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3.1 Introduction

A model is a simplification of reality, and the
purpose of this chapter is to explore the limitations
and potentials for such simplifications to serve
useful roles in the management and mitigation
of harmful algal blooms (HAB). Others, such as
Glibert et al. (2010), have provided overarching
reviews on factors that may actually be associated
with predicting events; here, the emphasis is upon
assessing the state of the art, and how to advance it.
Some of the challenges identified stem from issues
specific to HAB science, while others apply to
plankton research in general; challenges in both
have arguably hindered progress in the develop­
ment of HAB forecasting capability and manage­
ment tools. These challenges can best be addressed
by closer collaboration among researchers con­
ducting laboratory, field, and modeling work.
Improved interactions among these communities
can be facilitated by clarification of terminology
used in the various subfields (for discussion and an
attempt to provide some clarity, see Flynn et al.,
2015b). Indeed, models can provide useful
dynamic test beds for exploring and testing
hypotheses, guiding future iterations of field and
laboratory investigations, and providing an
improved overall level of understanding.

Simplification in modeling can be extreme, as
represented by a statistical fit of a regression line
through data; and, in some cases, such models can
be entirely adequate. At the other end of the
spectrum, models may purport to describe tempo­
ral dynamics of dozens of organism types within
3D spatial scenarios. While it may be argued that

all models are imperfect and that models are
designed specifically to tackle individual questions,
such views malign the real value and potential of
adequately constructed models in informing us
about the real world, how we think it works,
and how our understanding may be in error. Errors
may reside at conceptual levels as well as in the
conversion of understanding into equations and
parameter values. Nevertheless, both statistical/
empirical and mechanistic models can provide
tools for scientific investigation as well as predic­
tion. Choice of approach depends on the specifics
of the application and purpose of the model in that
context.

The more complex models typically are built
upon (and thence should enhance) mechanistic
understanding. Complexity does not refer here
to factors such as spatial resolution or pure com­
putation load, but rather to the degree of concep­
tual complexity that underpins the description. For
biological components, complexity refers more to
the level of physiological detail applied to each
organism grouping (ecological functional type;
Flynn et al., 2015b); complexity does not relate
simply to the number of groups, each of which
could contain the same very simple conceptual
structure differing only in the value ascribed to
traits such as organism size or maximum growth
rate.

Typically, model components describing physi­
ological features of organisms are empirical; that is,
they describe behavior that accords with empirical
data (i.e., that which is observed). At the extreme,
empirical descriptions may relate factors that in
reality are only distantly related to each other. Care
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must be taken when using such relationships,
especially in a predictive mode. On the other
hand, empirical approaches can help identify the
relative importance of multiple factors relevant to
HAB phenomena, therefore contributing to
knowledge of the underlying dynamics. At the
other extreme are systems biology approaches
that are akin to dynamic biochemistry pathway
descriptions. One may argue that feedback pro­
cesses akin to those controlling the biochemistry
(ecophysiology) of the individual organism types
should be a feature of mechanistic models (Flynn
et al., 2015b); the behavior of the modeled orga­
nism is then an emergent property of the inter­
actions between various processes, mimicking
reality. In practice, however, even the most mech­
anistic of models includes empirical components
that do not contain such feedbacks. A parallel
between such “empirical” and “mechanistic”
descriptors as applied to ecosystem models can
be seen. At one extreme, empirical models could
relate bloom events to climatic features by statis­
tical fits to data, and at the other extreme mecha­
nistic models could describe temporal dynamics of
detailed interactions between named organisms in
a 3D description of watery space. A rigorously
constructed and tested mechanistic description
(at both the autecology and ecology levels), built
upon a high level of understanding, has potential to
provide a firmer basis for prediction into an
uncertain future, such as that presented by climate
change. From such models, robust empirical sim­
plifications may be built to ease computational
burdens, but such a route differs greatly from an
a priori empirical simplification based upon
approaches such as statistical fits between data
from past events. Critically, however, sufficient
scientific understanding is needed to be able to
build such mechanistic models, and we need to
appreciate that even mechanistic models may have
limited predictive power in regimes where the
dynamics are intrinsically chaotic (Benincà et al.,
2009).

Here, emphasis is placed upon descriptions of
simulators of HAB that describe systems dynam­
ics, and thus contain time as a dimension. Deploy­
ment of models in management ranges from short-
term forecasting, often driven in part by external
data from remote sensors, while other approaches
use fully computational simulators in a what-if
predictive mode, for example in consideration of
proposed coastal engineering or of sewage outfall
design. The construction and testing of dynamic
models are severe tests of our understanding of the
real system. Even after decades of research, our

understanding of the underpinnings of HAB
events remains incomplete. Indeed, our under­
standing of growth dynamics, loss processes,
excystment and encystment, and factors promot­
ing toxicity for individual species is wanting.
Understanding is promoted by attempts to build
models from a conceptual basis (akin to flow
diagrams or food web schematics), and comparing
the output of such models to empirical evidence.
Confidence in the behavior of models under all
plausible conditions promotes increasing confi­
dence in the value of using such models in a
predictive setting, whether that be for toxic
HAB (T-HAB) or for algal blooms that cause
aesthetic and/or ecosystem damage (ecosystem­
disruptive HAB, or ED-HAB).

From here onward in this chapter, the term
T-HAB refers to bloom events linked to biotoxins.
The bloom of the T-HAB species itself may be of
minor consequence (cryptic) from a total plankton
biomass perspective, and the toxins often have
their impact far from the sphere of algal trophic
dynamics (i.e., on mammals and birds, rather than
on their zooplanktonic grazers). Furthermore, the
causative organisms need not necessarily be toxic
all the time, and toxicity can develop significantly
with limited concurrent biomass growth. The term
ED-HAB is used to describe ecosystem-disruptive
mass growths of organisms that developed at least
in part because growth was not constrained by
grazers. ED-HAB events may develop because the
algae are de facto unpalatable to the usual grazers
of microalgae (hence, the typical trophic interac­
tions are blocked). Alternatively, ED-HAB may
develop where the grazers cannot contain the algal
production, perhaps because those grazers are
themselves contained by the activities of higher
trophic organisms, such as planktivorous fish or
ctenophores. When mass growths die, their decay
frequently causes ecosystem disruption due to
deoxygenation of the water column and/or of
the benthos. (The term ecosystem disruptive algal 
bloom, or EDAB, as proposed by Sunda et al.,
2006, for specific reference to blooms of algae
unpalatable to grazers, falls within our term
ED-HAB.)

While various aspects of T-HAB and ED-HAB
overlap, the causative organisms and the events
themselves typically differ greatly in detail and
scale, and thence also in the ways in which one
may elect to model their development and pro­
gression. That said, the proliferation of any species
(be it cryptic or dominant in biomass) is a function
of the rates of growth and losses of that particular
species set against those of competitors and



C03 03/05/2018 13:47:49 Page 117

1173 Modeling Marine Harmful Algal Blooms

predators. It may thus be expected that studies
(and models) of HAB species alone cannot provide
mechanistic understanding of the events; a more
holistic understanding and simulation capability
is required of planktonic (if not also benthic)
systems.

If there were confidence that HAB events ran
along a set pattern, that future events could be
mapped against past events, then statistical models
could be safely deployed (noting that one should not
use regression statistics to predict results outside of
the data range used to configure the model fit).
However, set against the uncertainties of climate
change and the vagaries of human activities that
affect nutrient release into aquatic systems, removal
of fish, modification of coastal topography, and so
on, conditions enabling or supporting future HAB
events, and especially T-HAB events, may well not
conform to past events. The need to develop
mechanistic understanding and deploy that within
the framework of computational modeling thus
becomes strengthened. This is not, however, to
minimize the importance of short-term forecast-
mode HAB modeling, which operates over time
scales of days to weeks, coupled with weather fore­
casting and data collection in real or near-real time
(e.g., Raine et al., 2010). Such programs provide
early warnings to resource managers and users to
enable them to take what mitigating action they can
(e.g., Applied Simulations and Integrated Modeling
for the Understanding of Toxic and Harmful Algal
Blooms [ASIMUTH]; see www.asimuth.eu; Ander­
son et al., 2015, sect. 17.5.3).

3.2 Building Models to Describe
Ecological Events

In broad terms, studies of plankton can be
divided at the extreme between those conducted
in the laboratory (in which variations in the
abiotic environment and the biological composi­
tion are both controlled) and those conducted in
the field (where the abiotic system is not con­
trolled and the biotic composition is often highly
complex). By the same token, modeling studies
may be divided along similar lines, into those that
are relatively highly detailed physiologically and
those that allocate computational resources more
toward descriptions of the physical environment
and thence use simple descriptions of biology.
Depending on their complexity, studies in mes­
ocosms align more or less with laboratory or field
studies.

A schematic of idealized interactions between
laboratory and field research efforts is shown in
Figure 3.1 and described in the associated legend.
The reason for conducting physiological experi­
ments is to provide a better understanding of
how individual biological and trophic interactions
function, with studies run under guidance from
those working in the field to identify the organisms
of interest and the types of events (e.g., transients in
temperature, nutrient availability, etc.) for which
detailed information is lacking. From the under­
standing developed through such biological studies,
models can be constructed and run to test hypoth­
eses under different environmental conditions.

One line of hypotheses particularly worthy of
consideration is to explore which parameters, and
which model components, exert most leverage on
model performance. This is of use in two ways.
Firstly, components or features are identified that
warrant the most attention for both future model
and experimental (laboratory/field) work. Sec­
ondly, those components that may be safely sim­
plified or even deleted from computationally
expensive models can be dealt with accordingly.
This complex-to-simple approach (akin to an engi­
neering approach of overbuilding and then testing
for weakness and redundancy) is, however, not
typically undertaken in biological modeling
work. While flasks contain complex organisms
growing in simple physics, the seas never contain
simple organisms growing in complex physics.
Acknowledging this situation presents an impor­
tant reality check when considering the status
of different generations of ecosystem models
(Figure 3.1).

Two other points are worth making at this
juncture. Plankton ecosystem models have many
of their roots in biogeochemical studies. As such,
they tend to place comparatively little emphasis
upon the physiologically and ecologically complex
food webs that encompass HAB events. Indeed, the
modeling of zooplankton (noting that many HAB
are mixotrophs, and also that algal blooms can
only develop in the absence of effective grazing
pressure) is well known to be weak (Mitra et al.,
2014a). For many applications to HAB, the current
basis of plankton ecosystem models may thus
appear less than optimal. The other point is
that, although specific subcomponents used in
these ecosystem models are often informed by
laboratory measurements (e.g., phytoplankton
growth rate as a function of temperature and light),
the models have rarely if ever been actually tested
against robust data series as generated in labora­
tory conditions. Some attempts have been made to

http://www.asimuth.eu


C03 03/05/2018 13:47:49 Page 118

118 Harmful Algal Blooms: A Compendium Desk Reference

Figure 3.1 Schematic for the development of ecosystem models. Conditions and biological composition at field sites
inform the laboratory study of selected organisms grown under controlled conditions (i) Information, and data, from
laboratory studies (ii), together with generic biochemical and physiological understanding (iii), enable the construction and
testing of complex systems biology–style models describing the physiology (autecology) of organisms, and thence coupled
models of simple trophic systems. Typically, the flow of information (ii) is from experimental to modeling research, although
models can be used to design in silico experiments to aid hypothesis setting for further rounds of laboratory studies. First-
generation (1G) ecosystem models, as typified by Fasham et al.’s (1990) type NPZ models, contained much-simplified
representations of the abiotic system (iv), together with very simple models of the biota configured from biological rules
(v) built from general and theoretical principles (vi) such as Monod and Holling kinetics, perhaps including concepts
developed from physiological models, and data such as maximum growth rate estimates from laboratory studies (vii). The
current, developing, second-generation (2G) ecosystem models contain greatly enhanced abiotic descriptions; however, the
biotic descriptions typically do not make use of advances from physiological models (viii) but deploy enhanced
developments from biological rules (ix). Future (third-generation, or 3G) ecosystem models may be expected to describe
abiotic systems with ever greater fidelity, with the aspiration that these will also serve as platforms for placement of systems
biology–style physiological models (xi) within high-resolution abiotic simulators.

use mesocosm experiments for this purpose (e.g.,
Aksnes et al., 1994). Whether models are fit for
purpose is gauged by comparison of model output,
typically in terms of areal biomass, against spot
sample points (oceanographic stations) or against
satellite images of events at the sea surface. The use
of field data carries with it the burden of transfor­
mations between pigment abundance and bio­
mass, between cell and organism counts in
different volumes of water, and so on. Those
interested in T-HAB and ED-HAB need to ask
whether they consider models originally con­
structed for biogeochemistry (rather than ecology)
as representing a suitable basis for best progress.

Taking all the above into account, the schematic
of Figure 3.1 describes a research effort that is in
reality all too often dispersed and isolated, rather
than coupled. For the most part, conceptual detail
on the physiology of plankton, let alone on HAB
species, gained from laboratory experiments does

not make it to ecosystem models. While many
scientists may (with justification) worry that
experiments with laboratory cultures cannot rep­
licate events in reality, not least because of the
potential adaptation of cultured organisms to arti­
ficial conditions during long-term laboratory
growth, it is difficult to see how the underpinning
biochemical and physiological framework would
be so overturned that laboratory results are not of
value. The utilization of “biological rules” in eco­
system models, which include concepts of allomet­
ric scaling and “trait trade-offs,” may be viewed as
of particular concern for the task at hand, because
these do not appear to be applicable to many of the
planktonic organisms associated with HAB or
indeed of planktonic predator–prey interactions
in general (Hansen et al., 1994; Flynn et al., 2015b).
There are also some obvious important aspects of
plankton ecology that are underemphasized, if not
absent, in most models. An example concerns
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descriptions of encystment and excystment,
although for the most part comprehensive data
on the death rates of cysts and the triggers for
excystment are also lacking (Hense, 2010).
Another important avenue that is underexplored
and hence poorly considered in models is the role
of micronutrients and of allelopathic interactions
(Pohnert et al., 2007).

3.3 Limitations to What Models
Can Do, and Why

3.3.1 Building Models

How useful HAB models may be depends on how
well the model describes reality. Models can be
used for various purposes. Conceptual models help
the formulation of ideas, to identify at a phenom­
enological level the strengths and weaknesses in
knowledge; however, it is only at conversion of the
conceptual model into a mathematical model that
a quantification develops of what is known, and
what is not known. For each of the interactions,
one may commence by configuring a response
curve between the driver and consequence. For
example, one may generate relationships between
satiation in a consumer and its feeding rate; as
satiation develops (gut becomes full), feeding is
slowed. Response curves may have a negative or
positive slope; they may be linear, curvilinear,
sigmoidal, or of more complex form. In all instan­
ces, organisms can upregulate or downregulate
aspects of their physiology depending on the envi­
ronment, thereby introducing plasticity into the
parameters of such response curves (Flynn et al.,
2015; Kana and Glibert, 2016). Establishing the
form of the curve is the first step in converting, for
example, the conceptual model of a food web
diagram into a dynamic model.

Relatively little is known about the nonlinear­
ities in these response curves. Two examples of
importance to the topic of modeling HAB relate
to the key role of grazers in permitting or con­
trolling bloom development. This is of particular
concern for ED-HAB (Mitra and Flynn, 2006;
Sunda et al., 2006). The decline in food quality
when phytoplankton exhaust nutrients does not
necessarily have the simple linear consequence
one may expect from stoichiometric ecology
(Sterner and Elser, 2002); rather, it may have a
distinctly nonlinear response resulting in prey
rejection at low levels of nutrient stress leading
to formation of an ungrazed bloom (Mitra and

Flynn, 2005, 2006). Understanding just how
important subtle changes in biochemical stoichi­
ometry may be, for example how changes linked to
ocean acidification may have far-reaching conse­
quences on plankton ecology, has just begun
(Flynn et al., 2015a; Cripps et al., 2016). Another
feature of grazers commonly modeled as linear
relates to assimilation efficiency (AE); this is typi­
cally held constant in zooplankton models,
although it is well known to vary with quality
and quantity of phytoplankton prey (Mitra et al.,
2014a). Modeling to account for changes in AE
generates very different predator–prey dynamics
that can see a much more rapid removal of a bloom
than would otherwise be expected from simple
models (Flynn, 2009). For the formation of ED­
HAB, on account of insufficient grazer control due
to the success of planktivorous higher trophic
levels, such challenges in modeling the activity
of consumers extends beyond microzooplankton
and copepods. While closure terms may often be
deployed in such instances, this approach is not a
substitute for adequate understanding of the role
of trophic cascades in ED-HAB ecology.

3.3.2 Model Complexity

A fundamental challenge in modeling centers on
the issue of a “simplification of reality.” In a more
ideal world, where resources and thence data and
computational power were less limiting, complex
models would be built and their behavior explored
to identify how best to achieve simplifications by
progressively deleting or otherwise simplifying
components. Indeed, some modelers now use a
complex-to-simple approach; this provides a route
to generate empirical models from mechanistic
models (see “Introduction,” this chapter). There
are many modelers who quake at the number of
parameters in complex biological descriptions,
concerned as to how these will all be estimated;
however, an appropriately formulated mechanistic
model actually does not have that many real free
parameters for adjustment. Most parameters are
used to describe the shape of response curves, and
model behavior is largely insensitive to their exact
value. Fasham et al. (2006) give an example of a
complex phytoplankton model placed in an eco­
logical setting; they discuss the (non)issue of the
parameter count.

More often, however, the starting point for
model construction is a discussion regarding
which minimum set of parameters and equations
is needed to confront a specific issue; only if this
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simple model fails are additional complexities
added. The challenge in the simple-to-complex
approach is deciding what constitutes a failure
(Franks, 2009) that perhaps then warrants increas­
ing complexity to include additional factors. Sta­
tistical approaches such as maximum likelihood 
offer methods to frame model–data comparisons
in terms of a hypothesis test, thereby allowing
quantification of the confidence with which one
model fits the observations better than another
(Stock et al., 2005, 2007). Examples of errors that
develop during initial simplification include using
single rather than multiple variable stoichiome­
tries, and incorporating inappropriate functional
type descriptions and associated food web link­
ages. The last mentioned is particularly problem­
atic given growing appreciation for the role of
mixotrophy in aquatic protist ecology (Flynn
et al., 2013; Mitra et al., 2014b), and linked to
the fact that many (protist) HAB species are mix­
otrophic (Burkholder et al., 2008). The extent of
this particular failing runs across all parts of the
HAB research spectrum, from issues of field mon­
itoring (are chlorophyll and inorganic nutrient
levels really the best indices for the presence
and activities of mixotrophic protists?) to defining
conceptual and thence mathematical models.

A consequence of the drive for simplification is
the need to group organisms together; it would be
impractical to describe the dozens up to perhaps
hundreds of individual species present in a real
ecosystem. In ecology, organisms are typically
grouped (irrespective of phylogenetic origin)
according to the way that they interact with envi­
ronmental factors (Gitay and Noble, 1997), thus
forming “functional type” grouping. Plankton
functional types (PFTs) appropriate for modeling
HAB may be expected to be quite different from
such groupings intended for biogeochemical
modeling (with their emphasis on “diatoms,” “coc­
colithophorids,” etc.). In biogeochemistry applica­
tions, little emphasis is placed on competition and
predator selection processes, or on features such as
consideration of mixotrophs that acquire their
photosystems from prey (the nonconstitutive mix­
otrophs; Flynn and Hansen, 2013; Hansen et al.,
2013; Mitra et al., 2016). These factors may be of
critical importance to describe the types of events
that lead to (or block) development of T-HAB or
ED-HAB events. Understanding the causal basis
for coexistence or mutual exclusion of species on
the run up to, during, and then after plankton
blooms appears fundamental to the task at hand.

It is at this point worth considering the interface
between molecular biology and modeling. The

application of molecular biology to HAB and gen­
eral plankton research has brought to our attention
the great variety of life forms, and the presence of
different species and subspecies. There is thus a
stark contrast between molecular and mathematical
biology, because while modeling inevitably merges
the activity of organisms together and is a topic
driven by trophic dynamics, molecular biological
research represents almost a diametric contrast.
Linkage of omic signatures to physiological status
and toxicity could, however, be of great value to
modelers, generating data for validation. The use of
automated molecular tools may also help in building
PFT groupings as well as for the detection and
monitoring of HAB (Scholin et al., 2009).

From the foregoing, it may be tempting to
conclude that empirical approaches, based on
statistical methods or expert systems, may be
no less robust than attempting to deploy dynamic
mechanistic-based models. There is, however,
one fundamental problem; as mentioned in this
chapter, it assumes that future patterns of behav­
ior have already been seen in previously collected
data series. With the permutations of potential
change (natural fluctuations as well as anthropo­
genic forcing), it seems likely that future condi­
tions will be outside the envelope of variations in
the recent past. This is perhaps not so much an
issue for short-term management of existing
coastal systems (although extreme weather condi­
tions may become more common with climate
change), but it is an issue in considerations of the
design of coastal engineering projects and water­
shed management, with a need for risk analyses
played out over decades. In consequence, there is a
need to try to encapsulate understanding of all the
factors that impinge upon HAB events within mod­
els. Like weather forecasts, there is a need to appre­
ciate that, at best, capabilities for predicting HAB are
limited, deal with probabilities, and most likely will
depend on inputs from different model types and
approaches. Indeed, the corollary drawn with
weather forecasting is particularly apposite given
that the weather plays such an important role in the
initiation and termination phases of HAB events,
and indeed of plankton growth in general.

3.3.3 The Need for Data

Data availability is important, and of equal
importance is the form of the data. Conceptual
food web diagrams, and simple models such as
Lotka–Volterra predator–prey descriptions, have
no need for data with specific units. However,
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systems dynamics models have an absolute need to
correctly account for units; most are based upon a
single or multiple currencies. Classic marine bio­
geochemical models use nitrogen (N) as the sole
currency (Fasham et al., 1990); nutrients and
biomass are defined as mol N m�3, with rates as

d�1mol N m�3 . Allied to this usage of a single
currency is the assumption of fixed Redfield ratios
for C:N:P:(Si). More complex models employ vari­
able stoichiometries and multiple functional types
within trophic levels (C:N:P; Baretta et al., 1995).
Given what is known about HAB, the bases for
development of toxicity and poor palatability for
grazers, and the ability of microalgae to use and
hence compete for different nutrients including
prey (Flynn et al., 2013), multiple variable stoichi­
ometric models can be seen to present various
advantages over single-currency models (Flynn,
2010a). That is all the more so when one considers
that, in the future, the nutrients limiting growth
may differ from those that do so at present due to
the damming of rivers and changes in land use,
fertilizer applications, and rainfall patterns (Raba­
lais et al., 2009). Correctly modeling the usage of
different nutrients is important as it affects the
potential to predict the nutrient limitation of phy­
toplankton successions (Flynn, 2005, 2010b).

The need for data of a certain type presents a
modeler with various challenges, as transforms
(with associated assumptions) are then required
to interconvert data types. As an example, algal
biomass is typically estimated in terms of chloro­
phyll (and that often as in vivo fluorescence of the
bulk population), while zooplankton are often
estimated as numbers per unit volume with
some level of taxonomic detail. In contrast, the
representation of these groups in models may be as
N-biomass, with the phytoplankton and zooplank­
ton each described as one or just a few functional
types. Decisions upon such matters, nutrient cur­
rency and how best to collate or group data, affect
the modeling activity and thus scope for use of the
final product.

3.3.4 Validating Models

Models should be constructed and tuned through
reference to one set of data, and then validated
against another separate data set. That is to say, the
model is typically run against real data and selected
(constant) parameters adjusted to enable the best
fit of the model output to data. The model is then
run again under a new set of conditions, in line
with the drivers for a different documented

scenario, and its output compared to the new
real data series. Too often, data series are not
available to support both tuning and validation.
It is thus important to appreciate the limitations of
modeling; sufficient knowledge of the biotic and
abiotic system is often lacking to achieve more
than a phenomenological fit of model to data. A
good outcome is if model output satisfactorily
aligns with the validation data series, ideally with
respect both to timings of events and to magni­
tude. Getting the model to replicate the timing of
an event is often considered more important than
simulating the magnitude correctly, but for HAB
management both are important.

3.4 Modeling T-HAB and ED-HAB
Events

There are fundamental differences between
describing T-HAB versus ED-HAB dominated
blooms, and versus blooms dominated by benign
organisms (accepting that any bloom could become
so large that it could cause damage to the ecosystem
upon its death through deoxygenation – at which
point it would conform to what is termed here a
form of ED-HAB). Cyanobacterial T-HAB and
Phaeocystis ED-HAB may be dominated by these
organisms growing in near-monospecific blooms,
while blooms of T-HAB dinoflagellates may contain
the organism of interest (e.g., Alexandrium) grow­
ing as only a small proportion of total primary
producers. Understanding what enables the growth
of a particular HAB organism in competition with
that of other organisms, and against losses due to
abiotic (typically out-mixing or washout events) or
biotic (grazing) processes, lies at the heart of any
mechanistic attempt to explain bloom growth.
There is also the important issue of bottom-up
and top-down influences. The top-down influences
may be considered as just grazers upon the HAB
species themselves (Irigoien et al., 2005; Stoecker
et al., 2008), but actually they also include their
activity upon their competitors (Flynn et al., 2008),
and for mixotrophs also their prey (Adolf et al.,
2008; Glibert et al., 2009; Hansen et al., 2013). Thus,
proliferation of one species may occur not because
of its competitive advantage in growth rate or
nutrient acquisition, but because it is not the subject
of such great grazing pressure (Mitra and Flynn,
2006; Flynn, 2008). The course of such develop­
ments will likely change if the activity of the next
grazer up the food web is altered, with potential for
ED-HAB formation. (Grazers include benthic
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organisms such as bivalves, and not just zooplank­
ton.) Models are ideal for exploring such cascade
events, although clearly the predictions can only be
as robust as the data and knowledge used to build
the model.

Much of the conceptual bases for describing
ED-HAB events driven by eutrophication is pres­
ent in extant modeling platforms; these provide
linkage between physics, nutrient load, and light
(including self-shading as the bloom develops) to
primary production in an environment where the
simulated grazers of those primary producers are
themselves typically subjected to a density-
dependent closure term (Mitra, 2009). It should
be possible to use suitably constructed multi-
nutrient models (see Flynn, 2005) to conduct
hypothesis testing of what types of nutrient loads
and ratios (noting that the former are more
important than the latter – Flynn, 2010a) are
likely to raise risks of ED-HAB events; however,
allelopathic interactions are also recognized as
important features of HAB plankton interactions
(Pohnert et al., 2007; Granéli et al., 2008). And,
like feedbacks from grazing, allelopathic interac­
tions have potential to generate positive feed­
backs where the increasingly dominant organism
rapidly overpowers its competitors due to the
escalation of cell-density-dependent interactions.
Physical processes, and behavioral traits such as
vertical migration, have clear potential to affect
allelopathic interactions by bringing organisms
together or conversely by dispersing them. While
allelopathic interactions may well be important
features of ED-HAB events, they are typically
absent from ecosystem simulators.

Modeling the growth of cryptic T-HAB species
presents a different, if not greater, challenge to
that for ED-HAB. How necessary is it to model
the growth of the biomass-dominant species in
addition to that of the T-HAB species, and at
what level of detail? If there is a close coupling to
other species (as for the mixotrophic T-HAB
Dinophysis for the supply of acquired photosys­
tems from a specific sequence of other plankton;
Hansen et al., 2013), then a line of exploration for
model complexity can be developed. Ultimately,
work can only progress using the information at
hand. Theoretical/conceptual models may help
here, in exploring the likely sensitivity of different
trophic interactions and processes, and hence
guide field and laboratory studies. Models of
these, as much as for any system, can usefully
act as platforms for generating and testing
hypotheses as well as guiding empirical research
(Figure 3.1).

3.5 How Good Are Current HAB
Models?

Predictive HAB models take a variety of forms,
including conceptual, empirical, and numerical
approaches (McGillicuddy, 2010). As the sophisti­
cation of such models has increased and the data
sets used to evaluate them have expanded, the
metrics by which their skill can be assessed have
begun to receive more attention (Lynch et al.,
2009). Examples of the various approaches to
HAB prediction are provided (Table 3.1) and the
means by which they have been evaluated. See
Anderson et al. (2015) for a more complete review
of recent and ongoing predictive modeling efforts.

Empirically based models have shown predictive
skill in a variety of contexts. For example, Blauw
et al. (2010) related nuisance foam events in Dutch
coastal waters to Phaeocystis globosa ED-HAB
blooms, predicting their occurrence on the basis
of relationships with environmental parameters
such as mixed layer irradiance and nutrient avail­
ability using a “fuzzy logic” approach. In a hindcast
of the period 2003–2007, the model predicted 93%
of the observed foam events – an impressive
record of “true positive” outcomes; however, there
were also many “false positives” in which the
model predicted a foam event but none occurred.
Of course, it is also of interest to quantify “true
negatives” and “false negatives” for a more com­
plete assessment of model skill. From a manage­
ment perspective, the relative importance of
different types of error may differ. For instance,
in protecting public health from exposure to tox­
ins, a false positive may be more tolerable than a
false negative. From the viewpoint of the tourist
trade, however, false positives for HAB can prove
highly costly.

In some regimes, remote sensing is a valuable
input into HAB predictive systems. In the eastern
Gulf of Mexico, T-HAB of the toxic dinoflagellate
Karenia brevis are dense enough to be detected in
satellite imagery (Figure 3.2, top). Not only does
such imagery provide a means for bloom identifica­
tion following ground truthing, but also it can feed
forecasts of bloom transport, extent, intensification,
and impact (Stumpf et al., 2009). Each of these
aspects has been evaluated in the context of an
operational forecasting system, with accuracies in
the range of 73–99% (Figure 3.2b, bottom). It is
important to note that the resolution of the forecast
and validation data are not sufficient in this example
to yield skill at scales finer than 30 km, and consid­
erable patchiness of the K. brevis population and
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Figure 3.2 (Top) SeaWiFS satellite image from November 21, 2004. Yellow areas indicate where the chlorophyll anomaly
based on Stumpf et al. (2003) exceeded 1 μg L�1; cyan and green show anomalies between 0 and 1; blue indicates no
positive anomaly. Red represents locations of K. brevis blooms based on the criteria listed in Stumpf et al. (2009, table 1).
The yellow areas did not match the criteria and are thus not considered to be due to K. brevis. (Bottom) Forecasted bloom
components and percentage of assessable forecasts for the period October 2004–April 2006. In this context, accuracy is
defined to be the sum of true positives and true negatives divided by the total number of forecasts. Source: From Stumpf
et al. (2009), with permission of Elsevier.

associated impacts exist at spatial scales finer than T-HAB of diatoms of the genus Pseudo-nitzschia 
that. An analogous forecast system is emerging for along the west coast of the United States. Logistic
cyanobacterial blooms in the Great Lakes of North generalized linear models (GLMs) utilize time of
America, in which short-term forecasts of bloom year (month), remote-sensing reflectance at three
transport are based on satellite imagery and a hydro- wavelengths, and model-based temperature and
dynamic model together with a particle-tracking salinity (Figure 3.3, top) to predict concentrations
algorithm (Wynne et al., 2013). of Pseudo-nitzschia cells, as well as the particulate

Yet another approach to combining remote and cellular forms of the toxic domoic acid (par-
sensing with models is being used to predict ticulate domoic acid [pDA] and cellular domoic
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Figure 3.3 (Top) Schematic of ROMS model and MODIS satellite products used to compute the “remote-sensing” T-HAB
models for predicting the probability of elevated Pseudo-nitzschia abundance and toxin concentrations in the Santa Barbara
Channel off the coast of central California. Numbers in the far-right map denote monthly “Plumes and Blooms” sampling
stations 1–7, with station 1 nearest the mainland and station 7 off the shelf of Santa Rosa Island. The Santa Barbara Channel
Islands from west to east are: San Miguel Island (SM), Santa Rosa Island (SR), Santa Cruz Island (SC), and Anacapa Island (A).
(Bottom) Model skill assessment for two generalized linear models of Pseudo-nitzschia cell concentration, particulate domoic
acid (pDA), and cellular domoic acid (cDA). The correlation coefficient (CC) is Nagelkerke’s r2. Probability of detection (POD),
false alarm ratio (FAR), and probability of false detection (POFD) are calculated from optimized threshold values (OT). Source:
From Anderson et al. (2011), with permission of the American Geophysical Union.

acid [cDA]) produced by these algae (Anderson
et al., 2011). These predictions have been eval­
uated using the 2004–2010 time series of data used
to build the models (Figure 3.3, bottom). Although
the correlation coefficients between the predicted
and observed quantities are modest (Nagelkerke’s
r2 ranging from 0.20 to 0.46), the probability of
detection (POD; the ratio of true positives to the
sum of true positives and false negatives) ranges
between 83 and 90%. The false alarm ratio (FAR;
false positives divided by the sum of true positives
and false positives) is only 15% for Pseudo­
nitzschia cell concentration, yet 48–55% for
domoic acid constituents. An alternative metric
for false positives normalizes them by the sum of
true negatives and false positives, yielding the
probability of false detection (POFD). POFD is
about double the FAR for Pseudo-nitzschia cell
concentration, and lower than the FAR for pDA
and cDA. It is important to note that the skill
assessment was performed using the same data
used to calibrate the model (albeit with cross-
validation). As longer time series become available,
it will be possible to evaluate (validate) the model
with independent observations.

Whereas the Anderson et al. (2011) approach
uses remote sensing together with model-pre­
dicted temperature and salinity, Brown et al. 
(2013) utilize the output of a coupled physical-
biogeochemical model to forecast the probabilities
of HAB events and the presence of waterborne
pathogens in Chesapeake Bay. These probabilities
are derived from multivariate empirical habitat
models (trained using in situ observations) that
feed on model-based predictions of a suite of
environmental variables. A summary of the target
species, their habitat models, and model accuracy
is provided in Figure 3.4, along with example
forecasts to illustrate the high resolution of the
predictions. Forecast accuracy, defined as the sum
of true positives and true negatives divided by the
total number of forecasts, ranges from 77 to 93%.

Coupled physical-biogeochemical models have
shown prognostic utility themselves in circum­
stances where and when the algal biomass predicted
by such models constitutes the bulk of the HAB of
interest. Such is the case for cyanobacterial blooms
in the Baltic Sea, for which the areal fraction of
cyanobacterial accumulation is correlated with the
concentration of chlorophyll-a during the bloom
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Figure 3.4 (Top) Examples of species forecasts generated by the Chesapeake Bay Ecological Prediction System (CBEPS).
(a) Likelihood of encountering sea nettles Chrysaora quinquecirrha on 17 August 2007. (b) Likelihood of Vibrio vulnificus on
20 April 2011. (c) Relative abundance of Karlodinium veneficum on 20 April 2005. Legend: low: 0–10 cells/ml; med:
11–2000 cells/ml; high: >2000 cells/ml. Color bar for likelihood is the same for both A and B. (Bottom) Synopsis of organism
habitat models used in the CBEPS. Chla, chlorophyll-a concentration; n, sample size; SST, sea-surface temperature; SSS, sea-
surface salinity; TON, total organic nitrogen; TSS, inorganic suspended solids. Accuracy is expressed as the number of
correct forecasts/n. Source: From Brown et al. (2013), with permission of Elsevier.

season (Kahru and Elmgren, 2014). Roiha et al. 
(2010) describe an ensemble forecasting system
that provides quantitative predictions of cyanobac­
teria distributions in the Baltic, for which springtime
phosphorus concentrations are a predictor of basin-
scale spatial variations in the blooms. Likewise,
Stumpf et al. (2012) linked springtime river dis­
charge and total phosphorus load to interannual
variability in cyanobacterial blooms in Lake Erie
(North America), thereby providing the basis for
seasonal forecasts.

In contrast to coupled physical-biogeochemical
models that represent the bulk properties of an
ecosystem, single-species population dynamics
models offer an attempt to capture the life cycles
of particular organisms. In some cases, ecological
forecasts have been facilitated by specific character­
istics of the population dynamics of HAB species.

For example, interannual variations in the extent of
T-HAB of the toxic dinoflagellate Alexandrium 
fundyense in the Gulf of Maine are influenced by
the abundance of resting cysts (McGillicuddy et al.,
2011; Anderson et al., 2014). Specifically, years with
more abundant cysts are prone to more widespread
blooms, as inferred from the along-coast extent of
shellfish toxicity (Figures 3.5 and 3.6). In fact, the
correlation coefficient for the time series of cyst
abundance and the most southerly latitude of shell­
fish harvesting closures is �0.93 (p= 0.02) for the
period 2005–2009. This relationship provides the
basis for seasonal ensemble forecasts of T-HAB
extent via a coupled physical–biological model
that includes germination, growth, and mortality
of A. fundyense cells, which are followed up with
weekly nowcast and forecast simulations (McGilli­
cuddy et al., 2011). In years when conditions were
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Figure 3.5 Top: (a) Alexandrium fundyense cyst abundance in the Gulf of Maine, 2004–2009. Minimum and maximum values
are indicated in each panel. Open circles denote the locations of sediment samples used to construct the maps. (b) Spatial
extent of PSP closures, 2005–2010. The calculations for the western Gulf of Maine and southern New England presented in
Figure 3.6 pertain to the area south and west of the dashed line. Bottom: Ensemble A. fundyense forecast for 01 June, based
on the autumn 2009 cyst map together with hydrodynamic and atmospheric forcing from 2004 to 2009. Pink arrows
depict the instantaneous wind-forcing. Maximum (max) cell concentrations in each panel are indicated at the lower right.
Source: From McGillicuddy et al. (2011), with permission of Association for the Sciences of Limnology and Oceanography, Inc.

“normal,” this approach provided skillful hindcasts scale T-HAB event did not materialize (Figure 3.5,
(He et al., 2008) and forecasts (Li et al., 2009); middle panel, Figure 3.6), thus putting the forecast in
however, in 2010, the forecast system failed. Despite the category of a false positive. Observations from
anunusually high abundanceofrestingcysts, a large- shipboard surveys and the coastal observing system
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Figure 3.6 Time series of cyst abundance in the western Gulf of Maine (WGOM) and the most southerly latitude of coastal
shellfish toxicity closures (note axis reversal). For visual compatibility and correlation analysis, the cyst abundance time
series has been shifted by 1 year, such that the autumn of 2004 is reported as 2005, and so on. These calculations pertain to
the area south and west of the line running southeast from Penobscot Bay (Figure 3.5, upper panel). Source: From
McGillicuddy et al. (2011) with permission of Association for the Sciences of Limnology and Oceanography, Inc.

revealed water mass variations that had a direct
impact on A. fundyense’s niche: near-surface waters
were warmer, fresher, and lower in nutrients than
prior years, leading to unfavorable growing condi­
tions. Moreover, a weaker than normal coastal cur­
rent lessened the along-coast transport of the A. 
fundyense that were present. Thus, thepotential fora
large bloom set by the high abundance of resting
cysts was not realized because of anomalous envi­
ronmental conditions.

This last example highlights the challenge of
making ecological forecasts in a changing ocean
environment. In essence, the forecast system for A. 
fundyense in the Gulf of Maine is predicated on the
hypothesis that, all else being equal, a higher
abundance of resting cysts will lead to a more
widespread bloom. However, in 2010, all else
was not equal: failure of the forecast was a direct
consequence of the fact that conditions were out­
side the envelope of prior observations used to
construct the model. In particular, nutrient con­
centrations were quite different from the climato­
logical values used in the ensemble forecast and
weekly real-time predictions. In the future, aug­
mentation of the coastal observing system with
nutrient sensors should help avoid this mode of
false positive in the forecast model.

Looking toward the future, it is likely that a
changing climate will lead to variations in oceanic
conditions that are outside the ranges experienced
in the recent past; certainly, that is so with respect to
ocean acidification with potential changes in phy­
toplankton succession (Flynn et al., 2015a). Such
changes would influence the severity and extent of

different types of HAB events (e.g., Meier et al.,
2011). Moreover, anthropogenic perturbations to
coastal ecosystems continue to increase, yielding
demonstrable impacts on T-HAB and associated
toxin production (Glibert and Burkholder, 2011).
Given the highly nonlinear nature of ecological
systems, these changing conditions may have
unexpected consequences for HAB species. As
such, predictive modeling efforts will need to be
designed in a manner that makes them adaptable to
regime shifts that are almost certain to occur as
earth’s climate varies (Dippner and Kröncke, 2015).

3.6 Future Modeling of T-HAB
and ED-HAB: Managing
Expectations

Although a generalized framework for predicting
HAB may be a long way off, good progress is being
made with site-specific models in various regional
applications. Enhancements may be expected to
come from generalized conceptual studies of plank­
ton dynamics relating the potential for development
of sustained high-biomass ED-HAB under certain
conditions of nutrient loading (concentrations of
nutrient N, P, and Si), light (and hence interacting
with mixing layer depth and absorbance), tempera­
ture, and pH. Studies of physical systems may then
enable some level of proactive identification of
water bodies becoming more or less susceptible
to ED-HAB under developing climate change sce­
narios, with reinforcement of such identifications
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from placement of suitable configured biological
models within the physics framework. Identifying
low-risk environments should be possible; certain
conditions are clearly more or less conducive to
high-biomass events.

Managing expectations from models for cryptic
T-HAB is important; however, if toxicity can be
aligned with specific physiological states such as
P-stress in the presence of adequate ammonium or
nitrate (Flynn, 2002; John and Flynn, 2002), then
modeling should again be able to perform a useful
role in supporting a traffic-light approach to risk
management. It should be noted that simply consid­
ering nutrient concentrations and ratios (i.e., N:P)
need not support an understanding of the likelihood
of a toxic event. This is because of the importance of
nutrient and light fluxes into the system (Flynn,
2010a), and the consequences of different levels of
biological and physiological interactions (competi­
tion, mixotrophy, self-shading, predator–prey inter­
actions, etc.).

3.7 Improving Our
Capabilities

3.7.1 Changes in the Biological–Modeling
Interface

The fundamental challenge to future progress rests
in improving our basic understanding of physiol­
ogy and ecology, and of how these interrelate when
set within a given physical system. In essence, the
linkages shown in Figure 3.1 need to become more
active. More of the same types of studies that have
been conducted over the past decades are now
needed. At least four things need to change from a
biological model perspective.

1) The types of data collected in especially labo­
ratory experiments need to be broadened.
Thus, there is a need for data in terms of C,
N,P biomass and so on, and not just with
respect to organism numbers, or chlorophyll;
the problem is that organism size and pigment
content (as applicable) vary with growth status,
and for trophic dynamics both biomass and
stoichiometric quality are important.

2) More attention needs to be paid to the types of
abiotic drivers applied in experiments, and the
combination in which they are applied. The
most obvious drivers in question are light,
temperature, and pH. With respect to the
latter, linked to the subject of ocean

acidification, it is notable that changes in pH
during bloom growth rather than growth at any
particular (fixed) pH have been indicated by
modeling to be important (Flynn et al., 2015a).

3) An enhanced understanding is required for
realistic organism–organism interactions hori­
zontally (competitors), upward (predators), and
downward (prey) from the HAB species of
interest. The absence of data for encystment
and excystment is another shortcoming in
some regimes. A better holistic understanding
of what is going on between organisms is
needed when they grow under the types of
conditions (including biomass densities and
hence nutrient loading) likely in nature under
climate change and land use change scenarios.

4) There is a need to understand the implications
of mixotrophy for plankton ecology. Emphasis
has been hitherto placed on abiotic photo­
autotrophic drivers for growth of HAB
(inorganic nutrients, light), ignoring the poten­
tial role of DOM and of prey fields. The impact
of this paradigm change for the understanding
of protist ecophysiology (Mitra et al., 2014b,
2016) will take some time to work through.

In essence, while modeling could be criticized for
being for the most part not mechanistic enough to
enable predictive simulations, in part this simply
reflects inadequacies within the wider science to
understand the underlying ecological interactions
and measure the appropriate parameters. This is not
a new observation, and it applies to plankton
research in general, but it is one that needs acting
upon through coordinated field and laboratory
experimental work together with modeling. It
also requires that modeling (as systems modeling,
with time as a variable) becomes more fully
embedded in the ecology and physiological science.

None of this is going to occur quickly or cheaply.
Phenomenological understanding (born of what
many may dismiss as observational “natural his­
tory”) always develops before sufficient data are
gathered to support empirical, let alone mechanis­
tic, modeling; however, this phenomenological
understanding, viewed as non-numeric data, is actu­
ally of great potential value and often overlooked in
modeling. During recent workshops on enhancing
models of mixotrophic protists (leading to Mitra
et al., 2014b, 2016), there was a specific attempt
made to engage in “expert witness validation.”
Expert witness validation requires that modelers
work with experts in physiology and ecology to
build conceptual understanding and then models
that conform to the essence of what is seen in nature
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Table 3.2 Suggested realized and potential scope for modeling in T-HAB and ED-HAB natural and
management science.

Uses for models in HAB science Now Future

i Provide a focus for investigations and discussions by providing a rigorous framework for testing ✓ ✓

knowledge

ii Drive closer links between scientists at all levels, for fully integrated programs ✓ ✓

iii Provide a platform for testing generic “What-if?” questions ✓ ✓

iv Provide a platform for testing organism-specific “What-if?” questions ✗ ✓

v Provide a generalized predictive geographic capacity for algal blooms ✓ ✓

vi Provide a detailed predictive geographic capacity ✓ ✓

vii Provide a detailed predictive temporal geographic capacity ✗ ?

and understood from experimental manipulations.
This approach also recognizes the importance of
generalities in ecology rather than specifics to a
strain or particular experimental setup.

Careful consideration is required on what model­
ing may provide us with respect to T-HAB and
ED-HAB; a general summary is attempted in
Table 3.2. The history of applied plankton modeling
is rooted in the support of biogeochemical science
and in algal blooms in drinking water lakes, where
the description of biotic details took (and still largely
takes) a backseat to describing the abiotic features.
T-HAB and ED-HAB are functions equally of abi­
otic and biotic features. Some combination of using
mechanistic, physiology-based models and complex
abiotic descriptions (third-generation, “3G eco­
system”models in Figure 3.1) played out in different
physicochemical scenarios should be able to provide
an enhanced management tool for mitigating
against the occurrence of T-HAB and especially
ED-HAB. When linked with weather and coastal
physics projections, there should be reasonable
scope for site-specific capabilities as well. Moving
to the detail of what species and what toxins in
particular, when, and where represents a far greater
challenge. While waiting for that advance, there is
good reason to draw some comfort from the devel­
oping coupled remote-sensing and abiotic modeling
platforms for near-future forecasting.
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