phytoplankton C or N from chlorophyll, 

and the potential exists to infer more 

about the taxonomic and physiologi-

cal status of phytoplankton from optical 

measurements (Sosik, in press). The stage 

is set for development of a new genera-

tion of bio-optical models. 

Already, models have been devel-

oped that predict the optical properties 

of phytoplankton as functions of taxo-

nomic and physiological status (Bissett 

et al., 2001), and optical measurements 

from space are being used to specify the 

chemical composition of phytoplankton, 

thereby constraining physiological rates 

(Behrenfeld et al., 2005). In Figure 14 we 

outline how the philosophy of model-

ing what is measured might be employed 

in an interdisciplinary modeling system 

guided by advanced ocean observations, 

not only observations of phytoplankton 

(absorption) but also of zooplankton 

(acoustical backscatter). 
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Using BEC Model Results for 
Designing Oceanographic 
Observatories
The vision of an integrated, interdisci-

plinary global ocean observation and 

prediction system depends on coordi-

nated design of models and ocean ob-

servatories, because the guidance that 

observations provide to models depends 

on detection of variability at appropriate 

scales and locations. In turn, the value 

of the models for forecasts depends 

strongly on how well they correspond 

to measurements. 

One current application of models is 

to help design effective ocean-observ-

ing systems for research and operations. 

In particular, choosing the locations for 

sustained ocean observations is a criti-

cal step towards developing an effective 

global network. In practice, the locations 

for sustained ocean observations are 

based on many criteria, some of which 

are not science-based. Once observ-

ing sites are established, however, ocean 

scientists still need to determine, for ex-

ample, which sites need more extensive 

instrumentation, more frequent observa-

tions, or targeted process studies. PARA-

DIGM model results are being compared 

with in situ and remote-sensing mea-

surements to help provide a scientifi c 

basis for making such choices. First re-

sults show that the models and data are 

yielding similar answers for objectively 

grouped stations showing common 

mean seasonal hydrographic and bio-

geochemical characteristics. The ocean 

is still very under-sampled, however, and 

comprehensive ocean measurements are 

sparse. Thus, one of the important out-

comes of these particular analyses is to 

determine if the model results are use-

ful for choosing observing locations in 

the global ocean that capture not only 

mean patterns but, more importantly, 

the signifi cant sources of ocean variabil-

ity at seasonal to interannual time scales. 

Contributing to the effective design of 

a global ocean observing system for re-

search and operations could be an im-

portant heritage of PARADIGM models.

FUTURE DIRECTIONS 
PARADIGM was designed as a very in-

terdisciplinary program with the express 

intention of developing new approaches 

through cross-fertilization. And, in-

deed, there are a number of exciting 

new ecosystem modeling directions that 

PARADIGM research is highlighting, 

built upon our foundation of contem-

porary model development, model-data 

OBSERVATIONS
SATELLITES: Ocean color (including flourescence)

MOORINGS & ALPS: Diffuse attenuation, absorption/
scatter, backscatter 

(nutrients, O2, CO2, plus acoustics)

RETRIEVED
OPTICAL

VARIABLES
Absorption, fluorescence 

yield, scattering
coefficients

OPTICAL PROXIES
Biomass, community structure, 

absorbed radiation, quantum yield,
physiological parameters

Assimilation of
derived variables

MODEL OF
BIOLOGICAL DYNAMICS

Optical state variables

Figure 14. Schematic view of an advanced data as-
similation model of marine ecosystems. Data would 
be provided by interdisciplinary ocean observation 
systems, including satellites, moorings, and Autono-
mous and Lagrangian Platform and Sensor Systems 
(ALPS) (e.g., gliders and autonomous ocean profi lers). 
Optical observations will be incorporated as directly 
as possible into models that use optical properties 

as state variables (e.g., photosyn-
thetic absorption as a proximate 
measure of phytoplankton). Opti-
cal proxies of biological properties 
will be derived from the observed 
variables to serve as additional 
variables (phytoplankton carbon 

from scattering coeffi  cients, cf., Behrenfeld et al., 
2005) or predictors of model parameters—such as 
patterns of fl uorescence yield predicting the quan-
tum yield of photosynthesis (cf., Letelier et al., 1997). 
With the addition of chemical and acoustic sensors 
to the observing system, models would also predict 
and assimilate chemical variables and higher trophic 
levels (e.g., zooplankton from acoustics). No such 
model exists, but it is a logical outcome of the devel-
opment of interdisciplinary ocean observing systems.
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fusion techniques, and our hierarchal 

approach to modeling. The broad inter-

disciplinary nature of the new directions 

described below emphasizes the impor-

tance of programmatic encouragement 

of cross-cutting activities through the 

formation of interdisciplinary research 

groups such as PARADIGM. 

A Natural Selection Approach to 
Modeling Ocean Ecosystems
New observational approaches, includ-

ing molecular and genetic probes, show 

even greater levels of diversity in the ma-

rine ecosystem, beyond the functional 

groups of species described above. Sev-

eral genetically distinct functional types 

(ecotypes) have been discovered within 

closely related members of the same ge-

nus (i.e., Synechococcus and Prochlorococ-

cus), and these have been found to popu-

late distinct physical domains (Ferris and 

Palenik, 1998; Johnson et al., in press). 

Efforts to relate the genetic differences 

among strains to environmental factors 

are accelerating (Moore et al., 2002b). 

We therefore seek to adopt modeling 

strategies that can interface with, and 

help interpret, the new genetic view of 

ocean ecology. In one PARADIGM study, 

we are exploring an approach to ma-

rine ecosystem modeling that explicitly 

brings to bear natural selection (Follows 

et al., in preparation). Instead of impos-

ing the community structure by specify-

ing a small number of functional groups 

with static or even adaptive prescribed 

behavior (e.g., switching behavior that 

simulates species succession in response 

to specifi c types of growth limitation), 

we construct a model with many tens or 

hundreds of functional groups of phyto-

plankton, each of which has character-

istics (initially, growth responses to light 

and ambient phosphate concentration) 

that are determined, in part by chance, 

from within realistic bounds. Then, we 

simulate natural selection by letting the 

interaction of physical forcing and food-

web processes determine which func-

tional forms of phytoplankton survive 

and structure the ecosystem. Embedded 

initially in a one-dimensional, oceanic 

physical framework, plausible and robust 

community structures emerge in en-

semble integrations of this model (Fig-

ure 15) (Follows et al., in preparation), 

molded by the physical environment and 

nutrient availability (Tilman, 1977; Tozzi 

et al., 2004; Johnson et al., submitted). 

Although, on the surface, this approach 

introduces complexity to the model, the 

explicit application of the principle of 

natural selection provides a simplify-

ing principle. Potentially, it will do two 

things: (1) identify a subset of possible 

functional groups that is adequate to 

represent the major features of ecosys-

tem function and (2) indicate the pos-

sible existence of functional groups that 

we have not previously identifi ed and 

that are important for structuring the 

ecosystem. Ongoing explorations of this 

system in a more realistic, three-dimen-

sional, multi-nutrient setting suggest this 

approach may be fruitful. 

Genomics: Where Ocean Ecosystem 
Modeling May Need to Go
Genomics is the study of whole genomes 

of organisms. The ability to determine a 

portion, or the entire genome sequence, 

of natural microbial assemblages and 

pure cultures of selected isolates (e.g., 

Venter et al., 2004; Giovannoni et al., 

2005a) has revolutionized ocean ecology 

(Doney et al., 2004; DeLong and Karl, 

2005). The importance of genomic dis-

coveries for ocean modeling is that these 

revolutionary approaches are telling us 

about new aspects of previously mod-

eled processes or organisms (e.g., the 

ecotypes discussed previously) and also 

about previously unknown organisms 

and processes that need to be simulated. 

Two examples illustrate the challenges 

that genomics research is presenting to 

oceanographers and ecosystem modelers. 

Genome-based probes were used to 

enumerate planktonic archaea in the 

mesopelagic water column in the North 

Central Pacifi c Gyre and off the West 

Antarctic Peninsula (Karner et al., 2001; 

Church et al., 2003). Archaea are struc-

turally similar to bacteria (they are both 

prokaryotes) but are genetically and, 

perhaps, physiologically distinct. With 

Bacteria and Eukarya, the Archaea form 

the three fundamental domains of life. 

They may be numerically dominant in a 

large part of all ocean waters, but we are 

still not certain of what they do: current 

evidence suggests they are chemoauto-

trophs, possibly nitrifi ers (Francis et al., 

2005; Könneke et al., 2005). Models of 

nitrogen cycling and material fl uxes in 

mesopelagic systems need to address the 

existence of these organisms; they must 

be guided by the latest information on 

biogeochemical capabilities and distribu-

tions of archaea, obtained through ge-

nomic analyses. This calls for enhanced 

integration of genomics research with 

oceanography and the modeling of Earth 

systems ecology—an alliance of ap-

proaches that is sure to pay off. 

Another example concerns N
2
 fi xa-

tion, the ultimate process supplying 

fi xed nitrogen to the ocean over long 
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time scales. The principal N
2
-fi xing or-

ganism in the central gyres has been 

assumed to be the large fi lamentous 

cyanobacterium Trichodesmium (Ca-

pone et al., 1997; Karl et al., 1997). This 

organism exists as large bundles of fi la-

ments a few millimeters long, is favored 

in warm calm seas, lives mostly at the 

surface where irradiance is greatest, and 

is resistant to grazing. Trichodesmium is 

now represented in several models (e.g., 

Figures 10 and 11). For this sea-surface-

dwelling organism, the main challenges 

for modelers are high light tolerance 

and mechanisms for acquiring iron and 

phosphorus in nutrient-depleted waters 

(Fennel et al., 2002; Hood et al., 2004). 

Recently, genomic probing for the gene 

that expresses the N
2
-fi xing nitrogenase 

enzyme has revealed that there are also 

abundant, small unicellular N
2
 fi xers 

(Zehr et al., 2001), and that these are 

suffi ciently abundant to be a signifi cant 

source of fi xed nitrogen (Montoya et al.,  

2004). Indeed, Montoya et al. (2004) 

concluded that they may fi x as much 

or more nitrogen than Trichodesmium 

in the North Pacifi c gyre. Because these 

unicellular N
2
-fi xers are small, they are 

probably vulnerable to microzooplank-

ton grazers. It follows from these obser-

vations that the environmental infl u-

ences on net growth rates, and thus the 

distributions and population dynamics, 

of the unicellular N
2
-fi xers may be quite 

distinct from those for Trichodesmium. 

Future models of oceanic N dynamics 

must address the diversity of N
2
-fi xing 

organisms and their dynamics in or-

der to represent the N
2
-fi xation process 

correctly (Arrigo, 2005). Furthermore, 

inclusion of both classes of N
2
-fi xers is 

probably also critical if we are to predict 

the response of the ocean nitrogen fi xa-

tion system to regime shifts and climate 

change. The need for examining this 

detail once again puts pressure on the 

complexity-simplicity battle in ocean 

ecosystem modeling.

A New Model Currency—Energy
Another consequence of technological 

advances, including the genomics revo-

lution, has been a serious challenge to 

our view of the role of microorganisms 

in controlling the fl uxes of carbon and 
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Figure 15. (a) Modeled annual mean phytoplankton phosphorus concentration (µmol P kg-1) 
and (b) annual mean phosphate concentration (µmol kg-1) as a function of depth from an 
ensemble of twenty integrations with a one-dimensional ecosystem model (Follows et al., in 
preparation). Th e idealized model represents the annual cycle by imposing sinusoidal cycles 
of sea-surface temperature, which drive wintertime convection and insolation. Winter mixed 
layers reach 120-m depths, shoaling to 25 m in the summer. Th irty-six functional groups of 
phytoplankton are initialized in each integration, diff ering in light sensitivity and phosphate 
half saturation coeffi  cient, assigned randomly within realistic ranges. Th e fi gure shows the 
annual mean phytoplankton and phosphate profi les from the tenth year of integration of 
each of the twenty simulations. Th e simple environment with only two resources, light and 
phosphate, supports limited diversity, selecting for a surface-oriented, “high-light, low-nutri-
ent” functional group (black lines) and a “low-light, high-nutrient” functional group (green 
lines) that forms a deep chlorophyll maximum in each integration. Of a possible 720 func-
tional groups (the total from all ensemble members) only about 40 are viable (left panel) 
after a decade of competition. Th e nature of the viable functional groups is qualitatively con-
sistent and robust between ensemble members, a consequence of the control of the resource 
environment (Tilman, 1977). Th e annual mean phosphate profi les of the ensemble members 
are dependent on ecosystem structure but closely consistent (right panel).
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energy. New taxonomic groups, includ-

ing the two most abundant photoau-

totrophs, Synechococcus and Prochloro-

coccus, were not known and, therefore, 

were not considered in early models of 

marine ecosystems. We now have the full 

genome sequences of these and several 

other key microorganisms available to 

us, which provide the beginning of what 

will become the blueprint for life in the 

sea. Furthermore, the broad genotypic 

and phenotypic diversity that is emerg-

ing within selected groups of otherwise 

“identical” marine microorganisms (like 

Prochlorococcus ecotypes) may require a 

formal redefi nition of the species con-

cept and the development of new ecolog-

ical theory—in fact, it may not be pre-

mature to state that for marine microbes, 

the species concept is “road kill” on the 

genomics highway. 

Models based on carbon or nitrogen 

may soon need to shift their currency to 

energy, now that we have evidence that 

many chemoheterotrophic marine bac-

teria may also have the ability to harvest 

light energy without coupled fi xation of 

carbon dioxide. This process of prote-

orhodopsin-based phototrophy, if found 

to be quantitatively important, will chal-

lenge our well-established view of the 

relationship between carbon and energy 

fl ux, and it may require a wholesale revi-

sion of our conceptual models of marine 

ecosystems (Karl, 2002). For now, how-

ever, the process is shrouded in mystery, 

because initial experimentation has 

failed to show any infl uence of light on 

growth of the microbe expressing prote-

orhodopsin in a laboratory-reared strain 

originally isolated from the Oregon coast 

(Giovannoni et al., 2005b). Integration 

of bio-optical modeling with physiologi-

cal information on proteorhodopsin may 

provide answers. Sorting out the species 

concept and the quantitative roles of al-

ternate trophic strategies are but a few of 

the future grand challenges in microbial 

oceanography (DeLong and Karl, 2005).

Marine Ecosystems and Near-
Term Climate Change—Elemental 
Decoupling
Another important application of our 

evolving ecological models will be to 

depict the role of the marine ecosystem 

in regulating the exchange of CO
2
 with 

the atmosphere on near-term climate-

change times scales. On millennial time 

scales, this is usually considered to be 

controlled by the phosphorus cycle (ex-

cept see Falkowski, 1997). If, however, 

we are interested in how the marine 

ecosystem participates in climate change 

on scales of centuries or less, then other 

elements exert more control, primarily 

nitrogen, iron, and silica. Most exist-

ing biogeochemical models including 

marine ecosystems use nitrogen as the 

base “currency.” A valuable principle 

that has served biological oceanography 

well states that the cycles of N, P, and C 

are connected through fi xed elemental 

stochiometry (so called “Redfi eld ratios” 

after, for example, Redfi eld et al., 1963), 

even though it is very well known among 

biologists that at any one place or time, 

Redfi eld stoichiometry is likely to be 

violated due to imbalances in the sup-

plies of light, N, and P to phytoplankton 

(Klausmeier et al., 2004). On the global 

scale, the N cycle decouples from the C 

and P cycles through the processes of 

nitrifi cation, denitrifi cation, and dust 

deposition. Iron, which limits the uptake 

of carbon and hence the photosynthetic 

fi xation of carbon into organic forms, 

is required in trace amounts. Yet iron 

seems to regulate carbon fi xation in 

about one quarter of the world ocean, 

and it infl uences N:Si stoichiometry in 

phytoplankton. Our models must explic-

itly include these “control points,” where 

the fl uxes of the different elements de-

couple. Furthermore, the representation 

of these controls in our models must be 

suffi ciently detailed and fl exible so as to 

allow changes in their functioning (i.e., 

“adaptive” control points) in response to 

a changing climate. 

Prospects for Operational 
Forecast Systems
We are keenly aware that, although the 

tools of PARADIGM have great value for 

. . .the ultimate objective of any comprehensive 

marine ecosystem modeling program must 

be the development and implementation of 

reliable forecast systems, guided by and validated

  with systematic observations of the sea .
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increasing our understanding of marine 

ecosystems, our models must ultimately 

be held to the strictest of all tests: as the 

major component of a reliable system 

for quantitative predictions of marine 

ecosystems. For that, their value will 

be determined solely by the quality of 

forecasts. What we forecast and on what 

time and space scales depends, of course, 

upon the problems we are given; a good 

example would be the deployment of a 

seasonal forecast system (i.e., an integrat-

ed observational network and forecast 

model) in support of an ecosystem-based 

management program, whether regional, 

basin-scale, or global. The modeling ele-

ments for accomplishing that are fi rmly 

in place in PARADIGM, revealing a 

pathway to developing reliable interdis-

ciplinary regional to global models that 

will assimilate data from ocean-observ-

ing systems in an operational forecast 

mode. The hurdles for achieving this in 

the not-too-distant future are admittedly 

still great and are directly linked to our 

fundamental scientifi c knowledge. Some 

of those challenges are outlined in this 

article. The dual roles of models as tools 

for both understanding and prediction 

are inseparable and PARADIGM has ap-

proached its objectives with that realiza-

tion fi rmly in mind.

CONCLUDING REMARKS 
Contemporary modeling approaches are 

pointing towards ever more complexity 

in ecosystem models, with specifi c ap-

plications ultimately determining just 

how much complexity is enough. But 

the complexity of nature does not neces-

sarily demand simply adding more com-

partments and/or processes; there are 

important new fundamental develop-

ments (e.g., incorporating evolutionary 

rules, genome-based model structuring, 

and models that represent emergent be-

havior) that we have highlighted above 

that hold signifi cant promise. Extend-

ing our contemporary models in these 

directions will be increasingly guided by 

new approaches to developing model-

data fusion systems (e.g., the direct 

merging of optical data), with all of this 

pointing towards the ultimate goal of 

implementing reliable marine ecologi-

cal forecast systems that, for certain time 

scales, will be run in operational mode. 

These efforts are signifi cant and will 

clearly require a community effort, with 

PARADIGM and other groups needing 

to designate their data and model codes 

as “open-source” resources. 

Modeling challenges drive PARA-

DIGM. However, we conclude by high-

lighting a major challenge that has been 

with our community from the beginning 

of our science—we are and likely always 

will be “data challenged.” With vital so-

cietal issues at play, such as the role of 

the marine ecosystem in regulating the 

exchange of CO
2
 with the atmosphere on 

multiple temporal and spatial scales, we 

need now, more than ever, to bring sig-

nifi cant resources to bear for designing 

an interdisciplinary observational net-

work (e.g., Doney and Hood, 2002) that 

is up to the task of providing dependable 

data directly to the models for this and 

other “grand challenge” type issues. As 

well, models have an important role to 

play a priori in helping to defi ne the es-

sential locations and scales of ecosystem 

variability, and thus are a central tool 

for designing the observational network. 

The ever-closer synergy between obser-

vations and models is the future. 
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