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Inference of the sea surface chlorophyll field from incomplete satellite coverage is posed as a formal inverse
problem using a Monte Carlo approach to Bayesian estimation. We introduce a new method, the strong
constraint iterative ensemble smoother, for solving the general coupled physical–biological parameter
estimation problem where model nonlinearities may be relevant. The forward model is posed in four ways:
(1) advection–diffusion, (2) linear advection–diffusion-reaction, (3) nonlinear advection–diffusion-reaction,
and (4) a nonlinear nutrient-phytoplankton model. Hindcast skill is demonstrated through analysis of the fit
to independent data in a series of experiments utilizing MODIS chlorophyll imagery from the Middle Atlantic
Bight during summer of 2006. The data assimilative model demonstrates skill over a range of presumed
observational error. Both the purely physical model (advection–diffusion only) and the coupled physical–
biological models exhibit skill fitting unassimilated data. The skill of the coupled physical–biological models is
greater than the skill of the advection–diffusion model, owing at least in part to greater degrees of freedom in
those inversions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Common methods for compositing and interpolating satellite
imagery typically rely on regression and smoothing of individual
pixels, inherently ignoring the effect of advection. With improve-
ments in shelf-scale observing systems and expanding areas of
coverage by operational models, we are faced with the opportunity
to improve sea surface chlorophyll (SSC) estimates. An analogous
situation exists with respect to biological models. Although the
dynamics of plankton ecosystems remain an active topic of research,
direct contact between models and observations via biological data
assimilation (Fennel et al., 2001; Hofmann and Friedrichs, 2002) is
leading to demonstrable improvements in skill (Lynch et al., 2009).
Herein we pose the SSC compositing problem as dynamic interpola-
tion, formally inverting a model to fill in the gaps in the data.

In the data assimilation problems characteristic of today's ocean
(spatially explicit models with state variables solved on millions of
grid points (or more), with only hundreds of sparsely distributed
data points) some type of Bayesian reasoning must be brought to
bear to obtain a well-posed inverse problem. The prior information
may enter as gradient or other penalty in a cost function or be
explicitly stated as prior distributions on the parameters being

estimated. A potential drawback to any Bayesian approach to data
assimilation is that the analyst will bias the results with the
specification of the prior error distributions. We seek to demonstrate
robustness of an estimation procedure with respect to specification
of the prior error distributions for several different models, using an
example set of eleven sequential satellite images from the Middle
Atlantic Bight during summer 2006.

Satellite sensed ocean color data has been assimilated by various
methods (recently reviewed in McClain, 2009). Ishizaka (1990) used
a simple insertion-based methodology with Coastal Zone Color
Scanner (CZCS) data. Natvik and Evensen (2003a,b) assimilated Sea-
viewing wide Field-of-view Sensor (SeaWiFS) data into a three-
dimensional plankton ecosystem model using a Ensemble Kalman
Filter (EnKF). More recently Gregg (2008) assimilated SeaWiFS data
into a global biogeochemical model using the Conditional Relaxation
Analysis Method (CRAM) in a sequential manner. In all these
applications the inverse problem is formulated in a weak constraint
manner. Ocean color assimilation studies using strong constraint
formalism generally make use of the adjoint method (e.g. Friedrichs
(2002)). Variational methods been applied in spatially explicit
models in a relatively small number of studies (e.g. Garcia-Gorriz
et al. (2003); Zhao and Lu (2008); Fan and Lv (2009); Tjiputra et al.
(2007)).

Monte Carlo ensemble methods offer an alternative approach,
which can be formulated in terms of either weak or strong constraint
(Evensen, 2006; Sakov et al., 2010; Smith et al., 2009; van Leeuwen
and Evensen, 1996). The ensemble smoother (EnS) holds some
practical advantage over variational methods described above.
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Specifically, the implementation is simpler because it does not
require computation of the tangent linear model, which can be
complicated for biological models. This allows for easy porting
between applications to different biological models. The ensemble
smoother derivation relies on an assumption that the log likelihood
is approximately quadratic (or, equivalently, that the model
responds approximately linearly to the parameters at the observa-
tion points). This assumption can fail to hold depending on
nonlinearities in the model, the oceanographic phenomenology
present during the time period the data were collected, and the
assumed observational error.

Herein we introduce a variation on the strong constraint Ensemble
Smoother, the Iterative Ensemble Smoother (ItEnS), for estimation
problems in which the log likelihood is potentially strongly non-
quadratic. The method utilizes a Monte Carlo approximation of the
sensitivity matrix to provide the gradients for an iterative descent.
Like the EnS, the iterative ensemble smoother does not require a
tangent linear model. We apply this methodology to assimilating
satellite-based ocean color data into four different dynamical models
of varying complexity. In each case, we use available satellite imagery
to invert for initial conditions (which are seldom completely
constrained by the data due to cloudiness). For models that include
a biological component, parameter estimation is also required. We
evaluate the performance of the ItEnS algorithm for this combined
state estimation/parameter estimation problem, and quantify its
dependencies on the underlying models and prescribed error
statistics.

2. Methods

2.1. Forward models

We investigate a suite of four model formulations. The first model
we consider is a simple advection–diffusion (AD) model with no
active biological interactions:

dc
dt

+ v⋅∇c−∇D⋅∇c = 0 ð1Þ

where c is the chlorophyll concentration, v is the velocity field and D
the diffusion field. The circulation estimate (v) is prescribed from a
hindcast of the region described in He et al. (submitted for
publication) (Fig. 1). The velocity is a monthly average and the
mesh resolution is approximately 8.9 km. For simplicity, a uniform
horizontal diffusion coefficient (D) of 25 m2s−1 is used throughout.
Each of the models represents the vertical average over the top 20 m
(approximately twice the optical depth for the region1) in order to
reflect that portion of the water column effectively sampled by the
ocean color satellite.

The second model is a simple advection–diffusion-source (ADS)
equation,

∂c
∂t + v⋅∇c−∇D⋅∇c = S x; yð Þ ð2Þ

where S is a spatially variable source-sink term. An imposition of
positivity on c causes the model to be nonlinear.

Our third model is an advection–diffusion-reaction (ADR) model
with first order density dependence,

∂c
∂t + v⋅∇c−∇D⋅∇c = R x; yð Þc ð3Þ

where R is a spatially variable growth/loss rate.

The last model we consider is a nutrient–phytoplankton (NP)
model with Lotka–Voltera interaction and constant mortality rate for
the phytoplankton,

∂n
∂t + v⋅∇n−∇⋅D∇n = υc−γnc ð4Þ
∂c
∂t + v⋅∇c−∇⋅D∇c = γnc−υc ð5Þ

where n is the nutrient concentration and c is the phytoplankton
concentration. Parameters γ and υ represent the nutrient uptake rate
and phytoplankton mortality rate, respectively. For the NP model the
chlorophyll observations are assumed to be linear measurements of
the phytoplankton field. This is potentially problematic in coastal
regions where satellite-based chlorophyll estimates can be contam-
inated by other optically active constituents (McClain, 2009), but for
the purposes of this study we will assume the chlorophyll data are
robust. An additional source of error stems from variations in
chlorophyll per unit biomass that can occur in phytoplankton due to
photoadaptation (e.g. Cullen, 1982). However, that refinement is also
left for future work.

All of these models offer simple description of the satellite-based
chlorophyll observations, differing in explicit biological assumptions.
For the ADS model, the free parameters are initial conditions for c(x,y,
t=0) and the source/sink term S(x,y). Likewise for the ADR model,
the unknowns are initial conditions for c(x,y,t=0) and the growth/
mortality rate R(x,y). For the NP model, the free parameters are the
initial conditions for the two state variables n(x,y,t=0) and c(x,y,
t=0), as well as values of the parameters γ and υ. The abiotic AD
model has only the initial condition of c(x,y,t=0) for free parameters.
The forward models are solved with an implicit time stepping finite
element method as described in Smith et al. (2009), and run through
the period of interest (July 24–September 9, 2006; see Section 2.7).

2.2. Bayesian parameter estimation

We formulate the data assimilation problem using Bayesian
formalism to estimate the parameters of a dynamical model given a
set of observations. Let θ denote the unknown model parameters: for
the AD model θ={c(x,y, t=0)}, for the ADS model θ={c(x,y, t=0),
S(x,y)}, for the ADR model θ={c(x,y, t=0),R(x,y)}, and for the NP
model θ={n(x,y, t=0),p(x,y, t=0),γ,υ}. Let f(θ) denote the prior
distribution for the parameters, and ψθ the dynamical model solution
given parameter choice θ. The data, d, are an imperfect observation of
the true state of the system, d=Hψtrue+ξwhere ξ is the observational
error and H is the measurement operator for the observations. Bayes
theorem allows us to compute the posterior likelihood over θ,

f θ jdð Þ = f d jθð Þf θð Þ
∫f d jθð Þf θð Þdθ

∝f d jθð Þf θð Þ = f d jψθð Þf θð Þ ð6Þ

We seek the maximum likelihood estimate of θ over this posterior
distribution. Assuming f(θ) is Gaussian, let μand P denote the prior
mean and covariance of θ. If the observations are unbiased and
perturbed by an additive Gaussian error distribution with covariance
W and zero mean, then

f θ jdð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞNm + Nd jWjjPj

q exp −1
2

Hψθ−dð ÞTW−1 Hψθ−dð Þ
� �

� exp −1
2

θ−μð ÞTP−1 θ−μð Þ
� �

ð7Þ

1 http://oceancolor.gsfc.nasa.gov/cgi/l3.
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whereNm is the dimension of themodel (4711 for the ADmodel, 9422
for ADS and ADR, and 9424 for NP) and Nd is the dimension of the data
(ranges from 806 to 1125 in the satellite images used herein). The
analogy to strong constraint data assimilation methods is illuminated
by defining a cost function proportional to the log of the conditional
likelihood function,

J θð Þ∝−2 log f θ jdð Þð Þ = Hψθ−dð ÞTW−1 Hψθ−dð Þ + θ−μð ÞTP−1 θ−μð Þ
ð8Þ

By monotonicity of the log, the value of θ minimizing the cost is
also the maximum likelihood estimate.

Bayesian methodology requires the specification of prior distribu-
tions for unknown parameters,f(θ), and observations, f(d|ψθ). In
general, the prior distributions over the parameters and observations
are specified by analytic functionswith a handful of scalar parameters.
Herein we refer to these parameters as “hyper-parameters,” and their
values formodels describing geophysical systems are often not known
with great confidence.

2.3. Observational error covariance

Abovewe asserted that the observations contain additive Gaussian
errors with mean zero and covariance W. Generally W is assumed to
be a constant diagonal matrix (measurement errors are not correlated
and have the same expected error). For the satellite data used herein,
we employ a block diagonal covariance

Wij = σ2
obs exp −

jxi−xj j
lobs

� �
δ ti−tj
� �

ð9Þ

defining the covariance between observation i and j, where tiand tjare
the times of the observations and xi and xj are the positions of the
observations. The delta function, δ(t), is one at the origin and zero
elsewhere. This form is based on the assumption that while the errors
in separate images are uncorrelated, data within an image is

contaminated with a spatially correlated signal. The decorrelation
length scale of the observations lobs was estimated directly from the
satellite-based chlorophyll data (Table 2), and a range of values for the
observational error σobs is investigated (see Section 2.7).

2.4. Prior error distributions

We assume a Gaussian error distribution for the initial conditions
in all of the models. The distribution is truncated to enforce positive
definiteness in the initial conditions. The prior model distribution at
later times is estimated through the solution of the forward models
(Eqs. (1)–(5)). The distributions of S, R, n(t=0),γ, and υ are also
assumed to be Gaussian and independent of the initial conditions.

The covariance for the initial conditions varies spatially in
proportion to the climatological mean field,

C0
ij = σ2

0gðxiÞgðxjÞ exp −
jxi−xj j

lm

� �
ð10Þ

where g(x) is mean initial condition for chlorophyll provided by the
MODIS August climatology. The nondimensional hyper-parameter σ0

is the standard deviation of the chlorophyll data itself scaled by the
climatological mean value. The length scale for model errors lm was
also estimated from the observations by computing the decorrelation

length scale of normalized chlorophyll anomalies
c− –c
–c

(Table 2).
The covariance for the reaction term in the ADS and ADR models

are:

CS
ij = σ2

S exp −
jxi−xj j

lm

� �
and CR

ij = σ2
R exp −

jxi−xj j
lm

� �
ð11Þ

respectively. The means for both S and R are zero, and variances were
estimated from satellite imagery under the assumption of no flow
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Fig. 1.Model domain andmean circulation for August 2006 extracted from the He et al. (submitted for publication) hindcast. Bold line depicts the boundary of the 2°×2° subdomain
for the data assimilation experiments. Thin gray lines show the 30, 60, 100, 200, 500, 1000, 2000, 3000 and 4000 meter isobaths.
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(Table 2):

σ2
S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

c t + Δtð Þ−c tð Þ
Δt

� �2� �s
and σ2

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1
Δt

log
c t + Δtð Þ

c tð Þ
� �2� �s

ð12Þ

For the NP model, the error distribution for the initial condition of
phytoplankton is the same as for the chlorophyll field in the other
forward models. For the nutrient field, we assume the mean to be
spatially uniform with a value (n=0.3 mmol m−3) prescribed by the
domain-average nitrate concentration extracted from the World
Ocean Atlas 2005 climatology (Garcia et al., 2006). The covariance
for the nutrient initial conditions takes a similar form

Cn
ij = σ2

n exp −
jxi−xj j

lm

� �
ð13Þ

and the standard deviation σn is assumed to be the same as the mean
value (Table 2). The prior distribution for the phytoplanktonmortality
υ and nutrient uptake rate γ are independent normal distributions
with mean 0.1 d−1 and 0.3 m3mmol−1d−1 respectively. These values
result in a steady state at the prior mean, consistent with the
assumption of zero mean for S and R in the ADS and ADR models. The
prior standard derivation for the uptake and mortality are assumed to
be four times their mean value, reflecting large uncertainty in the
prior estimates.

2.5. Ensemble Kalman Smoother

The EnS algorithm solves the strong constraint data assimilation
problem using an analysis scheme and statistical forecasting meth-
odology closely related to the Ensemble Kalman filter (EnKF)
described in Evensen (2006). To obtain the model error distributions
at the observation points, f(Hψθ), we employ a Monte-Carlo method.
For example, in the ADSmodel spatially variable initial conditions and
source-sink terms are simulated from the prior distributions
(Eqs. (10) and (11)). The forward model (Eq. (2)) is integrated with
a finite element solver to produce a Monte Carlo sample of the prior
model error distribution at the observation points. An analogous
procedure is employed for the AD, ADR and NP models.

Suppose the model response to the parameters is linear at the

observation points, Hψθ=Hψμ+Q(θ−μ), where Q =
∂Hψθ

∂θ . To obtain

the optimal estimate of θ we utilize the normal equations,

0 =
∂J θð Þ
∂θ = QTW−1 Hψθ−dð Þ + P−1 θ−μð Þ

= QTW−1 Hψμ + Q θ−μð Þ−d
� �

+ P−1 θ−μð Þ
ð14Þ

Solving for θ we have,

θ = μ + P−1 + QTW−1Q
� �−1

QTW−1 d−Hψμ

� �
ð15Þ

Or equivalently, utilizing a matrix lemma,

θ = μ + PQT QPQT + W
� �−1

d−Hψμ

� �
= μ + Cθd Cdd + Wð Þ−1 d−Hψμ

� �
:

ð16Þ

Here Cθd=E[(θ−μ)(Hψθ−Hψμ)] and Cdd=E[(Hψθ−Hψμ)(Hψθ−
Hψμ)] are the model error covariances between the parameters and
observation points and the model error covariances between the
observation points respectively. The EnS optimal estimate uses a Monte
Carlo approximation of these two covariance matrices, thus avoiding the
need for a gradient calculation. The optimality of the estimate is
conditioned on the existence of a good linear approximation to the
dynamic model, though it is never computed explicitly. The approxima-
tion only needs to be valid at the observation points in space/time and
over the likely regions in the prior distribution forθ. A more detailed
derivation of this optimal estimate, its posterior statistics andmethod for
its computation are described in Smith et al. (2009). The posterior
estimate of the state is obtained by solving the forward model for a
sample of the parameters drawn from their posterior distribution. In this
sense, the model provides a stochastically-based strong constraint
estimate of the model parameters and state.

2.6. Iterative Ensemble Kalman Smoother

In cases where the log likelihood (Eq. (8)) is not approximately
quadratic we can generalize the EnS approach by iterating the analysis
scheme, linearizing the cost function about a series of points of
increasing likelihood. The linearization is accomplished with an
ensemble approximation to the gradient rather than a numerical or
analytic linearization of the forward model. If Hψθ is differentiable,
then for any value of the parameter vector y we can linearly
approximate the cost function in some neighborhood of y

J θð Þ≅ Hψy + Qy θ−yð Þ−d
� �T

W−1 Hψy + Qy θ−yð Þ−d
� �

+ θ−μð ÞTP−1 θ−μð Þ

ð17Þ

And thus

∂J θð Þ
∂θ θ=y

≅QT
yW

−1 Hψy + Qy θ−yð Þ−d
� �

+ P−1 θ−μð Þ ð18Þ

where

Qy =
∂Hψθ

∂θ θ=y
ð19Þ

is the sensitivitymatrix evaluated at θ=y. The first order condition for

Table 1
Dates of images used in the nine experiments used to test the assimilation procedure.

Experiment Active data Passive data

1 7/24, 8/9 8/3
2 8/3, 8/12 8/9
3 8/9, 8/17 8/12
4 8/12, 8/19 8/17
5 8/17, 8/21 8/19
6 8/19, 9/3 8/21
7 8/21, 9/4 9/3
8 9/3, 9/7 9/4
9 9/4, 9/9 9/7

Table 2
Hyper-parameters for the prior distributions and values used in the assimilation
experiments.

Parameter Value

Observational error length scale, lobs 10 km
Model error length scale, lm 34 km
Chlorophyll/Phytoplankton scaled standard error, σ0 1.6
Source-sink standard error, σs 0.5 m3mmol−1d−1

Growth rate standard error, σR 0.5 d−1

Nutrient scaled standard error, σn 0.3 mmol m−3
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a minimum is found by setting Eq. (17) to zero and solving for θ
obtaining,

θ = μ + PQT
y QyPQ

T
y + W

� �−1
d−Hψy + Qy y−μð Þ

� �
: ð20Þ

Note that here μ and P are the specified prior mean and covariance
for θrather than their Monte Carlo approximation as in the EnS.

We wish to find a sequence of parameter values, y1,y2,...,yn that
will converge to the maximum likelihood estimate forθ. The starting
point for this sequence is the prior mean, y1=μ. Using the optimal
update based on the local normal equations, we define the update
candidate

y′i+1 = μ + PQT
yi

Qyi
PQT

yi
+ W

� �−1
d−Hψyi

+ Qyi
yi−μð Þ

� �
ð21Þ

Because the linear approximation Qyi is local and may not be valid
out to y ′ i+1, the update, yi+1, is the point on the line between yi and
y ′ i+1 that minimizes the exact cost function (Eq. (8)). Formally we
have yi+1=(1−λ)yi+λy ′ i+1 where

λ = arg min J′i λð ÞÞfor J′i λð Þ = J 1−λð Þyi + λy′i+1Þ
		 ð22Þ

The discrete ensemble (of size NS) over which the minimum of the

exact cost function is computed is λj =
j
Ns

for j=0,1,...,Ns. The

minimal cost corresponds to the optimal step size. The implementa-
tion of the optimal step size calculation utilizes the existing parallel
ensemble forward model, though other choices might be more
efficient such as a divide and conquer approach or curve fitting.

The local derivative estimates, Qyi, are computed with an SVD
decomposition of an ensemble of parameter vectors, and the solution
of the dynamical model for the ensemble. Let

θi;1; θi;2;:::; θi;ne
h i

= yi + ηi;1; yi + ηi;2; :::; yi + ηi;ne

h i
= Yi½ � = Ui½ � Di½ � Vi½ �T

ð23Þ

denote the SVD decomposition of the ensemble of parameter vectors at
the ith iteration and let [Mi]=Hψ([Yi]) denote the ensemble estimate at
the data points. By definition Ui and Vi are unitary andDiis diagonal. The
approximate sensitivity matrix is given by Qyi=[Mi][Vi][Di]−1[Ui]Tas in
related methods such as the Iterative Ensemble Kalman Filters of Li and
Reynolds (2009). The ensemble is regenerated at each iteration; the
perturbation vectors ηi, j are simulated independently from a scaled
prior covariance with mean zero. The ensemble standard deviation for
the ηi, j is 1/1000 of the prior standard deviation. The sampling scheme
used to generate the ensemble is generally not optimal for estimation of
the sensitivity matrix. The problem of defining an optimal sampling
strategy for the derivative estimate is left for future work.

The requisite size of the ensemble for estimating Qxi depends on
the number of parameters being estimated. For problems with only a
handful of parameters a deterministic approach to sampling, such as
the sampling scheme of the Unscented Kalman filter (UKF) (Julier and
Uhlmann, 1997), would be a natural choice. Such a scheme would
require a sample size of 1+2 dim(θ). For the joint initial condition
and spatially variable parameter estimation problems solved herein,
dim(θ)≅10000, making such a sample unfeasible for our numerical
experiments.

In addition to dealing with strongly non quadratic log likelihoods,
the ItEnS allows the sampling distribution to not conform to the prior
distribution. This is advantageous if the prior error distribution is ill

specified, such as the assumption of a Gaussian prior for a field which
must be positive in the dynamical model. The ItEnS methodology also
guarantees convergence to a minimum of the cost function whose
basin of attraction contains the prior mean. In cases where the
likelihood is multimodal, this may not be a global minimum (e.g.
Smith (2007)). However, an extensive search for the global minima
can be conducted utilizing multiple starting points. If the prior
estimate is reasonable (or equivalently if the observations are noisy
and provide little constraint) the algorithmwill converge to the global
minimum.

2.7. Experimental design

The data set consists of eleven partial images on July 24, August
3,9,12,17,19,21 September 3, 4, 7 and 9 (Fig. 2, top row), which are
located in an interior subdomain of the regional model (Fig. 1). In
order to test our data assimilation methodology, we sequentially
subdivided this time series of images into nine time windows, each
containing three successive images. The models were run separately
in each of the nine time windows, assimilating the first and last
images and using the middle image to evaluate the posterior estimate
(Table 1). For the time scales associated with these experiments, the
regional domain was large enough that assimilation of data in the
interior subdomain did not involve boundary conditions of the
regional model.

Because satellite-based chlorophyll estimates can be contaminated
by a variety of atmospheric and oceanic sources, it is difficult to
prescribe an appropriate observational error model. We therefore
assess the sensitivity of the estimation to the observational error
standard deviation by testing ten values of σobs with a log uniform
structure, σobs=[.05, .1, .2, .4, .8,1.6,3.2,6.4,12.8,25.6]mg m-3.

3. Results

The observational basis for this study is satellite-based chlorophyll
imagery from late July to early September 2006 (Fig. 2, top row).
Chlorophyll concentrations in late July and early August are generally
low overall. In mid-August, enhanced chlorophyll appears in the
vicinity of the shelf break (Fig. 1), oriented in the northeast to
southwest direction; highest concentrations are located in the
northeast. By early September, the enhanced chlorophyll disappears,
although weak gradients persist along the shelf break.

The prior estimate (Fig. 2, second row) consists of a simulation
with the abiotic AD model initialized with the climatological mean
chlorophyll concentration for August derived from MODIS data. The
climatology contains enhanced chlorophyll in the northwest corner of
the domain, and low values elsewhere—and thus bears little
resemblance to the observations in July–September 2006. Neverthe-
less, this forward model simulation without data assimilation
constitutes our prior estimate of the chlorophyll field for all the
models: AD, ADS (S=0), ADR (R=0), and NP (γ, υ chosen so the right
hand sides of Eqs. (4) and (5) are zero, given the spatially constant
climatological mean value (Section 2.4) used to prescribe the prior
nutrient field).

Data assimilation generally improves the fit to passive observa-
tions for the entire suite of dynamical models (Fig. 2, rows 3–6). The
mid-August enhancement of chlorophyll along the shelf break is
recovered in each case, albeit to varying degrees (cf. August 19). Also
evident are remnants of the high chlorophyll in the northwestern part
of the domain present in the prior estimate, especially during time
periods for which observations are lacking in that particular area (e.g.
July 24/August 9, September 4/September 9).

The inferred biological parameters vary significantly over time,
and depend on the underlying model formulation (Fig. 3). Buildup of
chlorophyll along the shelf break in mid-August is fostered by
enhanced growth in that area, reflected by positive S(x,y) and R(x,y)
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in the ADS and ADR models, respectively (Fig. 3, rows 1 and 2). These
areas of growth are flanked by areas of mortality (negative S(x,y) and
R(x,y)), which tend to keep the biomass enhancement confined to the
shelf break. Disappearance of the chlorophyll enhancement in late
August results fromwidespreadmortality in the ADS and ADRmodels.
Dynamics of the NP model are considerably different (Fig. 3, row 3).
The mid-August chlorophyll enhancement is bolstered by high
nutrients extending seaward from the shelf break. Lower nutrients
landward of the shelf break (August 12, 17, and to some extent on
August 19) prevent chlorophyll buildup in that area. The decline in
biomass along the shelf break from late August to early September is

controlled primarily by a decrease in the nutrient uptake rate γ and an
increase in mortality υ.

4. Discussion

4.1. Misfit

Fit to the active data depends on both the observational error and
the underlying dynamical model (Fig. 4). As expected, the fits
generally degrade monotonically with increasing σobs. However,
there are some exceptions (e.g. experiment 6, NP model,

Fig. 2. Top row: sequence of satellite-based chlorophyll estimates in the 2°×2° subdomain bounded by 38−40°N and 72−74°W (indicated by the dashed line in Fig. 1). Rows 2−6
depict simulated chlorophyll for various dynamical models at the times for which passive data are available in each of the nine time windows (Table 1). Observational error for this
suite of results is σobs=0.8 mg m-3, for which skill is at or near maximum in a mean sense (Fig. 5, lower right).

Fig. 3. Inferred biological parameters for the ADS (top row), ADR (middle row), and NP (bottom row) models. Time series correspond to the results presented in Fig. 2. Values of the
nutrient uptake (γ) and phytoplankton mortality (υ) parameters inferred for the NP model are reported below each nutrient field (bottom row). Date labels along the top are
identical to those in Fig. 2, indicating the intermediate dates on which the solution is evaluated with passive data (see text). The inferred initial nutrient concentrations (bottom row)
pertain to the start of each experiment, and as such correspond to the dates shown one column to the left. In the case of the leftmost column, the initial nutrient field corresponds to
July 24 (Fig. 2).
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observational error 0.1–0.4). These could be due to local minima or
premature convergence triggered by the stopping rule (see Sec-
tion 4.3) whenMonte Carlo errors in the gradient calculation cause an
increase in the cost function. For some models (especially the ADR
model), there is a systematic tendency for a local maximum in misfit
at the lowest observational error. This “convergence error” is likely a
result of the Monte Carlo approximation, and could be ameliorated by
an increase in ensemble size (with a commensurate impact on
computational cost).

On average, the ADRmodel fits the data better than the ADSmodel,
which fits better than the NP model, which fits better than the AD
model. Why are the fits so different amongst the various models?
There are three reasons: differences in the number of degrees of
freedom, differences in model structure, and differences in the prior
distributions of the inferred parameters. For example, the AD model
has the fewest number of degrees of freedom, and it produces the
worst fit. The ADS and ADR models both have the same number of
degrees of freedom, yet the ADR model fits the active data
systematically better than the ADS model. Due to the exponential
nature of the solution to the ADR model (reflecting the intrinsic
density dependence of phytoplankton population dynamics), it is
generally more effective at fitting outliers in the terminal data than
the linear ADS model. Moreover, the prior distributions of S and R
(Section 2.4, Eqs. (11) and (12)) are necessarily different given they
have different units—and those differences undoubtedly affect the fit.

Although the degrees of freedom for the NP model are slightly
higher than the ADS and ADR model (2Nm+2 rather than 2Nm), the
misfit is generally greater. There are several reasons for this, including
the aforementioned differences in specification of prior for n relative
to S and R, as well as the positive definite constraint on n. Moreover,
the nature of the inversion is quite different in the NPmodel: whereas
in the ADS and ADR cases consist of inverting for initial conditions for
the single state variable c and a spatially variable parameter of the
right hand side, in the NP case we invert for initial conditions for the
two state variables n and p plus two parameters that tie them together

dynamically. Unlike the inversions for S and R in the ADS and ADR
models, diffusion acts on the inferred initial conditions for n in the NP
model, leading to fewer effective degrees of freedom in fitting the
terminal data. The misfit of the NP model relative to terminal data is
further limited by the NP model's tendencies toward a spatially
uniform steady state at long times. This last effect becomes more
important in the longer simulations (experiments 1, 6 and 7).

4.2. Skill

We define the skill of the estimation procedure as the ratio of root
mean square (RMS) prior misfit to unassimilated data to the RMS of
the posterior misfit to the same data. This metric is non-dimensional
and can be compared across the nine time windows which each have
different prior misfits to their passive data. If this ratio is greater than
one, we consider the estimation procedure to have skill.

Skill of the estimation procedure varies widely among the nine
experiments, depending on the phenomenology and data distribution
in each time window, the underlying dynamical model, and the
prescribed observational error (Fig. 5). Skill is poor across all models
and observational error for time windows 1 and 2, and good for all
models in for time windows 3, 5, and 6. Overfitting (poor skill at low
σobs) with the ADRmodel is found in experiments 4 and 9. Overfitting
also occurs with the AD model in experiments 7 and 8. The NP model
only exhibits overfitting in experiment 8. We speculate that the
additional dynamical constraints intrinsic to the NP model curtail this
overfitting, to which the simpler models are more prone.

Averaging the results across all nine timewindows, we find that all
of the models have skill across the full range of σobs (Fig. 5, lower
right). Average skill is optimal for intermediate values of σobs in the
range of 0.8–1.6 mg m−3, depending on the model (Table 3). We
attribute the decrease in skill at low σobs to the overfitting described
above, whereas the decrease in skill at high σobs results simply from
allowing the estimation procedure too much latitude in fitting the
active data.
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It could be argued that a skill metric that depends on the prior
estimate could overestimate skill if the prior were poor. The Modeling
Efficiency (MEF; Stow et al., 2009) offers an alternative that depends
only on the Nd observations Oi and their predicted values Pi:

MEF =
∑
Nd

i=1
Oi−O

� �2− ∑
Nd

i=1
Pi−Oið Þ2

∑
Nd

i=1
Oi−O

� �2

A perfect model yields MEF=1, whereas a model with MEF=0
predicts the observed values no better than the mean of the data.
Modeling Efficiency of less than zero indicates the model provides
predictions that are worse than the mean of the observations.
Evaluation of assimilation experiments 1–9 in terms of MEF yields
results that are qualitatively similar to those presented in Fig. 5 (not
shown). The MEF metric also leads to a rank order of the various
models that is generally similar to the skill metric involving the prior,
although the peak MEF occurs at different σobs for two of the models
(Table 3).

4.3. Non quadratic log likelihoods: necessity of an iterative approach

To illustrate the necessity of the iterative approach, we evaluate
the cost function between the prior estimate (θ=μ) and the first
candidate estimate of the ItEnS (θ=y ' 2). The cost function is
computed on regularly spaced values in the interval μ≤θ≤y ' 2. We
find that the cost function deviations from quadratic vary greatly
amongst the nine experiments with each model (Fig. 6). As expected,
the cost functions for the explicitly nonlinear models (ADR and NP)
exhibit the most significant departures from quadratic form. The ADR
model exhibits asymmetry about the minimum, while the NP model
occasionally contains multiple local minima. In experiment 9 the cost
function is quadratic for all models.

For most of the experiments we find convergence of the cost
function in 1–10 iterations, most requiring only a single iteration due
to the cost function being nearly quadratic. Models with strong
nonlinearities and low observational error generally required more
iteration. We consider the convergence to have occurred if the
improvement in the cost function is less than 1/1000 of the current
value, i.e. yi−1−yi b

yi−1

1000
.

5. Conclusions

We have demonstrated an alternative smoother formulation for
strongly non-linear systems, the ItEnS. As in the EnS, the strong
constraint data assimilation problem is formulated in a Bayesian
framework and solved without the need for a tangent linear model.

Bayesian formalism combined with dynamical models provides a
useful context for compositing satellite-based ocean color imagery.
We find that, with respect to the hindcasting experiments presented
here, assimilating chlorophyll data improved the fit to unassimilated
data over a broad range of presumed observational error. This is an
important property because the relationship between ocean color and
phytoplankton abundance is highly variable in both space and time,

Table 3
Summary of model skill based on two metrics: best mean improvement in the fit to
unassimilated data as compared with the prior estimate (results extracted from the
lower right panel of Fig. 5), and (2) best Model efficiency, as per Stow et al. (2009). The
observational error for which these maximal skill values occur is indicated in the
rightmost column (% improvement over the prior and Model Efficiency, respectively).

Model Improvement over the prior (%) Model efficiency σobs

AD 18 0.43 1.6,3.2
ADS 36 0.56 0.8,0.8
ADR 43 0.62 1.6,1.6
NP 32 0.58 1.6,0.4
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and consequently error models are rarely specified with great
confidence.

For the abiotic AD model based on advection and diffusion only,
the estimation procedure was used to infer optimal initial conditions.
For this model we find an average of 18% improvement in the fit to
passive data, demonstrating the utility of assimilating data into a
circulation model to produce space-time continuous fields of surface
chlorophyll.

We find significant skill in all of the coupled physical–biological
models tested here, reflecting the importance of both physical and
biological processes in determining space–time fluctuations in
surface ocean chlorophyll. While the ADR and ADS models generally
fit the assimilated data better than the NP model, the skill of the
three models was similar. Examination of the results over a range of
prescribed observational error σobs revealed the best improvement
in fit to the passive data averaged 36%, 43%, and 32% for the ADS,
ADR, and NP models respectively. The skill of each biotic model was
better than the purely physical advection–diffusion model, and the
inferred biological dynamics of course depends on model
formulation.

Looking deeper than these average statistics, we note that the skill
of the assimilation procedure was more dependent on the particular
timewindow being tested than on the underlying dynamical model or
presumed observational error. In other words, the results depend
strongly on the space–time distribution of the data and their depiction
of the oceanographic phenomenology. For example, in some experi-
ments for very low σobs we find poor skill with the ADR model due to
classical overfitting. Thus, although the mean skill scores mentioned
above are encouraging, the results of individual experiments can be
substantially worse. Detailed skill assessment of such methodologies
is an essential ingredient to their practical application. In any case, the
ItEnS offers a promising new approach to assimilation of ocean color
data which can in principle be applied to coupled physical–biological

models at both smaller and larger scales than addressed here, as well
as to vertically resolved models.
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