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High resolution time series reveals cohesive but
short-lived communities in coastal plankton
Antonio M. Martin-Platero1,6, Brian Cleary2,3, Kathryn Kauffman 1, Sarah P. Preheim1,7,

Dennis J. McGillicuddy, Jr4, Eric J. Alm1,2,5 & Martin F. Polz1

Because microbial plankton in the ocean comprise diverse bacteria, algae, and protists that

are subject to environmental forcing on multiple spatial and temporal scales, a fundamental

open question is to what extent these organisms form ecologically cohesive communities.

Here we show that although all taxa undergo large, near daily fluctuations in abundance,

microbial plankton are organized into clearly defined communities whose turnover is rapid

and sharp. We analyze a time series of 93 consecutive days of coastal plankton using a

technique that allows inference of communities as modular units of interacting taxa by

determining positive and negative correlations at different temporal frequencies. This

approach shows both coordinated population expansions that demarcate community

boundaries and high frequency of positive and negative associations among populations

within communities. Our analysis thus highlights that the environmental variability of the

coastal ocean is mirrored in sharp transitions of defined but ephemeral communities of

organisms.
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Because microbes in the surface waters of the ocean have key
roles in global carbon and nutrient cycling, they have been
under intense scrutiny, revealing an increasingly complete

picture of their global taxonomic composition and functional
repertoires (e.g., refs.1–3). What remains poorly understood,
however, are spatio-temporal dynamics of the vast majority of
taxa, which include diverse representatives from all domains of
life, pursuing different ecological strategies. These include bac-
teria forming complex biofilms on different types of organic
particles or existing as free-living, single cells, and photosynthetic,
filter-feeding, and predatory eukaryotic plankton. For these
organisms, ocean water represents a nutrient poor but highly
heterogeneous ecological landscape on different spatial and
temporal scales with physical and chemical gradients ranging
from micrometers to kilometers4–6. For example, direct compe-
titive or cooperative interactions may lead to rapid micro-scale
successions on suspended organic particles7, whereas large-scale
algal blooms may trigger growth of bacteria that degrade specific
algal exudates8. Owing to the apparent difference in scales of such
interactions, it remains unknown whether communities with
clearly defined boundaries in time and space can be identified
across the entire plankton, or whether taxonomic turnover is
more gradual and continuous, affecting limited groups of
organisms at a time.

Analyses of time series of microbial plankton have to date been
equivocal towards the question of organization into cohesive
communities. Although longer but sparsely sampled time series
have provided evidence for seasonal recurrence and successions
of some microbial taxa (e.g., refs.9,10), such patterns have so far
proven weak across the entire plankton and have provided no
indication of sharp transitions11–13. In fact, more densely sam-
pled but short time series have revealed brief and intense fluc-
tuations in relative abundance of operational taxonomic units
(OTUs)14–16, which are the most highly resolved taxonomic units
in ribosomal RNA-based diversity studies. However, because
current time series have either been longer but sparsely sampled
or densely sampled but short, their resolution is limited over time
scales relevant for both detecting microbial growth and transi-
tions in ecological conditions so that associated community
change had been difficult to constrain. We therefore reasoned
that to assess the extent of organization into communities over
time, an extended high-resolution time series of bacterial and
eukaryotic plankton was necessary that could capture both rapid
changes due to organismic interactions as well as longer range
dynamics due to transitions in overall ecological conditions.

Here we sample and analyze coastal bacterial and eukaryal
plankton over 93 consecutive days and show that although
individual taxa fluctuate on near daily time scales, the amplitude
of these fluctuations is characteristically greater during limited
time periods, indicating preferential growth. To determine whe-
ther such temporally limited expansions are coordinated across
multiple taxa as expected from cohesively behaving communities,
we use wavelet-based analysis to establish correlations over dif-
ferent time spans. This analysis shows that highly cohesive
communities can be identified that are differentiated by envir-
onmental and organismal features and that turnover rapidly on
the order of a few days.

Results
Contrasting plankton dynamics at different taxonomic reso-
lution. To determine the dynamics of bacterial and eukaryotic
plankton over varying temporal scales, we collected daily water
samples from a coastal ocean site (Nahant, MA, US East Coast)
over three consecutive months spanning a summer to fall sea-
sonal transition (23 July to 23 October, 2010; see Methods).

Because we use fixed-point (Eulerian) sampling, as has been
standard in ocean time-series studies, our data integrate temporal
and spatial components of variability associated with the con-
tinuous movement of water masses via tidal cycles and ocean
currents. To assess organismal diversity, we carried out Illumina-
based tag-sequencing of bacterial 16S and eukaryotic 18S rRNA
genes followed by identification of OTUs (Methods). To max-
imize ecological resolution of OTUs, we used distribution-based
clustering (dbc), which does not assume a fixed sequence simi-
larity cut-off to define OTUs but instead identifies the sequence
similarity at which clusters display cohesive behavior across
samples17. This approach usually yields clusters comprising very
closely related sequences and resulted in a total of 49,637 bacterial
and eukaryotic OTUs, of which 9660 reoccurred on more than
10 days. These recurrent OTUs were used to test the extent to
which plankton are naturally organized into clusters of taxa with
correlated dynamics as expected for communities of interacting
organisms.

Initial analysis of the time series indicated relatively stable
dynamics across higher taxonomic ranks (phylum to family), but
very rapid, near daily fluctuations among both bacterial and
eukaryotic OTUs (Fig. 1). Although a similar pattern was noted in
a shorter daily time series of coastal plankton on the US West
Coast16, our longer time series revealed another pervasive pattern:
although many individual OTUs tended to persist at low relative
abundance across the entire time series, they frequently showed
limited periods of expansion, during which they rose to higher
relative abundance (on average, across the period of the
expansion), before returning to a low level. Such patterns have
previously been described as seed bank dynamics18,19 and Fig. 2
shows a typical example of such variation of a eukaryotic
primary-producer (diatom) and bacterial heterotrophic (Flavo-
bacteria) OTU, which both fluctuated at low levels during most of
the time series but displayed higher amplitude of fluctuation
during a limited period. These dynamics are consistent with
ecological forcing acting at multiple temporal scales, wherein
baseline carrying capacity for an OTU gradually increases at
larger temporal and spatial scales but biological interactions
might induce shorter term fluctuations due to cooperation,
succession, competition, and predation20–23. We therefore
hypothesized that communities of interacting organisms should
show coordinated expansions of OTUs over longer periods along
with more rapid fluctuations driven by direct positive or negative
biotic interactions, together with environmental forcing.

Identifying microbial communities amidst high OTU varia-
tion. To allow for detection of such coordinated longer expan-
sions coupled to shorter term biotic and environmental
interactions, we developed a novel clustering method based on
wavelet analysis (WaveClust). As in previous applications to
ecological time series22,24, wavelet analysis allowed us to
decompose each OTU time series into lower and higher fre-
quency components, while maintaining both temporal resolution
and phase information. This enables identification of temporally
coordinated periods of low-frequency expansion in addition to
dynamics either due to positive or negative interactions at higher
frequency where interactions here denote correlated dynamics.
Given the information in each decomposed time series, we were
specifically interested in defining pairwise interactions between
OTUs based on correlation or anti-correlation at multiple distinct
frequencies, and in using a network of such interactions to
identify emergent communities through application of a Markov
clustering algorithm25 (Methods).

WaveClust advances beyond earlier applications of wavelet
decomposition in macroecology22,24 by considering a large
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Fig. 1 Contrasting dynamics of plankton at different levels of taxonomic resolution. Although relative abundances of bacteria (a) and Eukarya (b) appear
relatively stable when evaluated at the phylum to family level, they vary extensively and rapidly at fine-scale taxonomic resolution (OTU-level) (c), also
evidenced by different rates of decline in taxonomic similarity (1-Jensen–Shannon distance) for phylum- and OTU-level with increasing time lags (d).
Legends for phylum and family-level taxa are ordered from most to least abundant. Error bars in d denote standard error of three independent samples
per day
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Fig. 2 Example of limited period of higher average abundance of OTUs. For the diatom OTU Euk23325 and the Flavobacteria OTU Bac47519, a the 14 day
moving average and b daily dynamics are shown. On short time scale (days) both OTUs are negatively correlated, whereas over longer time scales (weeks)
they are positively correlated
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number of high-resolution interactions (i.e., at the OTU-level as
compared with the guild level) in a highly complex environment,
and by generalizing frequency-interaction analysis to capture
distinct (and possibly different) relationships at high frequency
and low frequency. The emergent global structure of the
interaction network is then used to identify clusters of interacting
OTUs as communities. Each community is defined using a graph
clustering algorithm that finds densely interconnected OTUs,
using both high-frequency and low-frequency correlations to
define edge weights (Methods).

Simulations confirmed that WaveClust was able to correctly
identify OTU time series that were coupled at both high
frequency and low frequency, whereas standard Pearson correla-
tion analysis was not sufficient to capture these coupled dynamics
(Supplementary Fig. 1, Methods). Simulated data were also used
to assess how peak bloom size, number of blooms, and the period

of blooms may affect results (Supplementary Fig. 2A). We found
that positive associations (between a pair of OTUs that are
correlated at both low and high frequency; Supplementary
Fig. 2B) are more difficult to detect with our method than
negative associations (between OTUs that are anti-correlated at
high frequency; Supplementary Fig. 2C), that our method is less
sensitive with increasing bloom abundance, and that results were
largely robust to the period of the bloom. This was true whether
we allowed for only one bloom per time series (as in
representative examples in Supplementary Fig. 2A), or multiple
blooms.

Defined communities with rapid and sharp turnover. Appli-
cation of WaveClust to our daily time series of bacterial and
eukaryotic plankton revealed that associations between taxa over
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time were highly organized and comprised of distinct clusters of
OTUs as expected for cohesively behaving communities of
interacting organisms. These communities turned over very
rapidly, reaching peak abundances on the order of only a few
days. However, communities typically persisted at lower abun-
dances across the time series with occasional recurrence of peaks
(Fig. 3a). This demonstrates that nearly all OTUs across bacteria
and Eukarya can be rare over extended periods of time and that
dominance may change rapidly over small temporal and/or
spatial scales. These observations of rapid community-level
turnover run counter to the intuition that there should be con-
sistent seasonal trends in community composition and may
explain why compositional similarity in longer but more sparsely
sampled time series decays quickly even when the same season in
consecutive years is compared11,12.

We found highly consistent community-level organization
when considering either positive (Fig. 3a) or negative (Supple-
mentary Figs. 3A, 4, and 5) high-frequency interactions,
suggesting both types of interactions are pervasive within
communities. Consistent organization is supported by (i) high
overlap in OTUs among positive and negative high-frequency
clusters (Supplementary Fig. 5) and (ii) a mutual information
score (a quantitative measure of cluster agreement) of 52%
between the two sets of clusters (the mutual information with
randomly generated clusters is 0%). The most consistent
difference was that several larger clusters in the negative-
interaction analysis broke into pairs of clusters in the positive
interactions (Supplementary Figs. 4 and 5; Supplementary
Table 1). This indicates that there were characteristic high
frequency negative interactions (possibly due to competition or
predation) between pairs of OTUs occurring over longer time
periods but that high-frequency positive interactions (possibly
due to cooperation) were temporally more limited. One
explanation of the latter would be that shorter lived blooms of
organisms exploiting similar resources may lead to metabolic
interactions (Fig. 3a; Supplementary Fig. 3A). Although it has
been more common to use positive correlations to estimate
community-level interactions, the high agreement with negative
high-frequency correlation-based community structure estimates
suggest that both follow similar organizing principles. In other
words, positive correlation over longer periods indicates that
changes in overall ecological regimes select for consistent sets of
organisms, which then engage in the predicted positive and
negative interactions over shorter time scales.

Testing robustness of community predictions. To assess the
statistical significance of the observed clustering of taxa into
communities, we devised a permutation-based test. We permuted
each time series independently and calculated wavelet similarity
scores, noting for each pair of OTUs if the scores were greater
than those observed in the original data. We repeated these
permutations 50,000 times, and used the results to calculate
empirical p-values. This analysis revealed that the real data con-
tain significant structure not present in shuffled time series: the
original data have a clear enrichment for significant p-values
(Supplementary Fig. 6A); clusters that only use connections
passing a false discovery rate (FDR) of 10% are in good agreement
with our original results (55% mutual information); and, if we
repeat the FDR and clustering analysis using shuffled time series
in place of the original, we observe very little clustering (just a
single cluster containing only 122/9660 OTUs). We also note that
using the conservative FDR test, only 5% of the scores that passed
the original thresholds also pass the FDR test. Thus, overall
cluster structure remains robust, even if less stringent connections
between nodes are allowed.

Moreover, the clustering of taxa into communities was robust
to the potential effect of autocorrelation at short time scales, and
to how OTUs were defined (i.e., by distribution-based clustering
vs. uniform similarity cut-off). Although overall population
similarity at short time scales is high (~50–60% with a 1-day
lag), especially relative to longer (e.g., 1 month) time scales
(Fig. 1d), the autocorrelation of each time series with a 1-day lag
is modest (median of 19%; Supplementary Fig. 7A). Using first
difference data to remove the autocorrelation, we found that
high-frequency similarity scores were relatively unchanged (86%
correlated with scores from the original data; Supplementary
Fig. 7B), and that the resulting clusters are highly similar to the
original clusters (81% mutual information for positive interac-
tions, 82% mutual information for negative interactions). Using a
different way to define OTUs (i.e., simply grouped at 100%
sequence identity), we found significant p-values at a frequency
similar to the original data (Supplementary Fig. 6B), and also
found that clustering of non-distributional OTUs results in a
similar number of clusters, sharp transitions, and similar patterns
of abundance (Supplementary Fig. 8). We note that it will be
important to keep in mind the potential effects of autocorrelation,
especially when there is a large difference in autocorrelation
between long and short time scales. Although our results were
robust to these potential effects, this should not be taken for
granted in new time series, and analysis should be performed on
differenced data.

Fine-scale taxonomic differentiation of communities. A key
attribute of the time series, consistent with the detection of
changing ecological conditions, is the fine-scale taxonomic dif-
ferentiation of taxa among communities. First, the time series
followed a general pattern of alternating predominance of dia-
toms and dinoflagellates (Supplementary Figs. 9, 10, and 11),
which both have distinct nutrient requirements and both occur
under differing environmental conditions26. However, further
niche partitioning within these broad groups of phytoplankton is
suggested by closely related OTUs peaking in different commu-
nities (Supplementary Fig. 12). Second, peaks of primary-
producer OTUs frequently correlated to rapid expansions of
specific bacterial OTUs (e.g., Fig. 2), a pattern that has previously
been shown to be due to successions of bacteria capable of
degrading different algal exudates8,10. Our data suggest that these
associations might be specific at the OTU-level so that rapid
turnover at the primary-producer level may lead to taxonomically
highly resolved bacterial successions via trophic interactions.
Overall, these patterns evoke Hutchinson′s paradox of the
plankton hypothesis, which postulates that phylogenetic diversity
of phytoplankton exceeds the number of necessary resources
because physical structuring and biological interactions creates
additional niche dimensions27. Consistent with this hypothesis,
the temporally highly structured diversity into communities of
interacting organisms suggests that the realized niche space is
relatively narrow, and may result in low ecological redundancy
even among closely related primary-producer OTUs and the
bacteria they interact with.

The above illustrates a subtle but important point for
interpretation of community assembly. The most closely related
OTUs are more frequently associated with different communities.
When comparing the distribution of OTUs defined by varying
genetic distance from 0 to 0.06 across all bacterial and eukaryal
taxa, the majority of pairs fall into different communities (Fig. 4).
Such differential dynamics of close relatives is generally
interpreted as negative interactions (e.g., competition) being
important in community assembly28. It may also be an indication
of frequent speciation leading to niche partitioning. This
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interpretation is consistent with our previous findings of
differential microhabitat association and ecological specialization
of closely related Vibrio populations that are all identical in 16S
rRNA genes29,30. In fact, such differential associations may be a
direct outcome of the speciation process as the formation of
distinct lineages in a highly interconnected environment like the
ocean requires the evolution of ecological tradeoffs, which induce
spatial and/or temporal separation of gene pools and hence allow
differential ecological specialization to evolve and adaptive traits
to spread in a population-specific manner31. The strong pattern
of differential distribution of the most highly resolved taxonomic
units might thus indicate that speciation is occurring frequently
and cautions that using too broadly defined taxonomic units
might miss important ecological dynamics.

Environmental changes associated with community transi-
tions. Assessment of WaveClust clusters in light of observed
environmental conditions provides further strong support for
different physical, chemical, and/or biotic conditions structuring
the identified communities. First, inspection of satellite data of
regional chlorophyll a (chl a) concentration and sea surface
temperature (SST) suggest that some of the fluctuations in
communities coincide with transient mesoscale features such as
upwelling water masses and eddies (Supplementary Fig. 13).
Second, network analysis of the Granger causalities between
clusters and metadata, and also among clusters, revealed two
main modules, which represent distinct chronological “meta-
regimes” in the times series and were differentiated by shifts in
nutrients, macroalgal abundance, and physical parameters
(Fig. 3c; Supplementary Fig. 3C). Notably, both meta-regimes
were characterized by alternating fluctuations in dominant
communities that were disrupted by two major disturbances.

The first period (represented by clusters A to D in Fig. 3c, and
A to D and O in Supplementary Fig. 3C) captures a seasonal

warm period disrupted by the abrupt movement of a distinct
water mass into the coastal sampling site. Eleven days into the
time series the prevailing communities (clusters A and B) were
suddenly replaced by another highly abundant community
(cluster C) accompanied by a drop in water temperature over
2 days from 18.3 to 10.9 °C, likely due to an upwelling event
(Fig. 3a, b; Supplementary Figs. 3A, 10 and 13). Notably, this
appeared as a shift from a dinoflagellate to diatom-dominated
community (Supplementary Figs. 9 and 10) consistent with
previous observations that the latter are associated with higher
nutrients conditions typical of upwelling events32,33. This
interpretation is reflected in chl a and SST data obtained by
satellite. Although these data are patchy due to variable cloud
cover, they suggest an initial low chl a, high SST period that
transitions to a high chl a, low SST feature along the coast by day
221 (Supplementary Fig. 13). With the subsidence of the
upwelling mass the site returned to initial temperatures and the
two original communities rebound briefly albeit separated by
another short-lived community (cluster D).

The second meta-regime (starting around day 235) represents
an initial warm period marked by the passage of a hurricane
system and followed by gradual, seasonal cooling of the water
(Fig. 3c; Supplementary Figs. 3C and 14). Preceding the hurricane
is a period with high macroalgae abundance and increased wave
height that coincides with the emergence of cluster E, which
notably contains a strong Vibrionaceae bloom (Supplementary
Fig. 15) that may be driven by their positive correlation with
higher water temperature and their ability to degrade brown algal
polysaccharides30,34. This warm and high chl a period (Supple-
mentary Fig. 13) came to an abrupt end with the passage of
Hurricane Earl on ordinal day 247, with near-coastal SST
dropping significantly due to storm-induced mixing and/or
upwelling. Community F subsequently spiked, likely due to the
passive resuspension of benthic material and sediment as this
community contained a high proportion of taxa, such as
nematodes, not typically found in the water column. Indeed,
high incoming tides and below average dominant wave period
indicate elevated currents over a large area of shallow sediments
(Fig. 3c).

Finally, the increase and eventual dominance of cluster G,
which is enriched in diatoms and dinoflagellates, as well as
Flavobacteria (Supplementary Fig. 9), coincided with a sudden
drop from ~20 to 16 °C in water temperature but regional high
chl a following Hurricane Earl (Supplementary Fig. 13). The
abrupt end of this algal bloom around day 261 is marked by a
transition to the short-lived cluster H during a lower chl a period,
which is subsequently replaced by a short but intense algal bloom
on days 264 through 266 coincident with the expansion and
collapse of cluster I. Subsequently, cluster L develops during a low
chl a feature that spreads along the coast and disappears around
day 286 after which chl a increases indicating the development of
a new algal bloom at the same time as cluster N appears
(Supplementary Fig. 13). The continued gradual decrease in water
temperature during this latter period in the time series is
consistent with seasonal transition to fall conditions (Supple-
mentary Figs. 13 and 14). Although such gradual change might be
expected to correspond to a gradual change of taxa, there was
instead very rapid turnover of several communities with a notable
repeated recurrence of one community (cluster J). Hence,
although the temperature was similar to the cold-water intrusion
in the beginning, different communities dominated this seasonal
cooling event demonstrating that although temperature is an
important master variable, combinations of other factors,
including physical variability and other environmental factors,
trigger changes in entire communities rather than individual
taxa.
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Discussion
Our time series combined with novel analysis techniques
(WaveClust) reveals surprisingly clear organization of coastal
plankton into communities defined as modules of correlated taxa.
These communities are likely assembled by coordinated expan-
sions of OTUs in response to favorable growth conditions
modulated by both positive and negative interactions among
OTUs and the environment, leading to rapid fluctuations of taxa.
In fact, our analysis shows surprisingly high overlap in commu-
nities defined by positive and negative interactions at high fre-
quency (Fig. 3; Supplementary Figs. 3, 4 and 5), suggesting that
both affect OTU dynamics within the same communities.

These organismal interactions may strongly contribute to high
specificity in community membership detected here with even the
most closely related OTUs primarily occurring in different
communities, suggesting that they are ecologically differentiated.
These observations pose the intriguing question to what extent
communities reassemble across longer time periods as further
evidence of their cohesiveness and whether they assemble
reproducibly enough for their OTU composition to serve as an
accurate indicator of environmental conditions. Answering this
question will require expanding sampling to multiple years and
other ocean regions. These may show slower dynamics than the
highly productive and dynamic coastal ocean; however, our
results stress that more time series are required that combine both
high-frequency sampling over shorter periods with longer, low-
frequency sampling to answer the question of community turn-
over in the ocean.

Because our sampling regime captured elements of both spatial
and temporal heterogeneity, the observed rapid turnover of
communities suggests they are highly patchy at either short
temporal and/or small spatial scales. Indeed, such intermittency
and patchiness is characteristic of the global coastal ocean35.
However, the spatial scale of the types of plankton communities
described herein remains unknown, and spatial surveys are nee-
ded to characterize this patchiness. Although we cannot at this
point clearly disentangle spatial from temporal variation,
inspection of satellite data support rapid change in local ocea-
nographic features such as upwelling water masses and eddies
that may provide short-lived but stable conditions for different
communities to form (Supplementary Fig. 13). The transitions in
communities in the beginning of the time series were most likely
due to changing wind patterns inducing upwelling events (Fig. 3).
However, later in the time series there were more gradual, sea-
sonal changes of the water that may have led to community
turnover within a more similar body of water. Irrespective of the
reason, such rapid turnover in microbial communities is highly
relevant for larger sessile and mobile organisms as they will lead
to frequent encounter of different sets of microbes that may
include different food but also pathogens and other harmful
organisms. Therefore, the observed rapid change in OTUs and
communities on daily time scales also bears relevance for mon-
itoring of the coastal ocean for recreational and commercial
human use. Such monitoring may require high frequency of
biological sampling in order to critically evaluate rapidly chan-
ging potential exposures. However, paraphrasing Mark Twain
who once famously said that “if you don’t like the weather in New
England, just wait for a few minutes”, the good news may be that if
you don’t like the microbial community, just wait for a few days.

Methods
Environmental sampling and metadata. Samples were collected at Canoe Cove,
Nahant, MA, USA (Lat: 42° 25′ 10.6″ N, Lon: 70° 54′ 24.2″ W) between 09:30 am
and 11:30 am (median 10:40 am) every day between July 23, 2010 (ordinal day 204)
and October 23, 2010 (ordinal day 296). Nahant is a 2.7 km2 rocky peninsula
connected to the mainland by a ~3 km long causeway. This site was chosen because

there is no large freshwater input on the peninsula so that the daily water samples
represent coastal water in the Massachusetts Bay as it moves driven by currents and
tidal cycles. The absolute location of sampling at Canoe Cove varied each day
dependent on tidal height. Samples were always taken in triplicates for each day.
Between Day 204 and 258, the three samples were taken at the same location, from
Day 259 forward replicates for each day were collected separately at three spatially
separated stations to test for variation on small spatial scales (~20 m). Independent
of the sampling scheme, variation between consecutive days was always much
larger than within days (Kruskal–Wallis χ2 = 228.63, df = 87, p-value = 1.145e−14
for the entire series, and Kruskal–Wallis χ2 = 76.722, df = 33, p-value = 2.448e−05
for the spatially separate stations). Associated metadata values, as described below,
are provided in Supplementary Data 7.

Air and water temperatures were measured on site each day. Salinity was
measured for water samples collected each day on stored water samples using a
Reichert digital refractometer calibrated to a standard salt solution.

Water samples for DNA extraction were collected each day as triplicate 4L
samples in autoclaved screw-cap polypropylene bottles. Upon return to the lab the
water from each of the 4L samples was filtered by peristaltic pump from the
collection vessel through 0.2 µm Sterivex filters (Millipore, SVGP01050) and the
filters stored at −20 °C; time between sample collection in the field and storage of
filters was ~3.5h.

Water samples for analysis of ammonium, phosphate, combined nitrate and
nitrite, and silicate were collected in 250 mL polypropylene bottles, filtered through
ashed GF/F filters (Whatman, 1825–047), collected into 20 mL scintillation vials
and stored frozen daily. All materials used to process nutrient samples were acid
washed prior to use. Nutrients were analyzed by the Nutrient Facility at Woods
Hole Oceanographic Institution following completion of the field sampling study.
Correction factors were applied for all nutrients in cases where volume loss
occurred during freezing, correction factors for silicate were assumed to be linear
with change in salinity as previously shown for phosphate and nitrate36.

The abundance of macroalgae in the water during each daily sampling at
Nahant was ranked on the basis of daily field notes and photographs following the
completion of the study.

Water level and tidal direction data sets were based on water level data available
for nearby NOAA Boston Harbor station 8443970. Verified 6-min water level data
for each month of the time series were downloaded from: http://opendap.co-ops.
nos.noaa.gov/axis/webservices/waterlevelverifiedsixmin/index.jsp. A new vector for
tidal direction was generated assigning each time point as either “Incoming” (1) or
“Outgoing” (0), depending on whether the water level was higher or lower than the
previous 6-minute time point, respectively. The time point for each day differed
and was dependent on arrival and departure time from the sampling site each day.

Several data sets from NOAA Station 44013, located 16 nautical miles east of
Boston, MA, were used to assess relation of Nahant observations to larger scale
regional conditions, which were: chlorophyll concentration, atmospheric pressure,
dominant wave period, wave height, and wind speed. These data types were
contained within historical records for “Ocean Data” (chlorophyll concentration)
and “Standard Meteorological Data” (all others), which were downloaded from
http://www.ndbc.noaa.gov/station_history.php?station=44013. Data were
processed as follows: Times were converted from UTC to EST; all no-data values
(e.g., “99”, “999” or “9999”) were removed; 24 h averages were calculated for each
time point by averaging values for parameter at a given time point and all time
points in the previous 24 h; time points for days with greater than 10 missing
hourly values in the preceding 24 h window were discarded. The time point used
for each day was 10:50 am EST for all data types except chlorophyll concentration,
for which 11:00 am EST was used.

Satellite sea surface temperature and chlorophyll a fields were obtained from
Level 2 MODIS-A browser at https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?
sen=am. Scenes that were relatively cloud free over the domain of interest were
compiled for the period July–October 2010.

Information regarding the passage of Hurricane Earl, which crossed the study
site latitude between 02:00 am and 08:00 am on 4th September (ordinal day 247),
was obtained from the National Hurricane Center37.

Nucleic acid extraction. To isolate genomic DNA from the 279 water samples
(93 days in triplicates) we used a bead beating approach. Filters were sterilely cut
and placed into 2 mL screw-cap tubes, followed by the addition of 0.25 g of sterile
0.1 mm zirconium beads (BioSpec Products Inc., Bartlesville, OK). Cells were lysed
by adding 750 μL of Cell Lysis Solution (Qiagen, USA) and shaken in a Mini
Beadbeater-1 (BioSpec Products, Inc., Bartlesville, OK) at 5000 rpm for 60 s, fol-
lowed by incubation at 80 °C for 5 min. Once samples were cooled down to room
temperature, RNA was digested by adding 4 µL RNAse A (4 mg/mL), mixed by
inverting the tubes, and incubated at 37 °C for 30 min. DNA was purified by adding
250 µL of Protein Precipitation Solution (Qiagen, USA), mixed by vortexing for 20
s, incubated on ice for 5 min and centrifuged at 13,000 rpm for 5 min. Supernatant
was transferred to a new tube and centrifuged again to ensure removal of all
precipitates. Subsequently, 750 µL of isopropanol were added to 750 µL of super-
natant to precipitate DNA, and incubated at −20 °C overnight. DNA was recovered
by centrifugation at 13,000 rpm for 5 min, and washed with 700 µL of 70% ethanol.
Finally, the DNA was dried and resuspended in 100 µL of DNA hydration solution
(Qiagen, USA).
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Ribosomal RNA gene amplification and sequencing. To generate 16S (bacteria)
and 18S (Eukarya) ribosomal RNA gene libraries for tag-sequencing, we con-
structed paired-end Illumina libraries using a two-step PCR approach17. In the first
step, we used primer pairs targeting the V4 variable region of the 16S rRNA gene in
bacteria (PE16S_V4_U515_F, 5′-ACACG ACGCT CTTCC GATCT YRYRG
TGCCA GCMGC CGCGG TAA-3′; PE16S_V4_E786_R, 5′-CGGCA TTCCT
GCTGA ACCGC TCTTC CGATC TGGAC TACHV GGGTW TCTAA T-3′)38 and
the V9 variable region of the 18S rRNA gene in Eukarya (Il_18S_V9_1391F, 5′-
ACACG ACGCT CTTCC GATCT YRYRG TACAC ACCGC CCGTC-3′; Il_18s_-
V9_EukB, 5′-CGGCA TTCCT GCTGA ACCGC TCTTC CGATC TTGAT CCTTC
TGCAG GTTCA CCTAC-3′)39. These primers also include a partial Illumina
adapter sequences at the 5′ end (italicized above) and a YRYR sequence was added
in the forward primer as a complexity region to help the image-processing software
detect distinct clusters during Illumina sequencing. In the second step, we incor-
porated the full Illumina adapter and a sample-specific 9 bp barcode for library
identification with overlapping primers (PE-III-PCR-F, 5′-AATGA TACGG
CGACC ACCGA GATCT ACACT CTTTC CCTAC ACGAC GCTCT TCCGA
TCT-3′; PE-III-PCR-001-096, 5′-CAAGC AGAAG ACGGC ATACG AGATN
NNNNN NNNCG GTCTC GGCAT TCCTG CTGAA CCGCT CTTCC GATCT-
3′, where Ns stand for the sample-specific barcode listed in Supplementary
Table 2).

To normalize template concentrations and avoid artifacts due to
overamplification of templates, we first quantified 16S rRNA gene copy numbers in
each sample using real time PCR with the primers used in the first amplification
(first-step PCR). This real time PCR was carried out in a final volume of 25 µL
containing 5 µL of 5x HF buffer, 200 µM of dNTPs, 0.3 µM of each primer
(PE16S_V4_U515_F/PE16S_V4_E786_R or Il_18S_V9_1391F/Il_18S_V9_EukB),
0.5x SYBR Green I nucleic acid stain (InvitrogenTM), 2.5 U of Phusion® High-
Fidelity DNA Polymerase (New England BioLabs Inc.), and 20 ng of template
DNA. The amplification program consisted of an initial denaturing step at 98 °C
for 3 min followed by an amplification step of 45 cycles of 30 s at 98 °C, 30 s at
52 °C, and 30 s at 72 °C, and a final extension of 5 min at 72 °C. Using the threshold
cycle (Ct) obtained in the real time PCR, i.e., the cycle number at which template
accumulation entered the exponential phase, we normalized all template
concentrations for subsequent library construction to match the most dilute
sample. The first-step PCR was then carried out with normalized template
concentration in quadruplicates. The conditions were the same as in the real time
PCR used to determine the Ct value but the SYBR Green I nucleic acid stain
(InvitrogenTM) was excluded and the number of amplification cycles were adjusted
to an appropriate Ct value for the normalized templates (this was 15 and 20 cycles
for 16S and 18S rRNA gene amplification, respectively). The PCR to add barcodes
consisted of 9 cycles.

To purify the first-step PCR products, the quadruplicates were pooled and
purified by solid-phase reversible immobilization (SPRI) paramagnetic bead
technology (AgenCourt® AMPure® XP, Beckman Coulter), which is well suited for
high-throughput purification of PCR amplicons. The pooled PCR reaction volumes
(100 µL) were mixed with 85.5 µL of beads and incubated for 13 min to bind the
DNA to the beads. Subsequently, the sample was incubated for 15 min in a
magnetic rack (SPRIplate® 96-Ring) and washed with 100 µL of 70% ethanol. After
drying, the DNA was incubated with 40 µL of EB buffer (Qiagen, USA) for 7 min to
elute DNA followed by further 15 min incubation on the magnet to separate the
DNA-containing solution from the magnetic beads.

The second-step PCR was carried out in a final volume of 25 µL containing 5 µL
of 5x HF buffer, 200 µM of dNTPs, 0.4 μM of the primers PE-III-PCR-F and PE-
III-PCR-01-096, 2.5 U of Phusion® High-Fidelity DNA Polymerase (New England
BioLabs Inc.), and 4 µL of the purified first-step PCR as template. The amplification
program consisted of an initial denaturing step at 98 °C for 2 min followed by an
amplification step of 9 cycles of 30 s at 98 °C, 9 s at 70 °C, and 30 s at 72 °C, and a
final extension of 2 min at 72 °C. This PCR was also done in quadruplicates, pooled
after amplification, and purified by AgenCourt® AMPure® XP magnetic beads as
described above.

Ribosomal RNA gene libraries were multiplexed in groups of 96 samples.
Multiplexing ratios were estimated by real time PCR with Illumina sequencing
primers. This PCR was carried out in a final volume of 25 µl containing 12.5 µL of
2× QuantiTec® SYBR® Green PCR kit mastermix (Qiagen), 0.2 μM of the primers
PE-seq-F (5′-ACACT CTTTC CCTAC ACGAC GCTCT TCCGA TCT-3′) and PE-
seq-R (5′-CGGTC TCGGC ATTCC TGCTG AACCG CTCTT CCGAT CT-3′),
and 5 µL of each library sample as template. The amplification program consisted
of an initial denaturing step at 95 °C for 15 min followed by an amplification step of
45 cycles of 10 s at 95 °C, 20 s at 60 °C, and 30s at 72 °C, and a final extension of 5
min at 72 °C. Multiplexed libraries (batches of 96 samples) were submitted for
Illumina paired-end sequencing at the Biomicro Center (MIT, Cambridge, MA)
using the MiSeq and HiSeq platforms as specified in Supplementary Table 3. The
16S rRNA gene sequencing was done by paired-end sequencing of 100 bp each
read, whereas 18S rRNA gene sequencing was done by paired-end sequencing of
150 bp each read.

Operational taxonomic unit calling. To identify populations at high taxonomic
resolution, we used the distribution-based clustering algorithm to group rRNA
gene sequences into OTUs17. This approach takes into account both genetic

distance and the distribution of sequences across samples. Specifically, it merges
sequences into a single dbc-OTU if, within an initially defined specific sequence
similarity threshold (95%), they have statistically indistinguishable distribution.
Sequence clusters that follow different dynamics are assigned independent OTU
status even if they fall within the 95% similarity threshold. The purpose is to
differentiate variation within ecologically cohesive populations (arising from
sequence variation and errors as well as operon-level differences) from variation in
different populations. Hence this method can result in OTUs comprising sequences
of varying but usually high similarity. The method was implemented as described
in the raw fastq sequence pre-processing and distribution-based clustering doc-
umentation available online (https://github.com/spacocha/Distribution-based-
clustering).

We first pre-processed the raw fastq sequences output from the Illumina
platform. Sequences were quality filtered with split_libraries_fastq.py from QIIME
1.340, using a 23 phred quality score threshold for quality filtering and retaining
only sequences at least 99 bases long out of the 100 sequenced bases after quality
filtering. Subsequently, primers were trimmed with trim.seqs from the Mothur 1.31
package41 and progressively clustered into 90% identity clusters with USEARCH
5.842.

After sequence pre-processing distribution-based clustering was run in parallel.
In the case of 16S rRNA gene sequences, only the forward read was considered due
to the lack of overlap between the paired-end reads (2 × 100 bp reads), whereas in
the case of 18S rRNA gene sequences pair-end reads (2 × 150 bp reads) were
overlapped and trimmed to 120 bp long sequences prior to the progressive
clustering.

Final OTUs used for this study are presented in Supplementary Data 1–6, where
Supplementary Data 1 and 2 show the OTU read counts per sample for bacteria
and eukaryotes, respectively. Supplementary Data 3 and 4 show the relative
abundance of each OTU per sample and representative OTU sequences can be
found in Supplementary Data 5 and 6 for bacteria and eukaryotes, respectively.

OTU taxonomy assignment. To assign each OTU to the lowest possible taxo-
nomic category, we used the RDP classifier algorithm43 through the QIIME 1.3
toolkit40. We used the 12_10 Greengenes 97% reference OTU collection (http://
greengenes.secondgenome.com/downloads/database/12_10) and the eukaryotic
Silva 111 reference OTU collection (http://qiime.org/home_static/dataFiles.html)
for bacterial and eukaryal OTU taxonomy assignment, respectively. For each
possible taxonomic level, a 0.80 confidence threshold was used to assign a specific
taxon to an OTU’s representative sequence. Additionally, due to a high proportion
of taxonomically unassigned OTUs among eukaryotic sequences, we additionally
used the BLAST algorithm included in QIIME 1.340 to approximate their tax-
onomy. Each OTU sequence was assigned the taxonomy of the best BLAST hit
with a maximum E-value of 0.001.

OTUs classified as archaea or chloroplasts were excluded from further analysis.
OTUs assigned to archaea represented an average of 0.01% while those identified as
chloroplast represented an average of 7%; however, they were typically at very low
proportions except on specific days when they could reach up to 30% of the
sequences, presumably due to algal blooms as they were mainly placed within the
Bacillariophyta (diatoms) and thus captured in our 18S rRNA gene-based OTUs.

For further analysis, we used the average for each OTU identified in the
triplicate daily samples. Across the time series, triplicates from the same day were
always more similar to each other than to any other samples. Supplementary
Fig. 16 shows the average Jensen–Shannon square root distance between samples at
different day lags. Those with zero lag (i.e., the replicates) have the smallest
distance while the biggest increase in distance occurs from lag zero to lag one.

Beta diversity estimation. To analyze compositional change during the time
series, beta diversity was estimated by computing the Jensen–Shannon distance, i.e.,
the square root of the Jensen–Shannon divergence, and similarity estimated as 1-
Jensen–Shannon distance. We computed the Jensen–Shannon distance with the
PySurvey 0.1.2 python package (https://bitbucket.org/yonatanf/pysurvey). Subse-
quently, we averaged distances at different time lags up to 40 days time lag for
every possible time window.

Wavelet-based identification of pairwise associations. We are interested in
identifying OTUs that are negatively or positively associated with one another,
while also being co-responsive to some environmental variable. If environmental
and organismal interactions occur at different frequencies, then we can identify
associated pairs as those that simultaneously positively correlate at one frequency,
while negatively or positively correlating at another. For example, overall physical
and chemical regimes are expected to prevail over longer periods suggesting that
pairs of organisms responding by growth to these conditions are positively cor-
related over longer periods (lower frequencies). Moreover, such growth (e.g., by
characteristic primary producers) may lead to longer lasting interactions. Con-
versely, direct organismic interactions such as cooperation or competition and
predation likely act on shorter time scales leading to positive and negative corre-
lations at higher frequency. However, the characteristic frequency for each type of
interaction cannot be known a priori and must be estimated.
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To compare OTU similarities across frequencies, we perform a wavelet
decomposition for each OTU time series. These analyses produce representations
of the temporal data at multiple scales. At the lowest resolution of the
decomposition the original signal is represented with relatively few points, and best
captures low-frequency information. Similarly, at higher resolution levels of the
decomposition, the signal best captures high frequency information. We can
decompose the original signal for each OTU into multiple resolutions, calculate the
cosine similarity for each pair of OTUs at each resolution, and then look for pairs
with similarity at one resolution and similarity (positive interaction) or anti-
similarity (negative interaction) at another resolution. We refer to such OTU pairs
as frequency interacting.

The relevant low and high frequencies for a frequency interacting pair could
change from pair to pair, depending on the nature of their interaction. For
example, the OTUs could exhibit exceptionally fast or slow doubling times, and one
environmental niche might change size with much more rapid dynamics than
another. Therefore, for each pair of OTUs, we consider all possible low and high
frequency combinations, subject to sampling duration and frequency. For each
high/low-frequency combination, scores are calculated as the geometric mean of
similarity and anti-similarity:

Scorehighþ lowþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

similarityhigh ´ similaritylow
q

; if similarityhigh; similaritylow>0:7

Scorehighþ lowþ ¼ 0; otherwise:

ð1Þ

Scorehigh� lowþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�similarityhigh ´ similaritylow
q

; if similarityhigh

<� 0:5; similaritylow>0:7Scorehigh� lowþ ¼ 0; otherwise:

ð2Þ

(Note that we threshold positive similarity scores <70%, and negative similarity
scores less than 50%.)

In addition, we apply a “penalty” for high+low+ scores when the high and low
frequencies are very close. This is meant to account for a discretization of frequency
levels in the decomposition. For instance, if a pair of interacting OTUs is driven at
a “true” frequency of 3 days, and our decomposition includes a 2-day period and a
4-day period, then we might observe positive correlation at both the “high”
frequency of 2 days and the “low” frequency of 4 days. However, we would not
expect the “true” correlation at a 3-day period to have as strong of an effect on
correlations at 32 days. Therefore, we give a higher score when the levels are more
separated:

Weighted Scorehighþ lowþ ¼ k high� lowð Þ þ 1ð Þscorehighþ lowþ : ð3Þ

For high−low+ scores we take the opposite approach; interactions receive higher
weights when the frequency levels are very close. As before, we note that positive
(or negative) correlation at some “true” frequency will affect correlations at the
nearest levels of the decomposition. The observation of correlations of opposite
signs at neighboring frequency levels is therefore less likely to represent
discretization noise, and more likely to reflect a tight coupling of OTUs. Thus, we
adjust high−low+ scores as follows:

Weighted Scorehigh� lowþ ¼
1

high�low

kþ 1
high�low

scorehigh� lowþ : ð4Þ

The parameter k can be adjusted to alter the sensitivity of the overall score to
this weighting, and was chosen as 0.25 for these studies. This choice corresponds to
a weight of ½ when the difference between periods is 4 days. As the different levels
of our wavelet decomposition approximately correspond to periods of 2, 4, 8, and
16 days, this parameter value gives relatively low weights to scores between the two
highest frequencies (corresponding to periods of 2 and 4 days), and relatively high
weights to scores between the lowest and highest frequencies. In studies with a
different sampling period and duration, the parameter can be adjusted to achieve a
similar effect.

Finally, the interaction score for a pair is taken to be the maximum of weighted
scores for each frequency combination:

Interaction Score�=þ ¼ max
high� lowþ

Weighted Scorehigh� lowþ ; ð5Þ

Interaction Scoreþ=þ ¼ max
highþ lowþ

Weighted Scorehighþ lowþ : ð6Þ

Wavelet analysis was done in Python using the PyWavelets package. Multilevel
decompositions were done using a “sym2” mother wavelet, and the maximum
number of levels given the number of samples. For a given level of the
decomposition, the similarity between two OTUs (e.g., similarityhigh) was
calculated as the cosine similarity of their decompositions.

Markov clustering of frequency interacting pairs. We next consider all fre-
quency interacting pairs as neighbors in a graph (with separate graphs for positive
and negative interactions). Edge weights in the graph are set by the interaction
score between a pair of OTUs. We then use MCL (Markov Clustering Algorithm44)
to identify OTU clusters. Briefly, MCL aims to identify local, densely connected
neighborhoods in a large graph by iterating over two phases: expansion and
inflation. In the initial expansion phase two-step transition probabilities are cal-
culated by first normalizing the graph adjacency matrix to represent one-step
transition probabilities from one node to any other. Next, the transition matrix is
multiplied by itself to realize the two-step probabilities. In the inflation phase each
column of the two-step transition matrix is normalized by an Lp-norm, where the
inflation parameter, p, is chosen by the user. With increasing values of p, this has
the effect of eliminating more low-probability transitions, and highlighting high-
probability transitions.

In practice the inflation parameter can be used to explore a range of clustering
granularity, as small inflation values produce a smaller number of larger clusters,
while large inflation values produce a larger number of smaller clusters. We
clustered our data multiple times with inflation values of 1.6, 2.0, 2.4, 2.8, 3.2, 3.6,
and 4.2 (Supplementary Table 4), which are within the normal range suggested in
the MCL documentation. For both high−low+ scores and high+low+ scores we
found over 99% of OTUs clustered with inflation parameter up to 2.4, with a drop
in OTU inclusion above this level. Clusters with this inflation value (2.4) were used
in all subsequent analyses.

We used adjusted mutual information (AMI) to quantify the similarity of
clusters produced in different ways (e.g., using positive vs. negative interactions).
The Mutual Information between two sets of clusters is a measure of their
similarity. It is calculated as:

MI U;Vð Þ ¼
X

i

X

j

P i; jð Þ log P i; jð Þ
P ið ÞP′ jð Þ

� �

; ð7Þ

where P ið Þ ¼ jUi j
N is the probability of being in cluster i in set U, P′ jð Þ ¼ jVj j

N is the

probability of being in cluster j in set V, and P i; jð Þ ¼ Ui\Vjj j
N is the probability of

being both in cluster i in set U and cluster j in set V. It is close to 1 when the
clusters are nearly identical, and close to 0 when the clusters are highly dissimilar.
AMI makes an adjustment to this score to account for the fact that the mutual
information is generally higher for two clusterings with a large number of clusters.
This score was implemented in Python using the function in the sklearn package.

Simulations to validate WaveClust. Time series were simulated to capture pat-
terns of blooms (occurring at low frequency and higher abundance) in the midst of
basal fluctuations (occurring at high frequency and lower abundance) with the
addition of random noise. Specifically, we generate a random time series as

f xð Þ ¼ eTðsin xþb sinxpþϵÞ , where b, p, and ϵ can be varied to control the bloom size,
bloom period and random noise, respectively, and TðyÞ is a threshold function
T ¼ y; if y>1

T ¼ 0; otherwise
. For a given bloom period, we allowed for multiple blooms (with

the total number determined by the length of the time series divided by the period),
and a single (non-recurrent) bloom (with a random position in the time series).
These models capture the qualitative features of interest that we observe in real
time series (Supplementary Figs. 1A and 2A). The noise for each time series was

generated as a random Gaussian variable with signal-to-noise ratio, kf ðtÞkkϵk , of 1.
For each of 500 random trials we simulated 8 time series with random noise and

predetermined period, phase, and amplitudes (Supplementary Fig. 1A shows the
eight series generated by one such trial). In each random trial, we calculated all
pairwise correlations using Pearson correlation, WaveClust(+/+), and WaveClust
(+/−). We then averaged these similarity matrices across all 500 trials to generate
the heatmaps shown in Supplementary Fig. 1B, C, and D for each similarity metric.

To perform a sensitivity analysis of WaveClust, we varied the bloom size (b,
from 2 to 20) and bloom period (p, from 10 to 50) across random trials, and
calculated positive (Supplementary Fig. 2B) and negative (Supplementary Fig. 2C)
association scores. In each random trial, simulated OTUs had “type 1” associations
(simulated with positive correlation at high frequency and low frequency), “type 2”
associations (simulated with negative correlations at high frequency and positive
correlations at low frequency), or “type 3” associations (simulated with positive
correlation at high frequency, but no correlation at low frequency). In
Supplementary Fig. 2B and C, scores between pairs of OTUs are grouped by these
three types of simulated associations.

Microbial community predictions based on environmental data. We used
Granger causality45 to determine the environmental drivers of each community.
For each cluster, we calculated the average relative abundance of OTUs in the
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cluster at each time point, and then asked which environmental variables were
significantly predictive, testing for lagged values of the average abundance.
Although the environmental time series were largely stationary, the average
abundance of each cluster typically was not, and so we applied the method of Tado
and Yamamoto46 to calculate causality. Briefly, if either time series is non-sta-
tionary, then the causality statistic does not follow its usual (χ2) distribution. The
method corrects for this by including additional lags, up to the order of integration
of the non-stationary series, in the auto-regression model. Significant environ-
mental drivers of each cluster average were reported when the p-value of causality
passed a false discovery rate of 10%.

Analysis of partitioning of OTUs into different communities. In this study we
have defined OTUs by the distribution-based algorithm, which allows for OTUs
containing sequences of varying similarity (see above). To analyze whether closely
related OTUs occur predominantly within the same or distinct communities, we
first reclustered representative sequences of each dbc-OTU at 97% sequence
similarity and then determined the number of OTU pairs that occurred in the same
or different communities within a specific range of genetic distances. This was done
by first sorting the OTU sequences by abundance (from highest to lowest relative
abundance), and then clustering them by USEARCH 5.242 using a 97% similarity
threshold. Then, we determined the co-occurrence patterns of closely related
sequences within 97% OTU clusters. To this end, we computed a histogram in R of
the genetic distances within each 97% OTU cluster with the function dist.dna
(default parameters) within the ape R package47, on previously aligned sequences
with clustal X 2.148. The vast majority of microbial diversity studies define OTUs
solely based on a 97% similarity criterion, but by this approach, we could show that
the majority of the interacting pairs within the 97% threshold fell into different
communities. To ensure that this observation was not the result of a random
distribution of close related associated pairs we tested by a χ2 goodness of fit the
significance of a random community membership assignment.

Code availability. Software used in WaveClust analysis is publically available on
github at https://github.com/brian-cleary/WaveletCombinatorics.

Data availability. The sequence data generated during this study have been
deposited in the NCBI Sequence Read Archive repository (https://www.ncbi.nlm.
nih.gov/sra) under accession numbers SRR5175890 to SRR5175997 and
SRR5176042 to SRR5176255 for bacterial sequences and SRR5177223 to
SRR5177507 for eukaryotic sequences. Additional data supporting the findings of
this study are available as Supplementary Data 1–7.
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