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Abstract. An open boundary ocean model is configured in a domain bounded by the four
TOPEX/Poseidon (T/P) ground tracks surrounding the U.S. Joint Global Ocean Flux
Study Bermuda Atlantic Time-series Study (BATS) site. This implementation facilitates
prescription of model boundary conditions directly from altimetric measurements (both
T/P and ERS-2). The expected error characteristics for a domain of this size with
periodically updated boundary conditions are established with idealized numerical
experiments using simulated data. A hindcast simulation is then constructed using actual
altimetric observations during the period October 1992 through September 1998.
Quantitative evaluation of the simulation suggests significant skill. The correlation
coefficient between predicted sea level anomaly and ERS observations in the model
interior is 0.89; that for predicted versus observed dynamic height anomaly based on
hydrography at the BATS site is 0.73. Comparison with the idealized experiments suggests
that the main source of error in the hindcast is temporal undersampling of the boundary
conditions. The hindcast simulation described herein provides a basis for retrospective
analysis of BATS observations in the context of the mesoscale eddy field.

1. Introduction

Ocean time series measurements at fixed locations are
among the most valuable means for assessing temporal trends
in physical, biological, and chemical properties of the water
column. Depth profile data at such sites provide a one-
dimensional window into oceanic variability on timescales
ranging from the sampling interval to the length of the record.
However, three-dimensional effects can pose some challenges
for interpretation. Without additional information about the
surrounding waters it can be difficult to distinguish temporal
changes from spatial heterogeneity moving past the site. More-
over, if such three-dimensional phenomena play a role in main-
taining the mean conditions, their signature in a one-
dimensional time series may not be adequate to deduce the
mechanisms by which this impact is expressed. In such circum-
stances it is of interest to obtain the spatial context in which the
time series observations are embedded [e.g., Mitchum, 1996].

Motivation to provide such information around the U.S.
Joint Global Ocean Flux Study (JGOFS) Bermuda Atlantic
Time-series Study (BATS) site arose from the recognition that
mesoscale phenomenology is relevant to both aspects: me-
soscale variability is aliased into the time series record, and the
underlying processes contribute significantly to biogeochemi-
cal cycling in the Sargasso Sea. Analysis of BATS hydrographic
data with a one-dimensional model revealed month-to-month
variability that cannot be explained by local air-sea fluxes;
these anomalies are almost certainly associated with mesoscale
advection [Doney, 1996]. Comparison of two nutrient profiles

sampled 1 month apart in the summer of 1986 suggested an
eddy-driven nutrient injection event that could account for
20–30% of the annual new production [Jenkins, 1988]. Since
that time, additional evidence has accumulated that suggests
that mesoscale eddies supply a significant portion of the annual
nutrient budget [McGillicuddy et al., 1998]. Regional numerical
simulations suggest eddy-induced upwelling causes intermit-
tent fluxes of nitrate into the euphotic zone of magnitude
sufficient to balance the nutrient demand implied by geo-
chemical estimates of new production [McGillicuddy and Rob-
inson, 1997a]. Nitrate flux calculations based on satellite altim-
etry and a statistical model linking sea level anomaly to
subsurface isopycnal displacements provide estimates of com-
parable order [Siegel et al., 1999].

Analysis of observations capable of resolving mesoscale fluc-
tuations reveals that they are replete with this phenomenology.
High-resolution time series from the Bermuda Testbed Moor-
ing program [Dickey et al., 1999] documented a nutrient pulse
and associated increase in chlorophyll and particulate material
associated with the passage of an eddy [McNeil et al., 1999].
Mesoscale biogeochemical surveys carried out as part of the
BATS validation activities demonstrate that eddy-induced up-
ward displacement of density surfaces can inject nutrients into
the euphotic zone and result in the accumulation of biomass in
the overlying waters [McGillicuddy et al., 1999]. Finally, satel-
lite data show covariation in mesoscale ocean color and sea
surface temperature patterns in the Sargasso Sea that are con-
sistent with these ideas [McGillicuddy et al., 2001].

The technology for detecting oceanic mesoscale phenomena
from satellite-based altimetric measurements dates back to the
late 1970s with the GEOS-3 [Tapley et al., 1982] and Seasat
[Stanley, 1979] missions. Since then, regular coverage over a
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large portion of the world ocean has been provided by Geosat
(1986–1989) [Douglas and Cheney, 1990], the European Space
Agency’s ERS satellites (1991–present) [Archiving, Validation,
and Interpretation of Satellite Oceanographic data (AVISO),
1997], and TOPEX/Poseidon (1992–present) [Fu et al., 1994].
As with any mapping operation, competing interests of spatial
and temporal resolution determine the ground tracks of the
satellite’s orbital configuration. For example, the TOPEX/
Poseidon (T/P) instrument completes its global coverage once
every 10 days; adjacent ground tracks are spaced ;250 km
apart at the latitude of Bermuda. In contrast, ERS-1 and
ERS-2 tracks are much closer (about 70 km around Bermuda)
at the expense of a longer repeat cycle (35 days).

The T/P and ERS missions occupy opposite ends of the
space/time resolution requirements needed for direct diagnosis
of mesoscale processes in this region. Observations from the
Mid-Ocean Dynamics Experiment (MODE) and its successor
program POLYGON Mid-ocean Dynamics Experiment (POLY-
MODE) programs documented eddy sizes in the Sargasso Sea on
the order of 100–150 km, with synoptic dynamical timescales (i.e.,
the minimum time period for significant changes in mesoscale
flows) of 10–15 days [Richman et al., 1977; The MODE Group,
1978; Harrison and Heinmiller, 1983]. Thus the T/P repeat cycle
can adequately resolve temporal variations in the eddies near
Bermuda, but the ground tracks are far enough apart that an
entire eddy can fit in between them. Closer spacing of the ERS
tracks insures satisfactory spatial coverage, but the repeat cycle is
so long that important temporal dynamics can be missed. Clearly,
some form of interpolation is needed to provide a basis from
which to diagnose mesoscale fluctuations in the BATS time series.
Siegel et al. [1999] describe a statistical approach to this problem
based on objective analysis of T/P and ERS altimetry. Our objec-
tive here is to use a data assimilative model to provide a dynam-
ical basis for space/time interpolation.

A variety of techniques have been used to incorporate sat-
ellite altimetry into numerical models. Excellent overviews of
the subject of ocean data assimilation are provided by Bennett
[1992], Wunsch [1996], and Malanotte-Rizzoli [1996]; only a few
illustrative examples pertaining to the use of altimetry are
mentioned here. Some of the earliest applications with limited
area models utilized simple methods of data insertion for
model initialization and boundary condition specification [e.g.,
DeMey and Robinson, 1987]. Although such approaches could
be used to keep relatively small regional models on track for
short time periods [e.g., Dombrowsky and DeMey, 1992], the
need for long-term simulations over large regions necessitated
continuous assimilation of data in the interior. One of the most
straightforward techniques for doing so is to “nudge” the nu-
merical model toward observations via a forcing term added to
the model equations. Nudging with altimeter data has been
used to construct simulations of ocean circulation in a variety
of regions [e.g., Holland and Malanotte-Rizzoli, 1989; Blayo et
al., 1994, 1997; Capotondi et al., 1995a, 1995b; Stammer, 1997].
Optimal interpolation is a slightly more sophisticated approach
in which the error characteristics of the observations are used
to determine the weighting of model and data in the blending
procedure. A different class of assimilation techniques involves
use of the model dynamics as a constraint in the estimation
problem; this includes the Kalman filter (and smoother) and
the adjoint method. Although direct implementation of the
Kalman filter continues to be impractical for large-scale ocean-
ographic problems, approximations to this algorithm have
proven to be effective in using altimeter data in both regional

applications [e.g., Fukumori and Malanotte-Rizzoli, 1995; Bras-
seur et al., 1999; Chen et al., 1998; Verron et al., 1999] and global
general circulation models [e.g., Fukumori et al., 1999]. The
adjoint method has been used successfully with altimeter data
in several different contexts to invert for control variables
(such as initial conditions, boundary conditions, and model
parameters), which minimize an objective function measuring
goodness of fit to the observations [e.g., Moore, 1991; Schröter
et al., 1993; Morrow and DeMey, 1995; Vogeler and Schröter,
1999].

Nearly all of the examples of altimetric data assimilation
described above deal with model domains that are regional or
larger than regional in their spatial extent. That is, the opera-
tional area spans much more than a single set of adjacent
ground tracks. The intent here is to provide mesoscale context
for time series observations at BATS, a single point within the
diamond-shaped domain bounded by two ascending and two
descending T/P lines. The approach is to configure a model
domain so that its boundaries are matched to the T/P diamond
as closely as possible. This facilitates specification of the re-
quired boundary conditions directly from altimetry. For a do-
main of sufficiently small dimensions (such as this one), evo-
lution of the interior will be almost entirely controlled by the
boundary conditions. In a sense the model is used to interpo-
late dynamically in between T/P ground tracks. In contrast with
purely statistical interpolation such as objective analysis, this
approach yields four-dimensional field estimates that are dy-
namically consistent with model physics.

This study consists of two main elements. First, simulated
data are used to conduct identical twin experiments to deter-
mine the expected error levels in the model interior given
perfect boundary condition information at various intervals.
Second, the T/P diamond model is forced along its boundaries
with actual altimetric observations from 1992 to 1998. Its per-
formance is then evaluated with observations in the interior.

2. Methods
2.1. Model Description

A quasigeostrophic (QG) model is used for the assimilation
experiments described herein. The relevance of the QG equa-
tions to open ocean mesoscale flows has been established on
theoretical grounds [Bretherton and Karweit, 1975; Charney and
Flierl, 1981], analysis of observations [McWilliams, 1976], and
numerical simulation [Haidvogel, 1983]. A detailed description
of the model is provided by Robinson and Walstad [1987, and
references therein], so it will be described only briefly here.
The model has been applied in a number of areas throughout
the world ocean, with extensive use in the Sargasso Sea. Of
particular interest here are ocean prediction experiments that
demonstrate predictive skill in the region [Robinson and Leslie,
1985; Carton, 1987; Walstad and Robinson, 1990]. In addition,
it has been used for detailed dynamical process studies of these
flows [Pinardi and Robinson, 1987; Spall, 1989]. The prognostic
equation is

z t 1 aJ~c , z! 1 bcx 5 Fpqr, (1)

where c is the stream function and z is the dynamic vorticity
given by

z 5 ¹H
2 c 1 G2~sc z! z. (2)

The Jacobian J is defined as J(c , z) 5 cxzy 2 cyzx, and Fpqr

represents a Shapiro filter that is used to parameterize sub-
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gridscale dissipation. The stratification is given by s( z) 5
N0

2/N2, where N is the Brunt-Väisälä frequency and N0 is its
typical scale. Computational parameters and the nondimen-
sional numbers a, b, and G2 are described in Table 1. Lateral
boundary conditions are of the Charney, Fjörtöft, and von
Neumann type: stream function is prescribed everywhere along
the boundary, whereas vorticity is specified only at inflow
points. In this particular application, surface and bottom
boundary conditions consist of a rigid lid and a frictionless flat
bottom. Explicit treatment of the surface boundary layer [Wal-
stad and Robinson, 1993; McGillicuddy and Robinson, 1997b]
will be included in future work.

2.2. Simulated Data and Identical Twin Experiments

In order to assess the error characteristics of the T/P dia-
mond model if it were fed perfect boundary condition infor-
mation, identical twin experiments were conducted with sim-
ulated data. These “data” are generated by forcing the model
along the boundaries of a large (106 km2) domain with time-
dependent statistical representations of typical synoptic fea-
tures in the region. This boundary forcing consists of Rossby
wave fits to the MODE data computed by McWilliams and
Flierl [1976], including the surface intensification of modal
amplitudes documented by McWilliams [1974]. Starting from
an arbitrary initial condition, the model is run out to statistical
steady state. Far enough away from the direct boundary forc-
ing, the freely evolving interior takes on a realistic character
(Figure 1). This technique has been used to produce environ-
mental fields for forecasting studies in the region by Robinson
and Haidvogel [1980] and Miller and Robinson [1984], as well as
nutrient transport calculations by McGillicuddy and Robinson
[1997a]. This configuration was deliberately chosen over other
alternatives (such as spin-down in a doubly periodic domain)
to facilitate long-term simulations from which robust statistics
can be derived.

Simulated fields are extracted from a 105 km2 interior sub-
domain, which is of approximately the same dimensions as the
T/P diamond model. Results archived on a daily basis consti-
tute a “perfectly” sampled representation of the ocean, which

obeys the model equations to within numerical accuracy. This
solution can thus be used as a basis to evaluate the capability
of the T/P diamond model to reconstruct evolution of its inte-
rior based only on information provided at the boundaries.

2.3. Altimetric Observations and the Assimilation
Procedure

Merged sea level anomaly (SLA) data from ERS-1, ERS-2,
and T/P were obtained via CD-ROM from the AVISO [1997]
project. ERS and T/P data were combined with a global min-
imization algorithm using dual-crossover differences [Le Traon
et al., 1995; Le Traon and Ogor, 1998], which result in compat-
ible orbit error characteristics. Ground tracks in the vicinity of
Bermuda are shown in Figure 2. The BATS site lies near the
southwestern edge of a T/P diamond, very near an ERS cross-
over point.

Field estimates of SLA were derived from the alongtrack
observations using an objective analysis (OA) algorithm based
on that of Carter and Robinson [1987]. The details of this
procedure are provided by Siegel et al. [1999] and therefore are
presented here only briefly. A correlation model of the form

C~R , Dt! 5 expS R
c1
D cos S 2p

R
c2
D exp S2

uDtu
c3
D

was utilized [see Thiébaux and Pedder, 1987], where the space/
time distance R 5 =(Dx 2 c4Dt)2 1 Dy2 accounts for the
observed westward phase propagation of features in this re-
gion. This function was fit to the SLA data to obtain the
empirical constants c1 5 175 km, c2 5 575 km, c3 5 26 days,
and c4 5 24.3 km d21. Daily SLA maps were produced on a
uniform grid that was subsequently interpolated onto a 10 km
mesh for incorporation into the model.

Objectively analyzed altimetric observations provide a direct
estimate of the upper level stream function in the QG model
via the relation

c1 5
g

V0f0D
SLA ,

Table 1. Model Parametersa

Parameter Value

Computational Parameters
Horizontal resolution Dx 10 km
Vertical resolution 6 levels
Time step Dt 4320 s

Physical Scales
Timescale t0 10 days
Space scale D 27 km
Vertical scale H 700 m
Velocity scale V0 0.04 m s21

Buoyancy frequency scale N0 0.55 z 1022 s21

Coriolis parameter f0 0.77 z 1024 s21

f0’s meridional gradient b0 2.00 z 10211 m21 s21

Nondimensional Parameters
a 5 V0t0D21 1.5
b 5 b0Dt0 0.5
G2 5 f0

2D2N0
22H22 0.3

Additional Control Parameters Used in Hindcasting
Deep EOFa amplitude 0.3
Vorticity filtering 50 km, 7.5 d

aEOF, empirical orthogonal function.

Figure 1. Simulated nondimensional stream function field at
100 m after 880 days of integration. The entire model domain
is 1000 km on a side, and the dimensions of the interior sub-
domain from which simulated data are extracted are 312 km by
312 km. The zero contour is bold; positive and negative con-
tours are solid and dashed lines, respectively.
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where g is the acceleration of gravity and the remaining pa-
rameters are defined in Table 1. Near-surface stream function
must be projected vertically onto the deeper levels using a set
of basis functions, for which there are a number of possible
choices. We experimented with several, including the dynam-
ical modes of the vertical structure equation, subjectively cho-
sen profiles, and empirical orthogonal functions (EOFs) de-
rived from 0 to 4000 m dynamic height anomalies computed
from BATS hydrography. Model results are not overly sensi-
tive to the details of the extension procedure, but the EOF
method clearly worked best in this application. It takes the
form

ck 5 c1

EOFk

EOF1
, k 5 2, 6.

In this study only the first EOF is used, as it contains almost
98% of the variance (Figure 3). Because the conductivity-
temperature-depth (CTD) data do not extend all the way to
the bottom, the barotropic contribution to SLA variability is
not accounted for in the EOF calculations. For the purposes of
this extension procedure a constant partitioning between ba-
roclinic and barotropic modes is assumed. In other words,
energy in the barotropic mode is taken to be proportional to
that which resides in the baroclinic mode (as represented in the
EOF decomposition). This is implemented by adding an em-
pirically derived constant to the EOF profile shown in Figure

Figure 2. Ground tracks for T/P (solid lines) and ERS (dot-
ted lines) altimetry. Repeat cycles are 10 and 35 days, respec-
tively. The bold line indicates the boundaries of the rectangular
model domain fit to the T/P diamond.

Figure 3. Vertical structure at the BATS site computed from observations between October 1992 and
September 1998: (a) mean density and Brunt-Väisälä frequency profiles, (b) mean dynamic height (solid line)
61 standard deviation (dashed lines), and (c) the first three EOFs of dynamic height anomaly.
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3c. This constant representing the barotropic component of
SLA is evaluated through sensitivity analysis (see below).

The full three-dimensional stream function field created by
vertical projection of objectively analyzed SLA provides all the
information necessary to compute the two terms of the dy-
namic vorticity defined in (2). Spatial derivatives in these vor-
ticity calculations tend to amplify noise in the observed fields,
which can have an adverse effect on the quality of the bound-
ary conditions. To counterbalance this effect, the along-
boundary vorticity is smoothed with a two-dimensional (space-
time) Gaussian filter. Sensitivity experiments indicated that the
optimal filtering parameters for this application are half-width
scales of 50 km and 7.5 days.

The procedure described above thus provides a method for
obtaining all the initial and boundary condition information
needed to drive the dynamical model (equations (2)–(3)) from
altimetric observations. The “assimilation” method is simply to
initialize the model with these analyses and provide boundary
condition updates on a daily basis (with linear interpolation in
between). Thus there are no data assimilated in the interior
other than those used in the initial condition. In the parlance
of Bennett [1992] this procedure can be categorized as a very
simple application of the sequential estimation problem.

3. Results
3.1. Assimilation of Simulated Data

A set of three experiments was carried out to ascertain the
degree to which error characteristics of dynamical interpola-
tion in a model domain the size of the T/P diamond depend on
the frequency at which boundary condition information is sup-
plied. In each case the model is started at rest and then fed
boundary conditions from the simulated data set at the pre-
scribed intervals (with linear interpolation in between up-
dates). Values of the computational parameters, physical
scales, and nondimensional parameters are listed in Table 1.
Table 2 summarizes the results of these computations for
boundary updating of 1, 4, and 10 day intervals. Temporal
evolution of the stream function and vorticity errors is shown
in Figure 4. For the timescales associated with mesoscale flows
in this region, 1 day boundary condition updating is essentially
continuous. Ten day updating reflects that which can be pro-
vided by the T/P altimeter given its repeat cycle, and 4 day
updating represents an intermediate case. In all three experi-
ments, there is rapid adjustment of the stream function field
owing to the elliptic nature of (2). Vorticity adjustment is
slightly more protracted because of the time required for in-
formation to propagate into the domain. After approximately

60 days (the time required for features to transit the domain at
an average phase speed of 5 km d21) the model fields are fully
equilibrated and are essentially independent of the initial con-
ditions. Thus the statistics reported in Table 2 are computed
for days 100–800.

The results of 1 and 4 day updating experiments are nearly
identical, with normalized RMS stream function errors of
,10%. Examination of the fields shows that these are mostly
composed of slight errors in phase and amplitude. Occasional
events drive the stream function error higher than average. For
example, around day 500 a large anticyclone begins to propa-
gate into the domain from the east, intensifying as it moves
westward. This intensification occurs mostly in the interior of
the domain and is largely driven by interactions with the sur-
rounding eddies, which are mostly outside the domain. The
geometry of this situation, that a highly dynamic event strad-
dles the edge of the model domain, degrades the ability of the
model to reconstruct the evolution of the interior from bound-
ary condition information alone. In this particular instance this
issue results in underprediction of the anticyclone’s intensifi-
cation, causing the RMS stream function error to approach
20% (Figure 5). Note, however, that despite the increase in
relative error, the general characteristics of the simulated fields
track that of the reference ocean quite closely. For animated
visualizations of the results, see http://science.whoi.edu/users/
mcgillic/tpd/anim.html.

Error characteristics for 10 day updating are noticeably de-
graded in comparison with more frequent updating. Although
the RMS stream function error is acceptable on average
(22%), there are sporadic episodes during which error levels
climb beyond 50% (Figure 4). Just as in the prior cases, these
periods of anomalously high error are associated with eddy-
eddy interactions that straddle the model boundary. Whereas
more frequent boundary updating is able to keep the interior
solution firmly on track, in certain circumstances, 10 day up-
dating allows for fairly significant errors in phase and ampli-
tude. Nevertheless, even for the incidents of highest stream
function error, the character of the simulated fields is similar to
that of the reference ocean (Figure 6).

Scatterplots of predicted versus reference SLA for the three
experiments reveal yet another aspect of the error character-
istics (Figure 7). Updating at 1 and 4 day intervals simply
produces scatter about the 1:1 line, with slopes of the best fit
line that are not significantly different from 1.0 at the 95%
confidence interval. However, 10 day updating introduces sig-
nificant smoothing of features, such that the amplitude of the
predicted SLA in the interior is only 83% of that in the refer-
ence ocean.

3.2. Assimilation of T/P and ERS Data

Results in section 3.1 were based on simulated data for
which the underlying physics (provided by the model) was
perfectly known and the boundary conditions were sampled
without error. Use of real observations to simulate the natural
system is significantly more complicated, owing to imperfec-
tions in the model, noise in the data, and errors in the approxi-
mations used in the assimilation procedure. In addition, construc-
tion of a skillful hindcast requires choosing optimal values for a
collection of control parameters that are not known a priori.

The approach here is to conduct a set of sensitivity experi-
ments in which these parameters are systematically varied
within the envelope of reasonable limits to ascertain an “opti-
mal” set of values using objective metrics of simulation skill.

Table 2. Assimilation Experiments Using Simulated Data
in Which the Boundary Condition Updating Frequency
is Varieda

Run

Updating
Frequency,

days
NRMS c
Error, %

NRMS z
Error, %

1 1 6.8 28.0
2 4 7.8 29.4
3 10 21.9 40.1

aStream function and vorticity error statistics reported here are the
temporal average (days 100–800) of the RMS differences between
simulated fields and the reference solution integrated over the model
domain, normalized by the time-mean RMS of the reference fields.
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Clearly, this method is not guaranteed to result in a truly
optimal set unless all possible combinations of values are tried
(which is obviously impractical). Nevertheless, by executing a
large number of runs (several hundred) it is possible to exam-
ine a significant portion of parameter space and thereby assess
the robustness of the results with respect to these unknowns.
Rather than document the entire ensemble of runs carried out
in this undertaking, a base case will be presented along with
selected sensitivity experiments. First, the central run will be
described, which is the most faithful representation of the
natural system that we were able to achieve. Then a series of
sensitivity experiments about that central case will be shown,
which illustrates how the results depend on the particular
choices of control parameters.

The central hindcast simulation was initialized on October
27, 1992, from an objective analysis of SLA and run forward to
the end of the available data on September 16, 1998. Results
are available in animated form on the Web at http://
science.whoi.edu/users/mcgillic/tpd/anim.html. An example
snapshot at a particular time is shown in Plate 1.

There are a variety of metrics that can be used to evaluate
the skill of these simulations. The time series of normalized
RMS difference between simulated SLA and OA of the alti-
metric observations (averaged over the model domain, exclu-

sive of boundary points) provides a measure of how well the
model tracks observed eddy structures in an integrated sense
(Figure 8a). Note that this is not a perfectly independent met-
ric; points close the edges of the model domain will obviously
be correlated with those used in the boundary condition forc-
ing. The robustness of this metric relies very heavily on ERS
data to fill in the interior of the T/P diamond. For time periods
when ERS data are not available (as in 1994 and the beginning
of 1995) this measure is reduced to an assessment of the
degree to which dynamical interpolation of T/P data by the
model matches purely statistical interpolation via objective
analysis.

A more independent test is provided by direct comparison of
predicted SLA with individual ERS observations in the interior
of the model domain (Figure 8c). This requires sampling the
model output in space and time along each of the ERS ground
tracks, extracting the predicted SLA at the model gridpoint
that is closest to each of the ERS observations. This compar-
ison leads to three quantitative metrics: the RMS difference
between the predicted and observed values, their correlation
coefficient, and the slope of the least squares fit. The y inter-
cept of the least squares fit is not included in this list because
in most cases it is not significantly different from zero.

The BATS CTD data provide a completely independent

Figure 4. Time series of (a) stream function and (b) vorticity errors for three assimilation experiments using
simulated data. Bold, dashed, and thin lines represent 1, 4, and 10 day boundary condition updating,
respectively. Error statistics represent the RMS difference between simulated fields and the reference solution
integrated over the model domain.
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measure of hindcast skill, as these observations were not used
at all in the boundary condition forcing. The time series of
predicted dynamic height anomaly DD versus that computed
from hydrographic profiles at BATS (Figure 8b) provides a
measure of how well the model is able to reconstruct mesoscale
fluctuations at this particular point. Presentation of these two
quantities in ensemble format (Figure 8d) provides an addi-
tional three metrics analogous to those introduced for the ERS
comparisons shown in Figure 8c. Note that the CTD-derived
dynamic height anomaly estimates are based on observations
that do not extend all the way to the bottom and thus do not
include barotropic contributions to the total variance in SLA.

3.3. Sensitivity Analysis

The central run evaluated in Figure 8 reflects the best fit to
the observations we were able to obtain through variation of
the model control parameters within the range of their ex-
pected values. These control parameters are the deep ampli-

tude of the EOF used in the stream function projection
scheme, the space scale and timescale on which the vorticity
boundary condition is filtered, and the nondimensional param-
eters of the dynamical model itself (Table 1). A series of
experiments will now be presented to quantify the sensitivity of
the results to the particular choices of parameters used in the
central run.

The various metrics of hindcast skill are well behaved over a
wide range of choices for the EOF amplitude at depth (Figure
9). For amplitudes less than the central value of 0.3, RMS
differences between predicted and observed SLA values based
on both altimetry and BATS hydrography rise significantly.
Changes in the model performance are less pronounced for
amplitudes larger than the central value, but all three RMS
metrics are either slightly degraded or remain the same. Thus
the central value appears to be at the center of a local mini-
mum in the RMS error measures. The statistics of the least
squares fit between predicted and observed SLA values are

Figure 5. (top) Simulated stream function and vorticity (both nondimensional) at 100 m on day 539 from the
experiment with daily boundary condition updates. (middle) The same fields from the reference solution.
(bottom) Difference between simulated and reference fields.
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Figure 6. (top) Simulated stream function and vorticity (both nondimensional) at 100 m on day 595 from the
experiment with 10 day boundary condition updates. (middle) The same fields from the reference solution.
(bottom) Difference between simulated and reference fields.

Figure 7. Predicted versus reference ocean SLA for (a) 1, (b) 4, and (c) 10 day updating experiments. RMS
differences between predicted and reference values are shown in the upper left corner of each plot. Statistics
of the least squares fit are shown at the lower right: correlation coefficient r , y intercept a , and slope b .
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relatively insensitive to the amplitude of the EOF at depth.
The central value produces simulations with correlation coef-
ficients and slopes of the least squares fits to the altimetric and
hydrographic data that are at or near their maximal values
(although the differences between runs are minor in these
metrics).

Filtering the along-boundary vorticity turns out to be a cru-
cial step in the hindcasting scheme. A time series of the vor-
ticity computed directly from the stream function reveals the
noisiness of the field introduced by the spatial derivatives in-
volved in the calculation (Figure 10). Smoothing this time
series in the space-time phase plane with a Gaussian filter with
half widths of 50 km and 7.5 days reduces this noise consider-
ably. The necessity of this step is borne out by the serious
degradation of hindcast skill when the unfiltered vorticity is
used (Figure 9). A suite of numerical experiments (not shown)
was used to determine the filtering parameters used here.

Finally, the sensitivity of the hindcast skill with respect to the
nondimensional parameters of the dynamical model is evalu-
ated. The values used in the central run (Table 1) are based on
regional estimates of the various physical scales taken from the

literature. Clearly, these scales used to compute the nondimen-
sional parameters are imperfectly known, so it is of interest to
verify that the model is properly tuned for use in this region.
Figure 11 shows three families of curves within each evaluation
metric in which a is systematically varied for different values of
b. Both parameters clearly affect the solution. The parameter
b controls the Rossby wave phase speed and is therefore cru-
cial to attaining proper propagation of mesoscale features. For
the central value of a (1.5), increasing or decreasing b from its
central value (0.5) degrades the solution accordingly. Nonlin-
earity of the simulation is controlled by a. For the central value
of b, changing a from its central value also diminishes hindcast
skill. The effects of stratification are controlled by G2. Once
again, perturbation from the central value significantly reduces
the fidelity of the solution (Figure 12). Thus all three effects
(nonlinearity, the b effect, and stratification) are important in
creating a realistic simulation. This sensitivity analysis demon-
strates that the central run results in values of the various
hindcast skill metrics that are generally equal to or better than
the best achieved in this exploration of parameter space.

Plate 1. An example snapshot of model output (October 31, 1995) from the central hindcast: (a) predicted
SLA, (b) objectively analyzed SLA (white and green lines show T/P and ERS ground tracks, respectively), (c)
difference between simulated and observed SLA, and (d) time series of RMS difference between simulated
and observed SLA averaged over the model interior (black vertical bar indicates the time of this particular
snapshot).
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Figure 8. Evaluation of hindcast skill for the central run. (a) Time series of normalized RMS difference
between predicted and objectively analyzed SLA in the interior of the model domain. Mean value for the
entire simulation is indicated in the upper left hand corner. Note the time period in 1994 and the beginning
of 1995 for which ERS data are not available. (b) Time series of predicted dynamic height anomaly DD versus
that inferred from CTD observations at the BATS site. (c) Predicted SLA versus that observed from ERS in
the interior of the model domain. The RMS error is indicated in the upper left corner, and the statistics of a
least squares fit between these two quantities are shown on the lower right (r is the correlation coefficient, a
is the y intercept, and b is the slope). Note that this is an ensemble presentation of what is shown in Figure
8a. (d) Predicted DD versus that inferred from BATS CTD observations. This is an ensemble presentation
of the time-domain comparison shown in Figure 8b. Statistics of the comparison are analogous to those
in Figure 8c.
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4. Discussion
4.1. Idealized Simulations

Assimilation experiments using simulated data establish the
error characteristics that could be expected in this application
under ideal conditions, i.e. what would be achievable if the
model physics were perfect, the approximations used in the
vertical projection scheme were completely valid, and SLA
observations contained no measurement error. Once the
model equilibrates from its arbitrary initial condition (after
;60 days), it is able to recreate the reference ocean almost
perfectly with boundary conditions updated on a daily basis

(Figure 7). Slight errors (RMS SLA ,1 cm) in the structure of
the mesoscale field crop up intermittently during periods when
the interfacial region between interacting eddies coincides with
the model boundary. Errors of this type are accentuated as the
boundary condition updating interval is lengthened to that
characteristic of the T/P repeat cycle (10 days). Moreover, this
reduction in updating frequency introduces noticeable smooth-
ing of the simulated fields. Whereas the slope of the least
squares fit of the predicted versus reference SLA was not
significantly different from 1.0 for 1 day updating, 10 day up-
dating reduces that slope to 0.83 (Figure 7). Nevertheless, 10

Figure 9. Sensitivity of the hindcast skill to the EOF amplitude at depth (open squares): (a) normalized
RMS difference between predicted SLA and objective analysis of T/P and ERS altimetric observations, (b)
RMS difference between predicted SLA and ERS observations in the interior of the model domain, (c)
correlation coefficient from the least squares fit of the same, (d) slope of the least squares fit to the same, and
(e)–(g) statistics analogous to Figures 9b–9d based on BATS hydrography. In each panel the central run is
indicated by a solid square, and the run using unfiltered vorticity is indicated by a triangle. Note that in Figure
9f the triangle is obscured by the solid square.
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day updating results in a reconstruction of the reference ocean
that is still quite robust both qualitatively and quantitatively,
with an RMS SLA difference of only 1.44 cm.

4.2. Data-Driven Hindcasts

Hindcast simulations driven with real data clearly cannot be
expected to reach the error floor identified in the idealized
experiments. Errors in the model physics, noise in the data,
and limitations of the assimilation procedure all tend to reduce
hindcast skill. Nevertheless, the central hindcast comes re-
markably close to these benchmarks. The correlation between
predicted SLA and ERS measurements in the interior of the
model domain is 0.89, with an RMS SLA difference of only 6.5
cm (Plate 1). This latter statistic is particularly noteworthy
given measurement error on the order of 3–5 cm [Fu et al.,
1994; Tapley et al., 1994; AVISO, 1997].

It is also worth noting that there is no perceptible adjust-
ment to initial conditions in any of the metrics used to assess
the skill of the hindcast simulations. The idealized experiments
using simulated data demonstrated that the model solution
becomes essentially independent of initial conditions after ;60
days. Because there is no sign of anomalously high error at the
beginning of the hindcast simulation, it appears that the ini-
tialization procedure based on objective analysis of SLA is
satisfactory.

Simulated dynamic height anomaly at the BATS site gener-
ally tracks the major features observed during this time period,

with the exception of late 1994 and early 1995. The correlation
coefficient between predicted and observed DD is 0.73, some-
what less than that computed for the altimetric comparisons.
This is likely related to the fact that the ERS comparisons
include an ensemble of measurements that are spread over the
model domain, some close to the boundary, where the model
is more constrained to be consistent with observations, and
others in the interior, where the model evolves more freely. In
contrast, the BATS data facilitate a comparison at a single site
relatively far away from the model boundary, so a weaker
correlation is to be expected. It is worthwhile pointing out that
the RMS DD difference at BATS is smaller than the RMS
SLA difference averaged over the model domain. This too is
not surprising given that (1) the altimetric measurements in-
clude a barotropic contribution that is not treated in the dy-
namic height calculations and (2) BATS observations during
this time period may not have adequately sampled extreme
events.

Despite these differences both the altimetric and hydro-
graphic comparisons reveal smoothing of comparable magni-
tude. In both cases the slope of the least squares fit to the
predicted versus observed mesoscale fluctuations is ;0.7 (Fig-
ures 8c and 8d). In other words, the amplitude of the predicted
anomalies is about 30% less than that of the observed. Results
from the idealized experiments using simulated data suggest
that a significant portion of this smoothing can be attributed to
the frequency at which boundary condition information is pro-

Figure 10. Time series of along-boundary vorticity at 100 m: (top) unfiltered and (bottom) smoothed with
a space-time Gaussian filter (see text). White horizontal lines indicate corners of the model domain.
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vided. Updating all four boundaries in synchrony every 10 days
led to smoothing of ;20% (Figure 7). Although this sampling
interval is characteristic of the T/P repeat cycle, it does not
reflect temporal offsets in sequence in which the various
ground tracks are occupied. Thus the comparison is not a
perfect one. Nevertheless, this suggests that approximately two
thirds of the smoothing present in the realistic case can be
attributed to the interval at which boundary condition updates
are available. The remaining one third is presumably due to
some combination of the smoothing associated with objective
analysis of the observations (Figure 13), filtering of the along-
boundary vorticity field, and approximations inherent in the
model physics and assimilation procedure.

5. Conclusions
Satellite altimetry provides an enormously powerful method

of observing the ocean. However, competing interests of spa-

tial and temporal resolution make it impractical to resolve
mesoscale variability fully. Instruments currently in operation il-
lustrate this tradeoff: the relatively short repeat cycle of T/P ne-
cessitates track lines that are far enough apart to accommodate
multiple eddies in between them, whereas the relatively fine spac-
ing between ERS tracks makes the repeat cycle longer than the
mesoscale decorrelation time. Thus some form of space/time in-
terpolation is needed to produce continuous field estimates.

The results presented herein demonstrate the feasibility of
using an open boundary model to interpolate dynamically me-
soscale variability in between T/P ground tracks. Implementa-
tion of the model so that the edges of the domain coincide with
T/P lines maximizes the utility of the altimetric information for
providing the necessary boundary conditions. Idealized exper-
iments with simulated data showed that the model dynamics
were sufficient to predict the evolution of the interior only on
the basis of information provided at the boundaries. Clearly,

Figure 11. Sensitivity of the hindcast skill to variations in nondimensional parameters a and b: (a) normal-
ized RMS difference between predicted SLA and objective analysis of T/P and ERS altimetric observations,
(b) RMS difference between predicted SLA and ERS observations in the interior of the model domain, (c)
correlation coefficient from the least squares fit of the same, (d) slope of the least squares fit to the same, and
(e)–(g) statistics analogous to Figures 11b–11d based on BATS hydrography.
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this approach would not be tractable for arbitrarily large do-
mains; with more remote boundary forcing, assimilation of
data in the interior would be needed to maintain the fidelity of
the simulation. However, in the present application, altimetri-
cally derived boundary conditions are sufficient to produce a
skillful hindcast.

Although the hindcast skill is significant, it is clearly not
perfect. Analysis of the idealized experiments indicates that
approximately two thirds of the smoothing present in the hind-
cast is due to the 10 day interval between boundary condition
updates. It is possible that this error characteristic could be
ameliorated by adopting a more sophisticated approach to
data assimilation. For example, the adjoint method could be
used to invert for perturbations to the observed boundary

conditions that would minimize some error metric based on
ERS altimetry and BATS observations in the model interior.
This task is left for future work.

Another aspect worthy of additional research is the role of
surface forcing. Although the present model can accurately
represent the near-surface expressions of eddy motions asso-
ciated with fluctuations of the main thermocline, phenomena
driven by surface fluxes of heat, salt, and momentum are not
yet treated explicitly. Future enhancements to this system will
include such processes in the context of a coupled surface
boundary layer that has been coupled to this very same QG
model [Walstad and Robinson, 1993; McGillicuddy and Robin-
son, 1997b]. This will facilitate study of the complex interaction
between surface forcing and the ocean’s interior motions,

Figure 12. Sensitivity of the hindcast skill to variations in nondimensional parameter G2: (a) normalized
RMS difference between predicted SLA and objective analysis of T/P and ERS altimetric observations; (b)
RMS difference between predicted SLA and ERS observations in the interior of the model domain, (c)
correlation coefficient from the least squares fit of the same, (d) slope of the least squares fit to the same, and
(e)–(g) statistics analogous to Figures 12b–12d based on BATS hydrography.
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which together create the tremendous variability observed in
the upper ocean.

Nevertheless, success of the present model in hindcasting
dynamic height anomaly at BATS suggests it is ready to be
used for a retrospective analysis of eddy-driven processes in
the time series. A wide range of in situ biogeochemical mea-
surements is available [Michaels, 1995; Michaels and Knap,
1996], in addition to high-resolution moored time series [Dick-
ey et al., 1999] and satellite sea surface temperature and ocean
color data (http://www.bbsr.edu/satellite/). Synthesis of all
these various data types in the context of numerical models
such as that described here represents an important challenge
for biogeochemical research [Doney, 1999].

The overall modeling approach used herein is generic and
portable. In principle, this system can be implemented any-
where in the world ocean where the model physics are valid
(the midlatitude open ocean) and the vertical structure of
thermocline fluctuations is dominated by a single mode of
variability (which is the case in the midlatitudes [Wunsch,
1997]). Thus it is our hope that this system will prove to be
useful in providing a four-dimensional context in which to
interpret time series observations in other locations in addition
to BATS.
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Schröter, J., U. Seiler, and M. Wenzel, Variational assimilation of
Geosat data into an eddy-resolving model of the Gulf Stream ex-
tension area, J. Phys. Oceanogr., 23, 925–953, 1993.

Siegel, D., D. McGillicuddy, and E. Fields, Mesoscale eddies, satellite
altimetry and new production in the Sargasso Sea, J. Geophys. Res.,
104, 13,359–13,379, 1999.

Spall, M., Regional primitive equation modeling and analysis of the
POLYMODE data set, Dyn. Atmos. Oceans, 14, 125–174, 1989.

Stammer, D., Geosat data assimilation with application to the eastern
North Atlantic, J. Phys. Oceanogr., 27, 40–61, 1997.

Stanley, H., The GEOS-3 project, J. Geophys. Res., 84, 3779–3783,
1979.

Tapley, B., G. Born, and M. Parke, The Seasat altimeter data and its
accuracy assessment, J. Geophys. Res., 87, 3179–3188, 1982.

Tapley, B., et al., Precise orbit determination for TOPEX/Poseidon, J.
Geophys. Res., 99, 24,383–24,404, 1994.

The MODE Group, The Mid-Ocean Dynamics Experiment, Deep Sea
Res., 25, 859–910, 1978.

Thiebaux, H., and M. Pedder, Spatial Objective Analysis, Academic,
San Diego, Calif., 1987.

Verron, J., L. Gourdeau, D. Pham, R. Murtugudde, and A. Busalacchi,
An extended kalman filter to assimilate satellite altimeter data into
a non-linear model of the tropical Pacific: Method and validation, J.
Geophys. Res., 104, 5441–5458, 1999.
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