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Abstract We report the significant impact of near-inertial waves (NIWs) on vertical mixing and air-sea
carbon dioxide (CO,) fluxes in the Southern Ocean using a biogeochemical model coupled to an eddy-rich
ocean circulation model. The effects of high-frequency processes are quantified by comparing the fully
coupled solution (ONLINE) to two offline simulations based on 5-day-averaged output of the ONLINE
simulation: one that uses vertical mixing archived from the ONLINE model (CTRL) and another in which
vertical mixing is recomputed from the 5-day average hydrodynamic fields (5dAVG). In this latter
simulation, processes with temporal variabilities of a few days including NIWs are excluded in the
biogeochemical simulation. Suppression of these processes reduces vertical shear and vertical mixing in
the upper ocean, leading to decreased supply of carbon-rich water from below, less CO, outgassing in
austral winter, and more uptake in summer. The net change amounts up to one third of the seasonal
variability in Southern Ocean CO, flux. Our results clearly demonstrate the importance of resolving
high-frequency processes such as NIWs to better estimate the carbon cycle in numerical model
simulations.

1. Introduction

Intensive vertical mixing is one of the important aspects that characterize the Southern Ocean (SO; de Boyer
Montégut et al., 2004; Holte et al., 2017). To the north of the Antarctic Circumpolar Current (ACC), thick
mixed layers in austral winter reach a few hundred meters deep and contribute to the exchanges of momen-
tum, heat, and freshwater, and formation of Antarctic Intermediate Water and Subantarctic Mode Water
(Dong et al., 2008). Deep vertical mixing is also important in biogeochemical processes. It brings surface
water, rich in oxygen, to the interior ocean during the process of intermediate and mode water formations
and forms the oxygen maximum layer (Talley et al., 2011). The uptake of anthropogenic tracers (e.g., chlo-
rofluorocarbons) can be expedited through deep convection (Shao et al., 2013; Song et al., 2015). Intensive
vertical mixing is also efficient in drawing the subsurface water mass rich in nutrients and carbon close to
the surface. For example, iron, critical for the primary production in the SO, is supplied from the interior of
the ocean by vertical mixing in winter (Tagliabue et al., 2014). Vertical mixing may also be responsible for
the nitrate transport from the deep Eastern South Pacific to the Patagonian shelf region that is one of the
most productive areas in the world (Song, Marshall, Follows, Dutkiewicz & Forget, 2016).

Near-inertial waves (NIWs) can significantly impact surface vertical mixing. They have a frequency close
to an inertial frequency with a length scale of 10 to 100 km and are mainly excited by wind forcing (Alford
et al., 2016). In particular, midlatitude storms can drive the ocean with their inertially rotating components
(D'Asaro, 1985) and excite high and low mode waves. High modes create counterclockwise rotation in the SO,
producing high vertical shear of currents and enhanced vertical mixing along with downward propagation
of energy (Alford & Gregg, 2001; Alford et al., 2016). In numerical experiments, NIWs deepen mixed layer
depths (MLDs) by up to 30% on the annual average between 40°S and 60°S (Jochum et al., 2013). This
deepening of MLDs in the SO is associated with the midlatitude storm tracks (Simmons & Alford, 2012),
which is consistent with the view that a high level of wind work can generate NIWs.

The modulation of vertical mixing by NIWs is expected to influence air-sea CO, exchange in the SO. The SO
CO, flux is controlled by two key processes: biological drawdown and intensive vertical mixing (Takahashi
etal., 2009; Wetzel et al., 2005). In austral summer, the SO takes up CO, from the atmosphere with biological
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processes leading to drawdown, but it emits CO, into the atmosphere in austral winter due to the entrain-
ment of carbon-rich interior water up to the surface. It is thus anticipated that enhanced vertical mixing by
NIWs promotes more entrainment in austral winter, resulting in more CO, outgassing. However, it is not
well investigated how much these processes influence air-sea CO, exchange. In addition, their role in aus-
tral summer is uncertain as biological drawdown is itself impacted by the MLD. Deepening of the MLD in
austral summer may enrich the surface ocean with carbon while bringing more nutrients to the surface that
potentially promote higher biological drawdown. Although cooling of the surface water due to enhanced
mixing increases the solubility and lowers the partial pressure of CO, (pCO), which leads to higher CO,
uptake, it is difficult to anticipate the net effect of high-frequency processes on the CO, flux.

Here we attempt to quantify the integral effect of NIWs on CO, flux near Drake Passage in the SO. Our
approach is to compare CO, fluxes with and without high temporal variabilities including NIWs by mak-
ing use of both online and offline biogeochemical models. The online biogeochemical simulation is forced
by 6-hourly winds to capture the input of energy with near-inertial frequency. The offline biogeochemical
simulation is forced by the same wind forcing, but the ocean states driving biogeochemical variables are the
5-day-averaged fields from the online simulation, as described in section 2. The results in section 3 suggest
that high-frequency effects are capable of altering the air-sea CO, flux significantly through changes in the
vertical flux of carbon. A discussion on air-sea CO, simulation follows in section 4.

2. Simulations of Air-Sea CO, Flux

2.1. Eddy-Resolving Model

A simple biogeochemical model (Dutkiewicz et al., 2005; Parekh et al., 2006; Verdy et al., 2007) is coupled to
a 1/20° version of the MIT Ocean General Circulation Model (MITgcm; Adcroft, Hill, Campin et al., 2004;
Adcroft, Hill & Marshall 1997; Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997; Marshall et al.,
1998). The model domain covers the area from —75°S to —35°S with a 140° longitudinal swath of a section of
the ACC stretching from the Southeast Pacific through Drake Passage to the Southwest Atlantic (Figure 1a)
and deploys 50 vertical levels with higher resolution near the surface (10 m). The model configuration is as
described in Tulloch et al. (2014) and the same as that used in Song, Marshall, Munro, Dutkiewicz, Sweeney,
et al. (2016). In particular, the ocean model was integrated with 6-hourly wind and buoyancy fluxes from
the reanalysis data set by European Centre for Medium-Range Weather Forecasts (Simmons et al., 2007).
Vertical mixing is parameterized by the nonlocal K-profile parameterization (KPP) scheme of Large et al.
(1994) in which the depth of the boundary layer is first estimated based on the bulk Richardson number
determined by the surface forcing, buoyancy, and vertical velocity shear. The vertical diffusivity is calculated
within the boundary layer scaled with its depth. In our experiment, the mixing depth is from the surface
to the level where the Richardson number is less than 0.3583. We treat the mixing depth as MLD in our
analysis. The biogeochemical boundary conditions are provided from the monthly mean states from a global
model (Song, Marshall, Munro, Dutkiewicz, Sweeney, et al., 2016). The integration of this configuration
(referred to as ONLINE hereinafter) for 4 years with a time step of 2 min results in ocean states that have
close similarities to the observed SO states including a high level of mesoscale eddy activities whose spatial
scale is O(100 km).

The existence of the NIWs is verified using rotary spectra. The rotary spectra reveal the frequency and power
of the rotational motion. When the horizontal current is written in complex form, we can compute the fast
Fourier transformation to find out the power at both positive and negative frequencies. The positive fre-
quencies show the clockwise rotational motion, while the negative frequencies are for the counterclockwise
rotational motion. In the rotary spectra of velocity shear at 100 m, there are two distinct lines with elevated
power at each latitude: one for the frequency band near zero and the other close to the inertial frequency
(Figure 2a). While the former is associated with geostrophic flow, the latter reveals NIWs. Velocity shear
rotates counterclockwise with positive frequencies near-inertial frequency, f. The rotary spectra of velocity
also show enhanced variance near f as well as at low frequency (Figure S1 in the supporting information),
consistent with that obtained from drifter velocity observations (Elipot & Lumpkin, 2008; Elipot et al., 2016).
The wavenumber spectrum using the surface current has a slope close to k™, with k being the wavenum-
ber (Figure 2c). This suggests that mesoscale eddies derive their energy source from baroclinic instability
(Sasaki et al., 2014).
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Figure 1. (a) A snapshot of sea surface temperature (SST) from the online simulation (ONLINE) in September. The mask in the gray color scale around
Antarctica represents the sea ice concentration. The rectangular box at the center indicates the region of the vertical section of dissolved inorganic carbon from
the surface to 1,500 m in (b). Dissolved inorganic carbon and air-sea CO, flux. The thin black line in (b) marks the mixed layer depth (MLD) defined as the
level whose density is 0.03 kg/m? greater than the surface value. The air-sea CO, flux is represented at the surface by colors and the vertical arrows. The mask
in the gray color scale at the surface is the sea ice concentration. The direction of the Antarctic Circumpolar Current (ACC) is shown as a gray arrow in (b).

2.2. Simulation of Air-Sea CO, Flux
The air-sea CO, flux (F¢,) is estimated using a gas exchange parameterization:

Feo, =K, (1-Ag) (pCO, -~ pCOS™), @

where K, is the gas transfer velocity (m/s) determined by wind speed squared and sea surface temperature
(Wanninkhof, 1992), Ag; is the fraction of the sea ice coverage within a model grid cell varying from 0 when

SONG ET AL. 4607



100 Journal of Geophysical Research: Oceans 10.1029/2018JC014928

(a) rotary spectra, CTRL (b) rotary spectra, 5dAVG
=35 ! 1 T—=3 1 y y y I ‘ J J J
—40} | .

—A5 L e USRS SRRSO OO, SR IO O SO .......
- z
I

B Y0 ST o R EUUPS SO SUPUPPR SUPPPON E ......................... R
) : :
5 i
- ;
-60| — . | ;
® 5
] ;

—B5 el TR i ......................... —
* i
‘ i s
70, , i
: 3 :
< T g
5L -6 [ 5 W 4 | BN 3 :

-4 -3-2-10 1 2 3 4 -4-3-2-10 1 3 4

Frequency (cpd) Frequency (cpd)

(c) Kinetic energy spectrum

10# 4
10° 4

102 5

107 -

10° 4

Kinetic energy (m? s=2 km per cycle)

1071

1072 4

Wavenumber (cycles km™1)

Figure 2. The rotary spectra of vertical shear (s~2-cpd 1) using a log; scale at 100 m in the (a) 1/20° eddy-resolving
model and (b) 5-day-averaged velocity. Blue lines in (a, b) represent the inertial frequency, —f/(2x), where f is the
Coriolis frequency. The kinetic energy spectra of the surface current in ONLINE (red) and 5dAVG (blue) are plotted in
(c). Shading indicates the maximum/minimum energy levels during the last 3-year simulation. The inset in (c) is the
surface vorticity from 5dAVG.

SONG ET AL.

4608



) .¥edl!

AUV .

100 Journal of Geophysical Research: Oceans 10.1029/2018JC014928
Table 1
Comparison of Biogeochemical Simulations
Name ONLINE CTRL 5dAVG
Biogeochemical coupling method online offline offline

to circulation/physics

Physical fields T, S, u,and v (T),(S), (u), and (v) (T), (S), (u), and (v)
Eddy diffusivity (k) computed using T, S, (k) from ONLINE computed using (T), (S),
in the KPP scheme u,and v is loaded. (u), and (v)

Note. In the table, T, S, u, and v represent a snapshot of temperature, salinity, zonal velocity, and meridional velocity,
respectively, with a frequency of 120 s. The 5-day average of those variables are written using angled bracket, ().

there is no sea ice to 1 when the grid cell is fully covered by sea ice, and pCO, and pCO‘Z‘"" are the oceanic
and atmospheric partial pressures of CO,, respectively. We fix pCOS™ at the preindustrial level (278 ppm),
and oceanic surface pCO, is estimated using dissolved inorganic carbon (DIC), alkalinity, and temperature
and salinity, following Follows et al. (2006).

The distribution of DIC in austral winter reveals the upwelling that increases the surface DIC on the pole-
ward side of the ACC (Figure 1b). Near Antarctica where the surface DIC is the greatest, the CO, outgassing
is inhibited by the presence of sea ice. Instead, the strongest CO, outgassing occurs near the ACC where
the intense vertical mixing increases the surface DIC and, hence, pCO,. Strong westerly wind forcing also
contributes to effective CO, outgassing adjacent to the ACC. Interestingly, the sign of the CO, flux changes
near 55°S where the MLD abruptly shallows. The region north of that latitude takes up CO, from the atmo-
sphere as pCO, becomes smaller than pCO$™. Deep mixing can provide iron to the surface (Tagliabue et al.,
2014) and promote biological drawdown that partially compensates the increase of the surface pCO,, but its
magnitude in our simulation is much less than that of DIC vertical flux because of light limitation in win-
ter. Mesoscale eddies in the model simulations alter DIC concentration as shown in the fluctuating isolines
of DIC and hence modulate CO, flux by perturbing the concentration of DIC. See Song, Marshall, Munro,
Dutkiewicz, Sweeney, et al.(2016) for a detailed discussion of the modulation of CO, flux by the mesoscale.

2.3. Suppression of NIWs in the Biogeochemical Model

For the quantification of the impact by NIWs on air-sea CO, flux, we designed an offline simulation of the
biogeochemical model with suppressed variances in time. This offline simulation (referred to as 5dAVG
hereinafter) was integrated from the second year of ONLINE for 3 years driven by 5-day-averaged temper-
ature (7), salinity (S), and horizontal velocities (U, V') from ONLINE. The vertical mixing for tracers was
recalculated by the KPP scheme using those 5-day-averaged ocean states. The surface forcing is not changed
in the surface mixing model and the biogeochemical model.

The 5-day average significantly suppresses processes with time scales shorter than a few days, and the spec-
tral peak along f in the variances disappears (Figure 2b). Instead, almost all the energy in the vertical shear in
5dAVG is concentrated near zero-frequency-associated geostrophic currents. The 5-day average also slightly
lowers the kinetic energy in the wavenumber band corresponding to the mesoscale (Figure 2c). However,
the surface vorticity in 5dAVG shown in the inset of Figure 2c still shows rich structures associated with
the mesoscale. The power density spectra of the square of the vertical velocity in 5dAVG are up to 100 times
lower than ONLINE, but its power remains small (O(10~> m?/s?)) compared with that in the lateral velocity
(not shown). Hence, we can interpret the solution from this offline biogeochemical model as having a sim-
ilar phenomenology as ONLINE except with reference to vertical mixing, which is much suppressed due to
the lack of energy associated with NIWs.

As the focus of our study is on the impact of vertical mixing by NIWs on the CO, flux, we designed additional
offline biogeochemical simulation where the vertical mixing (eddy diffusivity and eddy diffusivity weighted
by nonlocal transport coefficient) from ONLINE were provided to the offline simulation. This offline sim-
ulation is referred to as CTRL hereinafter. This CTRL simulation then has the same mean physical oceanic
states and surface vertical mixing as ONLINE, and the comparison of CTRL and 5dAVG allows us to isolate
the impact of vertical mixing associated with NITWs on CO, flux. All three biogeochemical simulations are
summarized in Table 1.
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Figure 3. (a) Mixed layer depth (MLD) in the CTRL simulation averaged in September and (b) the changes in MLD
between CTRL and 5dAVG. The mask in gray scale is the simulated sea ice fraction. Panels (c) and (d) are histograms
of MLDs in CTRL (red) and 5dAVG (blue) in January and September, respectively, with the mean MLD differences
(black bar plots) between the two runs binned by the original MLDs in CTRL. Black lines in the bar plots represent the
standard errors. Note that the scales of the x and y axes are different between (c) and (d).

3. Impact of NIWs on MLD and Air-Sea CO, Fluxes

3.1. MLD

The CTRL run captures the observed wintertime MLD structure: MLDs reaching deeper than 500-m
upstream of Drake Passage (Figure 1b) and relatively shallow MLDs of roughly 150 m in the Atlantic
(Figure 3a; Dong et al., 2008; Holte et al., 2017; de Boyer Montégut et al., 2004). The absence of NIWs in
5dAVG reduces the vertical shear and weakens the vertical mixing, leading to shallower MLD. The reduction
in MLD occurs almost everywhere, but it is more pronounced along the ACC where it can be greater than
100 m (Figure 3b). Since the MLD is an important factor in the calculation of eddy diffusivity in the KPP
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scheme, one can expect to have larger changes in the eddy diffusivity along the ACC than in other areas. The
maximum eddy diffusivity in 5dAVG is on average approximately 40% level that found in ONLINE along the
ACC. The wintertime reduction in MLD is greater than in the summertime, which may be associated with
the fact that midlatitude storms are important source for NIWs (Alford et al., 2016).

The reduction in MLD in 5dAVG can be further evaluated using histograms of MLDs. In January, the mean
MLD in 5dAVG is 12.4 m (blue line in Figure 3c), about 5 m shallower than that in CTRL (red line in
Figure 3c). The histogram of 5dAVG is shifted to the left and becomes more skewed: the moment coefti-
cient of skewness is increased from 1.0 to 1.5 when the vertical mixing is recalculated using 5-day-averaged
fields. We also computed the mean reduction of MLD after grouping the background MLD with the 5-m bins
(the black bar plot in Figure 3c). All MLD ranges consistently show the reduction, indicating the systematic
shoaling of the MLD. The size of MLD reduction increases with the background MLD in CTRL until 70 m,
but decreases beyond that point. Similar patterns stand out in the MLD changes in September (Figure 3d).
The mean MLD in 5dAVG is 83.5 m, which is roughly 24 m shallower than that in CTRL. The histogram
of MLD in 5dAVG is more positively skewed than that in CTRL: the moment of coefficient of skewness in
5dAVG is 16.6 while it is 14.7 in CTRL. The reduction of MLD tends to increase as the background MLD
becomes deeper, but it starts to decrease with the background MLD for bin sizes greater than roughly 300
m (the black bar plot in Figure 3d).

We argue that the reduction of MLD results from the elimination of vertical shear of the current in the
near-inertial frequency band associated with NITWs (Figures 2a and 2b). The depth of the surface boundary
layer in the KPP mixing scheme is defined as the level where the Richardson number is smaller than a
predefined critical value. Since the Richardson number is inversely proportional to the vertical shear of the
current, the decrease of vertical shear in 5dAVG can result in the increase of the Richardson number, and
a reduction of the MLD and vertical eddy diffusivity. Just as temporal smoothing suppresses the kinetic
energy, especially of the mesoscale (Figure 2b), it can alter the stratification near the surface. Suppose, for
example, there is a cold eddy that moves along the current where stratification is roughly constant. Taking
a 5-day average of the temperature has the effect of introducing cold (and thus heavy) water along the path
over the 5-day span and thus might be expected to change the stratification and hence MLD. However, we
find that the 5-day average has little impact on squared Brunt-Viisili frequency (N?) in the upper ocean
(not shown), suggesting that the MLD reduction is driven mainly by the reduced level of vertical shear due
to the absence of NIWs in 5dAVG.

3.2. Air-Sea CO, Flux

The CO, flux in ONLINE exhibits seasonal variability (red line in Figure 4a). In summer, the ocean takes
up CO, from the atmosphere while the ocean emits CO, back to the atmosphere in winter. This is con-
sistent with previous studies of air-sea CO, exchange in the SO (Lenton et al., 2013). In CTRL where the
5-day-averaged fields, including vertical mixing, drive the biogeochemical model, the ocean takes up more
CO, in summer and releases more CO, in winter (green line in Figure 4a). Although the change in CO,
flux can be as big as 0.1 Pg C/year, the mean difference is rather small (—0.04 Pg C/year), suggesting that
CTRL is a realistic approximate to ONLINE. When the surface vertical mixing is recalculated using the
5-day-averaged fields in 5dAVG, the CO, uptake in summer is further enhanced while the outgassing of
CO, in winter weakens (blue line in Figure 4a). The mean change in CO, flux in 5dAVG is —0.23 Pg C/year
with respect to ONLINE and —0.19 Pg C/year with respect to CTRL, with the maximum reduction occur-
ring in winter. The size of the CO, flux change in 5dAVG is considerable, having an amplitude of 30% of the
seasonal cycle of CO, in ONLINE. It is also large when compared with the seasonal cycle of CO, in CTRL,
roughly 20% of the level in CTRL.

Suppressing processes with high temporal frequency is responsible for the shift of the CO, flux curve from
5dAVG downward compared to that of ONLINE (Figure 4a). Because the surface wind is fixed and the
mean temperature is the same, the downward shift of the CO, flux curve from 5dAVG is solely the result
of the reduction in surface pCO,. The impact of removing NIWs alone is quantified by comparing CTRL
and 5dAVG simulations. The largest impact is observed in winter and spring, while the impact is minimum
summertime. This seasonality in the impact of suppressed NIWs is to be expected, given that the main energy
source for NIWs is the wind.
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Figure 4. Area-integrated (a) CO, flux and (b) diapycnal mixing of dissolved inorganic carbon for each month from ONLINE (red), CTRL (green), and 5dAVG

(blue).

To quantitatively investigate the drivers of CO, flux changes, we write the DIC concentration thus

IDIC _ ¢ wprc )+ (9DIC
Jat 0z 0z

> —Feo, *+ Spio + Sc: @)
where u is a three-dimensional velocity vector, « is the vertical diffusivity, F, is the CO, flux, and Sy;, and
Sc are the source/sink terms associated with biological activity and calcium carbonate flux, respectively.
According to (2), the DIC tendency is determined by advection, diapycnal mixing and addition/subtraction
of DIC through biogeochemical processes and air-sea exchange whose rate is determined by the ambient
pCO, level through (1). When comparing the terms in ONLINE, CTRL, and 5dAVG, excluding F,, the
biggest differences are found in x(0*DIC/dz?) (Figure 4b; other terms not shown). Clearly, the magnitude
of the changes in diapycnal mixing is sufficient to explain the CO, flux changes, indicating that the supply
of carbon-rich water from below through vertical mixing is the primary driver.

The changes in CO, flux have spatial structures (Figure 5), which resemble changes in the pattern of the
vertical diffusive flux (Figure 6). In summer when most of the model domain takes up CO,, the suppression
of processes with high temporal variability allows the ocean to absorb more CO, near the ACC (Figure 5c).
Because of CO, uptake, we find a weak vertical gradient of DIC near the surface (Figure S2 in the supporting
information). In some locations along the ACC, it even becomes positive in which case the vertical diffusive
flux of DIC is negative (Figure 6a). Since ONLINE and CTRL have the same mean state and vertical mixing,
the differences in Figure 6c can be attributed to vertical diffusive flux of DIC associated with short timescale
processes that are removed during the 5-day average and expressed as (x’(dDIC/dz)’). Episodic convection
events in ONLINE can homogenize the DIC concentration near the surface layer, leading to a negative
(x'(0DIC/dz)) (Figure 6b) when (dDIC/dz) is positive. Thus, one might expect higher pCO, at the surface
and less CO, uptake in ONLINE than CTRL (Figure 5b).

If vertical mixing is recalculated using states without short timescale processes, further uptake of CO, occurs
mainly near the ACC in summer (Figure 5e). These spatial changes are also closely linked to the changes in
the mean vertical diffusive flux of DIC by diapycnal mixing expressed as —(x )(dDIC/dz). 5dAVG has weaker
mixing and (k) has to be smaller than in CTRL, resulting in a reduction of carbon supply by vertical mixing
when filtering out NIWs. The responses of the biological pump to suppressing high temporal variability and
NIWs are not as large as those due to vertical mixing (not shown); hence, reduced supply of carbon from
below leads to more uptake of CO, (Figures 4a and 5c and 5e).

In winter, using 5-day-averaged physical fields and eddy diffusivity in the biogeochemical model does not
alter the CO, flux as much as in summer near the ACC. However, their impact is the opposite to that in
summer (Figures 5b and 5d). In winter, the vertical diffusive flux of DIC is positive along the ACC, indi-
cating that (9DIC/dz) is negative. When episodic convection events homogenize the DIC concentration
near the surface layer, (x’(dDIC/dz)') becomes positive (Figure 6d). The biggest changes are observed in
the Brazil-Malvinas confluence zone. Here there is originally CO, uptake in ONLINE (Figure 5b), but the
positive difference between CTRL and ONLINE suggests that the CO, flux is close to zero or even positive
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Figure 5. (a, b) Monthly averaged CO, flux in ONLINE, and (c, d) the difference between CTRL and ONLINE, and (e, f) between 5dAVG and CTRL. The
panels on the left (a, c, and e) are the CO, flux and its difference in January, and the panels on the right (b, d, and f) are those in September. Similar to Figure 1,
the gray mask near Antarctica represents the sea ice concentration.

(outgassing) after removing (x’(dDIC/dz)’) (Figure 5d). Although the main driving process is unclear, it is
plausible that the larger vertical gradient of DIC in the zone can yield greater (JDIC/dz) when homogenized
by episodic convection events. Whatever the biggest changes in CO, flux in this zone between ONLINE and
CTRL suggests that the effect of the high temporal processes is the greatest there.

In winter, suppressing NIWs reduces CO, outgassing (Figure 5f). Changes in the vertical diffusive flux of
carbon can also explain the CO, flux changes between simulations in winter. The weakening of the vertical
mixing in 5dAVG decreases (kx), and the vertical diffusive flux of DIC diminishes as expected (Figure 6f).
The magnitude of the reduction in both vertical diffusive flux of DIC and CO, outgassing are much greater
in winter than summer, which is consistent with the changes in MLD. These results point to the fact that
the impacts of suppressing NIWs on the vertical mixing and resulting CO, flux change are greater in winter.

The results from ONLINE and 5dAVG demonstrate that suppressing NIWs and processes of high temporal
variability shallows the MLD as shown in Figure 3. Since eddy diffusivity, «, in the KPP scheme is propor-
tional to the depth of surface boundary layer, it is the smallest in 5dAVG, leading to the weakest vertical
diffusive flux of carbon to the surface. The decrease of carbon supply from subsurface lowers the pCO, at
the surface and causes more uptake of CO, in summer and less CO, outgassing in winter. Driving the bio-
geochemical model with the same mean states including vertical mixing but without processes associated
with high temporal variability (CTRL) also modifies the diffusive flux of carbon, lowering surface pCO, in
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Figure 6. Same as Figure 5, but for the vertical mixing contribution to the surface dissolved inorganic carbon.

summer but increasing it in winter (Figures 4b and 6c and 6d). The effect of NIWs on CO, flux can be iso-
lated by comparing CTRL and 5dAVG, and the comparison suggests that the effect of NIWs in CO, flux is
greater in winter (Figures 4b and 6e and 6f). The decrease of carbon supply by vertical mixing can explain
the reduced outgassing of CO, when NIWs are suppressed in winter (Figure 5f).

4. Discussion

Three numerical experiments demonstrate the sensitivity of air-sea CO, flux to high-frequency processes.
Weakening of vertical mixing leads to less supply of carbon-rich water from below and reduces the surface
carbon concentration. Budget analysis of DIC reveals that the vertical diffusive carbon flux is systematically
lower when NIWs are suppressed (5dAVG; Figure 4b). As a result, the SO emits less CO, in austral winter and
takes up more CO, in austral summer. Moreover, this change is approximately one third of the magnitude
of the seasonal variability in ONLINE.

We note that removing NIWs and processes with high temporal variability can potentially affect the air-sea
CO, exchange by changing the solubility of the surface ocean. Temporal smoothing reduces the warm/cold
temperature anomalies and increases/decreases solubility, resulting in the decrease/increase of partial pres-
sure of CO, that changes CO, flux. However, we expect this to result in a very small net effect. The temporal
smoothing preserves mean properties; hence, there is no net sea surface temperature change. Since the
changes in partial pressure of CO, with respect to temperature is fairly constant (Takahashi et al., 1993),
net-zero temperature change should yield a very small net change in partial pressure of CO,.
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The 5-day average removes all processes with temporal scales shorter than a few days along with NIWs.
Those processes can be important to explain changes in vertical mixing and CO, flux. In particular, the
submesoscale cannot be neglected in the vertical processes affecting the surface pCO, and the carbon cycle.
Because of its short length and time scales, the submesoscale demands a very high resolution simulation.
Our numerical experiment with 1/20° resolution (ONLINE) has a chance to simulate the submesoscale,
while 5dAVG does not. To find out whether ONLINE can simulate the submesoscale, we computed the
Rossby number using a snapshot in winter. In most of the domain, the Rossby number is of O(0.1) except for
a few points mostly near the coast (Figure S3 in the supporting information). This is 1 order of magnitude
smaller than the Rossby number typical of simulations, which resolve the submesoscale (McWilliams, 2016).
It indicates that 1/20° resolution is still not high enough to explicitly resolve SO submesoscale processes
(Rosso et al., 2014; Rosso et al., 2015). Hence, we conclude that the MLD changes in the 5dAVG is not
associated with submesoscale in our experiment.

High-frequency wind forcing can change not only vertical mixing but also the ocean circulation itself. Duteil
(2019) examines the oxygen concentration in the tropical Pacific Ocean after removing high frequency in the
wind forcing and finds changes in ocean circulation and also oxygen concentration in subsurface regions
(200-700 m), in addition to the shoaling of the MLD. The SO circulation might also be different if we exclude
the high-frequency physical processes represented by NIWs. Thus, CO, flux could be influenced by both
changes in mixing and ocean circulation. Since our experiments fix the mean ocean circulation and we are
able to isolate the role of NIWs on surface mixing and the resulting CO, flux, our study can be useful to
interpret the role of the changes in the ocean circulation on the CO, flux if one performs similar experiments
as in Duteil (2019).

In nature, the effect of NIWs on vertical mixing and CO, flux may be greater than found in this study.
Rimac et al. (2013) report that there is more than three times greater wind energy input to near-inertial
motions by the hourly wind with 0.35° resolution than by 6-hourly wind with 1.875° resolution. Their
result suggests that the 6-hourly wind whose resolution is close to 1° may not excite the NIWs fully in our
experiment. Indeed, the amplitude of the energy near the inertial frequency in our study is on the order
of 10> cm?-s72-cpd~" (Figure S1 in the supporting information), which is an order of magnitude smaller
than the observations (Alford et al., 2016). If the wind product carried full energy associated with NIWs, the
reduction of vertical mixing and the surface pCO, would be even more dramatic.

Here we have shown that processes with a high temporal frequency such as NIWs have a significant impact
on vertical mixing and CO, flux, suggesting that such processes must be resolved in numerical simulations
to improve estimation of the air-sea CO, flux in the SO. In order to properly simulate NIWs, the frequency
of the wind forcing should be higher than the local inertial frequency. The inertial frequency increases with
latitude, and is close to 2 cpd near —75°S, the southern boundary of our model (Figure 2a). At this latitude, at
least 6-hourly winds are required to accurately force NIWs. However, many models do not use wind forcing
with the frequency adequate for resolving NIWs, including those in the Coupled Model Intercomparison
Project phase 5: Almost half of coupled climate models use only a daily coupling frequency (Tian, 2016).
Even eddy-resolving models may miss the energy associated with NIWs if the wind forcing frequency is
lower than local inertial frequencies.

Our study demonstrates that NIWs have broad impacts on both physical and biogeochemical properties.
The impact is the strongest near the ACC in winter where many climate models show a shallow MLD
bias (Downes et al., 2015). In recent years, the SO Carbon and Climate Observations and Modeling project
deployed floats with the ability to estimate the carbon concentration at the surface and CO, exchange
between the atmosphere and the ocean. The new observations revealed the wintertime CO, outgassing
near the ACC (Gray et al., 2018), which had been underestimated by most numerical models. Hence it is
important to evaluate whether NIWs are properly included in those numerical simulations in diagnosing
the models' performance. Finally, we note that Hausmann et al. (2017) report on the modulation of MLD by
mesoscale eddies in the SO, which is found to be significantly deeper in anticyclones, shallower in cyclones.
One of the possible mechanisms could be preferential trapping of inertial waves in anticyclones, as has been
discussed in, for example, Kunze (1985).
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