
1.  Introduction
The Mid-Atlantic Bight (MAB) region of the U.S. northeast continental shelf is home to a large and highly pro-
ductive marine ecosystem (O’Reilly & Busch, 1984; O’Reilly et al., 1987), and an important region for commer-
cial fisheries (Orphanides & Magnusson, 2007; Podestá et al., 1993). Phytoplankton concentrations and primary 
productivity vary substantially across the MAB. High phytoplankton biomass is often associated with the colder, 
fresher shelf water, while more oligotrophic conditions are associated with the warmer and saltier slope water off-
shore of the shelf break (e.g., Xu et al., 2011; Yoder et al., 2002; Zhang et al., 2013). A persistent shelf-break front 
with isopycnals shoaling offshore (Lozier & Reed, 2005) serves as the boundary between shelf water and slope 
water (e.g., Fratantoni, 2003; Linder & Gawarkiewicz, 1998). The location and orientation of the shelf-break 
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high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf-break front 
have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand 
why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ 
in-situ and remote sensing data, and a 2-dimensional model to show that Ekman restratification driven by 
upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf-break front in spring. Using 
8-day composite satellite-measured surface chlorophyll concentration data from 2003–2020, we constructed 
a daily running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern MAB 
region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured 
in the seasonal climatology due to its short duration of less than a week. In-situ measurements of the frontal 
chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf-break front slumps 
offshore from its steep wintertime position causing restratification in the upper part of the water column. 
Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break 
corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman 
transport of the shelf water over the denser slope water. The 2-dimensional model shows that upfront winds can 
indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf-break 
front.

Plain Language Summary  The ocean south of New England contains high concentrations of 
phytoplankton that form the base of the marine food web and provide critical support to the region's fisheries. 
The offshore edge of the relatively shallow continental shelf, the shelf break, is the boundary between the 
cooler and fresher water on the continental shelf (shelf water) and the warmer and saltier water offshore (slope 
water). This water boundary at the shelf break is thought to support high chlorophyll concentrations. Enhanced 
shelf-break chlorophyll concentrations are not always present, however. We use data from satellites, ships, 
gliders, and moorings to determine what drives the episodically enhanced surface shelf-break chlorophyll 
concentrations. We find that the shelf-break surface enhancements of chlorophyll concentrations are short-
lived events, and are associated with periods when the shelf-slope water interface slumps, as a surface layer of 
the lighter shelf water moves over the denser slope water. This process creates a shallow surface layer that has 
ample light to support photosynthesis. Both data and a computational model show that eastward winds are the 
primary driver of the episodic frontal slumping and localized enhanced surface chlorophyll.
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front can vary considerably. In winter, the vertical structure of the front is steep with condensed isopycnals, while 
in summer the front is gently sloped with strong stratification in the upper layer (Linder & Gawarkiewicz, 1998).

Sporadically enhanced chlorophyll concentrations at the shelf-break front have been detected by satellite and 
shipboard measurements (Figure 1; Marra et al., 1982; Ryan, Yoder, Cornillon, et al., 1999). A variety of nu-
trient-supplying upwelling processes have been suggested to take place at the front, including an onshore flow 
driven by the along-shelf pressure gradient force (Zhang et al., 2011), along-isopycnal upwelling driven by con-
vergence within the bottom boundary layer (Chapman & Lentz, 1994; Gawarkiewicz & Chapman, 1992; Linder 
et al., 2004), and vertical transport induced by frontal meandering (Zhang & Gawarkiewicz, 2015). Frontal chlo-
rophyll enhancement is not always present, however (Hales et al., 2009), and is not visible in seasonal chlorophyll 
climatologies (e.g., Zhang et al., 2013). The absence of a mean chlorophyll enhancement at the shelf break, given 
the variety of potential upwelling mechanisms, has presented a critical gap in our understanding of the bio-phys-
ical interactions governing this economically important marine ecosystem (Sherman et al., 1996). The central 
question is two-pronged: (a) what drives the enhanced surface chlorophyll when it occurs at the shelf break, and 
(b) why is it not detected in the seasonal means?

Here, we explore the timing and duration of chlorophyll enhancements at the New England shelf break using 
satellite-based estimates of surface chlorophyll a concentrations made from ocean color measurements. To un-
derstand the environmental conditions that give rise to these enhancements, we use shipboard data collected in 
mid-to-late April 2018 and data from the Oceans Observatories Initiative (OOI) Coastal Pioneer Array (Ga-
warkiewicz & Plueddemann, 2020; Trowbridge et al., 2019), which we then test with 2-dimensional coupled 
physical-biogeochemical simulations.

2.  Materials and Methods
2.1.  Satellite Chlorophyll a

We analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 8-day composite 1-km surface 
chlorophyll a data (OC3 algorithm) from 2003 to 2020 to identify times of higher surface chlorophyll concen-
trations at the shelf break than neighboring slope and shelf region. While there is frequently heavy cloud cover 

Figure 1.  Example snapshot of enhanced chlorophyll at the shelf break, depth contours at 75, 100, 200, 500, 1,000, and 
2,000  m. The gray box indicates the geographic boundaries of the map shown in Figure 3. Note the log color axis scale.
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over the region, the 8-day composite product can provide nearly-continuous chlorophyll data over the shelf-break 
area. The 8-day composite chlorophyll fields are available daily, and are an effective 8-day moving average of 
chlorophyll in each 1-km pixel. We therefore henceforth refer to the 8-day chlorophyll composites as daily run-
ning means (DRM).

We analyze chlorophyll distributions from the Hudson Canyon to 68°W, and from a bottom depth of 50–3,000 m 
(Figure 2). Individual ocean color images showing enhanced chlorophyll along the entire MAB shelf break are 
relatively rare, likely due to cloud cover or extensive along- and cross-front variability in chlorophyll concen-
trations. To account for spatial and temporal variability and to achieve an along-shelf mean picture of the chlo-
rophyll distribution, we averaged chlorophyll concentrations in the along-shelf direction. As the frontal flow in 
the shelf break region is often topographically steered, the averaging was carried out using bottom depth as the 
cross-shelf coordinate. The procedure of the averaging is as follows: (a) the mean cross-shelf bathymetric profile 
within the range of 50–3,000 m was discretized into 3 km intervals, which gives a total of 51 bottom depth bins 
(Figure 2a); (b) for each day, the surface DRM chlorophyll value at each pixel was then placed in a depth bin 
according to the water depth (Figure 2b); and (c) all chlorophyll values in each depth bin were then averaged to 
obtain the mean chlorophyll concentration of that bin. The distribution of the bin-averaged chlorophyll concentra-
tion against the mean cross-shelf distance of the depth bins gives the along-shelf-averaged cross-shelf distribution 
of surface chlorophyll concentration of the 8-day window.

2.2.  Shipboard Data

From 16–29 April 2018, R/V Neil Armstrong cruise AR29 sampled repeatedly across the New England shelf 
break along 70.83°W (Figure 3), centered between the moorings installed at the OOI Coastal Pioneer Array. The 
objective of cruise AR29 was to investigate the mechanisms controlling primary productivity at the shelf-break 
front, as part of the interdisciplinary Shelf-break Productivity Interdisciplinary Research Operation at the Pioneer 
Array (SPIROPA). From 3–12 April 2018, R/V Neil Armstrong cruise AR28B also conducted cross-shelf CTD 
transects at 70.83°W, which provided information about the conditions preceding the SPIROPA cruise.

During AR29, a Video Plankton Recorder II (VPR, from SeaScan Inc.) was towed behind the ship for high-resolu-
tion surveys of temperature, salinity, and fluorescence across the shelf break. The VPR consists of a towed body, 
and is equipped with a Seabird Electronics Inc. SBE 49 FastCat CTD, SBE 43 oxygen sensor, ECO FLNTU-4050 

Figure 2.  (a) Mean cross-shelf bathymetric profile, partitioned into the 51 depth bins (equally spaced 3 km apart), with the 75, 100, 200, 500, and 1,000 m isobaths 
identified by vertical and horizontal lines, and bins identified as belonging to the shelf, shelf break, and slope sections; (b) geographic distribution of the 51 depth bins, 
selected by dividing the mean cross-shelf profile in (a) into 3-km segments. Note that bins from the shelf break will cover a larger depth range than those on the shelf or 
slope. For clarity a repeating color map is utilized in both (a) and (b) for each depth bin. Note the log color axis scale in (b).
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fluorometer, ECO BBFL2-123 ECO Triplet, Biospherical Instruments Inc. QCP-200L PAR sensor, and a syn-
chronized video camera and xenon strobe (Davis et al., 2005). The VPR was towed at 10 knots (5.1 m s−1), undu-
lating between 5 and up to 100 m with a vertical velocity of approximately 1 m s−1. Net community production 
(NCP) integrated over the mixed layer was calculated for the VPR transect from O2/Ar measured continuously 
(seconds-to-minutes) by an Equilibrator Inlet Mass Spectrometer (EIMS) from the ship's underway system (in-
take depth = 2.1 m; Smith et al., 2021). We present data from VPR Tow 1 on 18 April 2018, near the beginning 
of the cruise.

High-resolution underway measurements of phytoplankton size structure were measured during the VPR tow 
with two types of cytometers. Pico-to nanoplankton (0.5–15 μm) were measured with an Attune NxT flow cy-
tometer (Thermo Fisher Scientific) and nano-to microplankton (7–150 μm) were observed with an Imaging Flow-
Cytobot (IFCB, McLane Research Laboratories). Images were captured based on the chlorophyll fluorescence 
signal of each particle. The Attune collected one 0.4-ml sample approximately every 2 min and the IFCB collect-
ed one 5-ml sample ca. every 26 min. All Attune samples within 10 min of each IFCB sample were pooled and 
combined with the data from a single IFCB file. Differences in sampling volume between the two instruments 
meant that the pooled Attune samples and the IFCB sample had approximately the same volume. Total phyto-
plankton biovolume concentrations for shelf water (salinity 32–34), frontal water (salinity 34–35), and slope 
water (salinity 35–35.5), used here as a proxy of phytoplankton biomass, were calculated by integrating over 
the composite particle size distributions. Biovolume concentrations from warm-core ring water (salinity >35.5) 
represent a different hydrographic regime and are not included in this study.

Attune cell sizes were estimated from side angle light scattering, with side scattering observations periodically 
normalized to the mean side scattering signal of 1  µm beads (Flow Check High Intensity Alignment Grade 
Particles, Polysciences). The normalized signals were converted to cell volume based on a calibration curve 
generated from 12 phytoplankton cultures ranging in size from 1 to 20 μm, which were analyzed on the Attune 
and independently sized on a bead-calibrated Coulter Multisizer II (Beckman Coulter). IFCB particle sizes were 
estimated from images following the automated scheme described by Sosik and Olson (2007) and updated in 
Sosik et al. (2020), and biovolume of imaged targets was determined with the distance map algorithm of Moberg 
and Sosik (2012).

On 19 April 2018, CTD Transect 5 was conducted over the locations covered by the VPR in the previous day; 
we present the nutrient data for these ten stations (A5-A14) (Figure 3). CTD profiles were taken at each station 
spaced ∼7 km apart, and discrete seawater samples were collected using 24 10-L Niskin bottles mounted on the 
CTD rosette. The rosette was equipped with a SeaBird 911 CTD system, a WetLabs FLNTURTD fluorometer, 
a BioSpherical Instruments photosynthetically active radiation (PAR) sensor, and a WetLabs C-Star beam trans-
missometer. Temperature, salinity, and fluorescence were measured on all CTD casts. The interface between the 
shelf and slope waters is represented by the 34.5 isohaline, which largely coincides with the shelf-break front 
during spring (Linder & Gawarkiewicz, 1998). Nitrate, phosphate, and silicate concentrations were determined 

Figure 3.  Map of 18 April, video plankton recorder (VPR) tow (red line) and 19 April, CTD Transect 5 cast locations (black 
circles) overlayed on April 18 DRM chlorophyll from MODIS-Aqua. Black circles represent Stations A5 to A14, from north 
to south.
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by filtering water samples through 0.4 μm polycarbonate filters, which were frozen in acid-washed polyethylene 
bottles before being run at the Woods Hole Oceanographic Institution Nutrient Analytical Facility.

VPR chlorophyll concentrations from fluorescence were estimated using the CTD fluorometer-chlorophyll cali-
bration. CTD fluorescence (𝐴𝐴 𝐴𝐴CTD ) was converted into chlorophyll a concentrations (𝐴𝐴 ChlCTD ) using a regression 
between fluorescence values and extracted chlorophyll a measurements from Niskin bottles:

ChlCTD = 0.669𝐹𝐹CTD + 0.027� (1)

(R2 = 0.90, RMSE = 0.60). In turn, VPR concentrations of chlorophyll a (𝐴𝐴 ChlVPR ) were determined from fluo-
rescence by regressing the calculated chlorophyll concentrations from the CTD cast immediately following the 
VPR tow (Cast 16 at Station A14, the southernmost station of CTD Transect 5; Figure 3) using (𝐴𝐴 ChlCTD ) with the 
fluorescence (𝐴𝐴 𝐴𝐴VPR ) from the last VPR profile with a maximum depth of at least 95 m. The least squares fit used 
to calculate chlorophyll from VPR fluorescence was

ChlVPR = 0.673𝐹𝐹VPR + 0.298� (2)

(R2 = 0.69, RMSE = 0.13).

We also estimated the potential seasonal onset of more nutrient-limited conditions in the MAB with surface 
nitrate data provided by the National Centers for Environmental Information in the 2018 World Ocean Database 
(Garcia et al., 2019). We extracted all surface nitrate measurements from 68.0–73°W, and 36.0–42.0°N where the 
bottom depth was between 75 and 1,000 m, a total of 640 observations from the top 15 m from 1933 to 2012 to 
create a 30-day moving median climatology of surface nitrate. Medians are used due to right-skewed concentra-
tions. Only concentration data that were not flagged by World Ocean Database during quality assurances were 
incorporated.

2.3.  OOI Coastal Glider Data

A set of Teledyne-Webb Slocum coastal gliders deployed at the OOI Coastal Pioneer Array monitor a broad area 
covering the outer continental shelf, shelf break, and Slope Sea. We used all available April glider measurements 
of temperature, salinity, and chlorophyll to assess the conditions associated with higher spring chlorophyll con-
centrations near the shelf break (7,861 vertical profiles from 2014–2020). The chlorophyll products provided 
by OOI are calculated from fluorescence (from WET Labs – ECO Puck FLBBCD-SLK fluorometers); regular 
factory calibrations are performed on its glider fluorometers to provide consistent estimates of chlorophyll con-
centrations. Glider temperature and salinity data are measured by Sea-Bird – SBE Glider Payload CTDs (GP-
CTD). The chlorophyll and density data were provided by different instruments, with differing time steps, so the 
chlorophyll data were linearly interpolated by the CTD time before analysis.

2.4.  Surface Winds

We explored the wind conditions associated with shelf-break chlorophyll enhancements with in situ measured 
and reanalysis wind data. OOI Pioneer Array surface moorings are equipped with a bulk meteorological pack-
age 3 m above the surface that record meridional and zonal wind speeds. Wind speeds at offshore, central, and 
inshore surface moorings agree well with one another during periods of overlap (Figure S1 in Supporting Infor-
mation S1). To fill gaps in individual mooring records, we generated a combined OOI buoy time series, using the 
mean zonal and meridional wind speeds available for each minute among the three buoys.

While the local OOI buoy measurements would be the most ideal data stream for comparison to MODIS chloro-
phyll in the Pioneer Array shelf-break area, the buoy meteorological time series only extends back to 2014, while 
MODIS-Aqua chlorophyll data extends back to 2003. Meteorological model reanalysis products, by contrast, 
provide wind speeds covering the period of interest; the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5 reanalysis product extends back to 1950 (Hersbach et al., 2018). We first assessed whether the 
trends in OOI buoy wind speed are captured in the reanalysis before comparing its trends to those of the MODIS 
shelf-break chlorophyll (Section 2.1). For comparison with OOI buoy winds (Inshore Buoy: 40.37°N, 70.88°W; 
Central Buoy: 40.13°N, 70.78°W; Offshore Buoy: 39.94°N, 70.88°W), ERA5 winds between 39.75 and 40.25°N 
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and 69.50 and 71.50°W (0.25 × 0.25 resolution) were spatially-averaged. There is generally good agreement be-
tween the 10 m wind speeds in ERA5 winds and the OOI buoy winds (Figure S2 in Supporting Information S1).

2.5.  2D ROMS Configuration

We use a two-dimensional (2D; cross-shelf and vertical) configuration of the Regional Ocean Model System 
(ROMS; Shchepetkin & McWilliams, 2005) of the shelf-break area coupled to a nitrogen-phytoplankton-zoo-
plankton-detritus (NPZD) model. The model spans 479 km in the cross-shelf direction with an idealized bathym-
etry mimicking the MAB shelf and slope seas. It is initialized with a steep front at the shelf break, using the base 
configuration from Zhang et al. (2011, 2013). The model has 842 grid points in the cross-shelf direction with 
uniform 400 m resolution in the study region and decreasing gradually to 2,400 m in the offshore region, and 60 
stretched vertical layers (Figure S3 in Supporting Information S1). The 2-D across-shelf configuration is imple-
mented via a 5-point along-shelf dimension with periodic boundary conditions. We use the same NPZD model 
modified from Powell et al. (2006) as used in Zhang et al. (2013), with uniform initial nitrate and phytoplankton 
nitrogen concentration of 5 and 1 μM, respectively. April 2018 surface air temperatures, longwave radiation, and 
shortwave radiation measured at the Central Mooring (40.13°N, 70.78°W) of the OOI Pioneer Array (Gawarkie-
wicz & Plueddemann, 2020) are used to force the model together with idealized along-shelf winds (see below).

3.  Results
3.1.  MODIS-Aqua Chlorophyll Climatology

Stacking the DRM cross-shelf distributions of surface chlorophyll (Section 2.1) produces Hovmöller diagrams 
showing the time-evolution of the cross-shelf distribution of surface chlorophyll concentration, for each year from 
2003–2020 (Figure 4). A DRM shelf-break surface chlorophyll climatology was then produced with the yearly 
Hovmöller diagrams presented in Figure 4. Maximum bin-averaged chlorophyll concentrations can vary widely 
between years, so we use the median DRM chlorophyll concentration in 2003–2020 in each depth bin.

Durations of shelf-break chlorophyll enhancements were determined with time series of the mean chlorophyll 
concentration at the shelf, slope, and shelf break from the yearly Hovmöller diagrams. Depth bins between the 75 
and 1,000 m isobaths were categorized as the shelf-break region; those shallower were categorized as the shelf 

Figure 4.  DRM depth-binned mean chlorophyll concentrations in the MAB region, from 2003–2020. Depth contours at 75, 100, 200, 500, and 1,000 m. Note the log 
color axis. White regions indicate cloud cover. Chlorophyll data were obtained from MODIS Aqua 8-Day 1 km composites processed at the University of Delaware.
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region; and those deeper were categorized as the slope region (Figure 2a). The periods during which the mean 
surface chlorophyll was greater at the shelf break relative to both the shelf and slope are labeled as “enhance-
ment days”. While the DRM chlorophyll fields provide continuous coverage over the shelf-break region, the 
durations of shelf-break enhancements may be underestimated (through undersampling during an enhancement) 
or overestimated (through undersampling before or after an enhancement) using the DRM fields. Moreover, the 
DRMs can underestimate the magnitude of enhancements due to temporal smearing. In any case, the DRMs are 
a practical means to assess spatially and temporally intermittent phenomena that are incompletely sampled due 
to cloud cover.

The satellite DRM chlorophyll climatology demonstrates that shelf-break chlorophyll enhancements are typically 
springtime features (Figure 5a). While climatological chlorophyll concentrations are higher across the shelf break 
for most of April and May, the period when they are enhanced relative to both the shelf and slope in the clima-
tology is constrained to only 20 days (21 April–11 May; highlighted region in Figure 5a). The climatology shows 
highest chlorophyll concentrations during the inshore spring bloom beginning in mid-March, which is followed 
by enhanced chlorophyll at the shelf break and in the slope sea. Accordingly, periods of enhanced chlorophyll at 
the shelf break were identified in every year except 2004 and 2020 (Figure 6a), and many of these enhancements 
were concentrated within a narrow period in the spring, though some were also detected in fall and winter (Fig-
ure 6b). Generally, the shelf-break chlorophyll enhancements were short-lived, typically lasting less than a week 
(Figure 6c).

We also explored whether shelf-break chlorophyll enhancements were present in seasonal averages, and created a 
seasonal climatology by taking the median surface chlorophyll concentration in winter (January–March), spring 
(April–June), summer (July–September), and fall (October–December). Due to the transient quality of the surface 
chlorophyll enhancements, they are not expressed in the seasonal cross-shelf chlorophyll climatology (Figure 5b). 
While spring shelf-break chlorophyll enhancements are occasionally visible in the annual seasonal means, shelf 

Figure 5.  (a) DRM climatological (2003–2020) depth-binned median chlorophyll concentration in the Mid Atlantic Bight 
(MAB) region, with the red box indicating the period of chlorophyll enhancement at the shelf break (21 April–11 May); (b) 
The same as (a), but with seasonal climatological depth-binned median chlorophyll concentrations. Note the different color 
scales. Vertical lines show 75, 100, 200, 500, and 1,000 m depth contours.
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chlorophyll concentrations are also usually elevated in spring (excepting 2003, 2012, 2013, and 2017) and hence 
become indistinguishable from shelf-break enhancements in the seasonal climatology (Figure S4 in Supporting 
Information S1).

3.2.  Shipboard Measurements

The conditions driving ephemeral shelf-break chlorophyll enhancements are elucidated by in-situ observations 
of front, shelf, and slope conditions in April 2018. On 12 April, four days before cruise AR29, the front was rel-
atively steeply oriented (Figure 7). Within the first few days of AR29 (16–19 April), the near-surface expression 
of the front moved about ten kilometers offshore. The front maintained this more gently sloped configuration for 
a few days, until 23 April.

Elevated surface chlorophyll concentrations were measured inshore of the front during an offshore VPR tow 
across the shelf break on 18 April 2018 (Figure 8). Chlorophyll concentrations were highest within the ∼20 m 
layer of cooler, fresher shelf water over the denser slope water. The shelf-slope water front was nearly horizontal 

beneath the chlorophyll patch, and the water column was thus more high-
ly stratified there than elsewhere during the tow (Figures 8c and 8d). The 
stratification generated by the large shelf water-slope water density gradient 
resulted in a shallow mixed layer.

The emergence of enhanced chlorophyll associated with the onset of 
strengthened frontal stratification suggests that photosynthesis at the front 
was stimulated by the increased light levels over the shallower mixed layer 
(e.g., Sverdrup, 1953), not nutrients. On 19 April 2018, the 1% light depth 
was between 30 and 40 m (Figure 7); after restratification the mixed layer 
shoaled to ∼20 m. Nutrient concentrations were measured over CTD Tran-
sect 5, which was conducted the day following the VPR tow along the same 
transect (Figure 3). Surface nitrate was always >4 μM (Figure 8e), suggesting 
nitrate-replete conditions across the shelf break, including at the front where 
chlorophyll was elevated. Historical measurements of surface nitrate in the 
MAB also show that typical MAB surface nitrate concentrations are not re-
duced below 0.1 μM until mid-May (ca. Julian day 134; Figure 9). Phosphate 
was available in Redfield proportion to nitrate (not shown), and thus was 
also not limiting. Silicate concentrations were reduced to ∼1 μM offshore 
of the front (Figure 8f), but not where elevated chlorophyll concentrations 
occurred. As surface nitrate concentrations were elevated across Transect 5, 
the emergence of elevated chlorophyll inshore of the front appears to be a 
result of the enhanced light availability associated with the more stratified 
conditions at the front.

Figure 6.  Histograms showing timing and duration of periods where shelf-break chlorophyll concentrations are enhanced relative to the shelf and slope. (a) Number of 
enhancements per year; (b) day of year of enhancement initiation; (c) durations of enhancements.

Figure 7.  Location of the New England shelf-break front (34.5 isohaline) 
during in April 2018. All locations were determined from AR29 cross-shelf 
CTD transects at 70.83°W, except 12 April, which was determined from a 
cross-shelf CTD transect at 70.83°W conducted by the R/V Neil Armstrong 
during OOI cruise AR28B, which shortly preceded AR29. The solid black line 
in the bottom left corner shows the bottom depth, and the dashed black line 
shows the corrected 1% light depth calculated from PAR measurements from 
CTD casts taken on 19 April.
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Underway measurements conducted during the VPR tow show the enhanced frontal chlorophyll was associated 
with elevated NCP (Figure 8g). NCP at the front reached 41 mmol O2 m

−2 d−1 (equivalent to 28 mmol C m−2 d−1 
using stoichiometry form Anderson & Sarmiento, 1994), over 3 times higher than inshore of the front (∼12 mmol 
O2 m

−2 d−1). Size fractionated biovolume from the IFCB (Figure 8g) indicates the peak in chlorophyll at the front 
was associated with nanoplankton, a size fraction too small to be imaged by the VPR. While chlorophyll and 
nanoplankton biovolume were highest at the front, total plankton biovolume concentrations at the front during 
the VPR tow were not higher than over the slope (Figure S5 in Supporting Information S1), as microplankton 
biovolume from the IFCB increased offshore of the front (Figure 8g). Analysis of IFCB and VPR images con-
firmed the microplankton offshore of the front were dominated by diatoms (not shown) that were apparently 
low in fluorometric chlorophyll. The presence of low-chlorophyll diatoms in the slope waters depleted in silicate 
(Figure 8f) may reflect a prior bloom unrelated to the enhanced chlorophyll and nanoplankton at the front. Later 
in the cruise period total biovolume was enhanced at the front relative to the shelf and slope (Figure S5 in Sup-
porting Information S1).

Figure 8.  AR29 transects 18–19 April 2018. (a) Video plankton recorder (VPR) temperature (°C); (b) VPR salinity; (c) VPR potential density (kg  m−3); (d) VPR 
chlorophyll estimated from fluorescence (μg  L−1); (e) CTD Transect 5 nitrate concentrations (μM); (f) CTD Transect 5 silicate concentrations (μM); (g) underway 
measurements from the VPR tow of (1) net community production (NCP, mmol O2 m

−2 d−1), (2) microplankton, nanoplankton, and picoplankton biovolume (μm3  ml−1), 
and (3) underway chlorophyll (μg L−1). The solid black line in the bottom left corner of (a–f) shows the bottom depth.
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3.3.  OOI Glider Measurements

We used OOI Pioneer Array glider density and chlorophyll data to explore 
whether a similar frontal configuration observed during AR29 was also asso-
ciated with enhanced spring shelf-break chlorophyll concentrations in other 
years (2014–2020, Figure 10a). In winter, the steep winter front is associated 
with a strong horizontal density gradient, and relatively weak vertical density 
gradient. As the front becomes less steep, vertical stratification increases, 
and a strong vertical density gradient at the front emerges (Figure  8c). A 
high horizontal density gradient thus indicates a location near the shelf-slope 
front, and a high vertical density gradient indicates high vertical stratifica-
tion. We therefore interpret glider measurements with large horizontal and 
vertical density gradients in the near-surface layer as a place where a steep 
shelf-break front (with condensed isopycnals) has slumped to create strong 
near-surface stratification and thus a shallow surface mixed layer. The front 
is hence likely to be in such a configuration when a strong vertical density 
gradient accompanies a strong horizontal density gradient.

To assess how April chlorophyll concentrations vary with horizontal and ver-
tical density gradients, we categorize each glider measurement in the upper 
water column by both its vertical density gradient 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 and horizontal den-
sity gradient 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 , with 𝐴𝐴 𝐴𝐴 being potential density, averaged over 1-m depth 
bins. We gridded glider chlorophyll and density data by depth and distance 
between casts. Only glider downcasts were used because of the “V-shaped” 
glider trajectories, to preserve approximately uniform horizontal spacing be-

tween casts and thus more consistent horizontal density gradients. Approximately 93,000 bins contained obser-
vations. While the calculated horizontal density gradients include variability due to internal waves, the strongest 
horizontal density gradients at the front are unlikely to be masked by this variability. The gridded density was 
then binned by the log-transformed vertical (𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 ) and horizontal (𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 ) density gradients. With the focus on 
surface enhancements, we analyzed binned density gradients over the top 30 m. Thirteen horizontal density gra-
dient bins and 13 vertical density gradient bins were used, for a total of 169 bins. We only analyzed chlorophyll 
concentrations for density bins with more than 100 independent chlorophyll measurements. We assessed the 
chlorophyll associated with each horizontal and vertical density gradient bin using two metrics: (a) the proportion 
of density gradient bins where the chlorophyll reaches a concentration typical of those associated with the frontal 
enhancements in the binned satellite data (Figure 4; >2 μg/L; “bloom bins”), and (b) the median chlorophyll con-
centration within each density gradient bin. Median concentrations are used because the chlorophyll distributions 
within each bin are right-skewed.

Chlorophyll concentrations greater than 2 μg L−1 were associated with high 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 (at the front), and low to high 
𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 (a broad range of vertical density gradients) (Figure 10b). The greatest proportion of chlorophyll concentra-

tions greater than 2 μg L−1 occurred within the bin covering the highest values of 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 and 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 . This high 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 and 
𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 bin was also associated with higher median chlorophyll concentrations. Elevated chlorophyll concentrations 

in April within the top 30 m were thus most likely to occur when both horizontal and vertical density gradients 
were large.

The OOI glider data suggest that frontal restratification is associated with enhanced chlorophyll at the shelf-break 
front. We also note that higher chlorophyll can occur at the front (high 𝐴𝐴 𝛿𝛿𝛿𝛿∕𝛿𝛿𝛿𝛿 ) when stratification is weak; phyto-
plankton blooms can also occur with the cessation of active homogenization of deep mixed layers (e.g., Ferrari 
et al., 2015; Taylor & Ferrari, 2011; Townsend et al., 1992).

3.4.  Role of Upfront Winds

Upfront (eastward) winds shortly preceded the highly stratified conditions associated with enhanced shelf-break 
chlorophyll during AR29. On 17 April 2018, the day before VPR Tow 1, winds at the shelf break transitioned 
to strongly upfront (Figure S1 in Supporting Information S1), suggesting Ekman restratification as a driving 
mechanism for the enhanced shelf-break chlorophyll. Ekman restratification is triggered with wind forcing that 

Figure 9.  30-day moving median of top 15 m nitrate concentrations measured 
in the Middle Atlantic Bight from 1932–2012 (640 observations, World Ocean 
Database).
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opposes the surface frontal current, or upfront (eastward) winds (e.g., Long et al., 2012). To determine whether 
Ekman restratification is a likely driver for enhanced surface shelf-break chlorophyll for other periods, we explore 
whether upfront winds (from ERA5 reanalysis, Section 2.4) typically occur shortly before the “enhancement 
days” identified with ocean color data (Section 3.1).

Using 10-m u (zonal) and v (meridional) ERA5 wind speeds over the same grid points identified as correspond-
ing to the shelf break for the ocean color analysis in Section 2.1, we compared the wind “upwelling index” 
(𝐴𝐴 UI = 𝜏𝜏

𝑥𝑥∕𝜌𝜌𝜌𝜌 , in m2 s−1) with the timing of the shelf-break chlorophyll enhancement days identified in Section 3.1. 
The upwelling index is a measure of upfront vs. downfront winds (as calculated in Li et al., 2020), with 𝐴𝐴 𝐴𝐴𝑥𝑥 being 
the u component of the wind stress, 𝐴𝐴 𝐴𝐴 the water density, and 𝐴𝐴 𝐴𝐴 the Coriolis parameter. As most of the shelf break 
in our MODIS region is approximately zonally oriented, we use positive (negative) u wind stress as the upfront 

Figure 10.  Ocean observatories initiative (OOI) Coastal Pioneer Array glider data from 2014–2020. (a) All April glider 
tracks; (b) OOI April glider chlorophyll, binned by horizontal and vertical stratification. The axis limits extend to bins where 
the was at least one observation; bins are only colored where there were at least 100 observations. Note the log-log axis 
scales.
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(downfront) wind stress. We computed the average upwelling index for the 
10 days preceding the first day of the shelf-break chlorophyll enhancements.

Indeed, enhanced remotely sensed shelf-break chlorophyll concentrations 
tend to be preceded by increasing upfront winds (Figure 11). The mean up-
front wind stress typically increases in the three days preceding the enhance-
ments of chlorophyll at the shelf break, with the mean upwelling index one 
day before the frontal enhancement being significantly larger than 4 days be-
fore (t = 3.8, 95% confidence interval: 0.17–0.65 m2, p < 0.01). In contrast, 
the mean upwelling index over periods longer than four days preceding the 
enhancements are not statistically different from zero (t = 2.3, p > 0.05).

We then ran the 2-D model for two contrasting conditions: one with constant 
5 m s−1 down-front winds, and the other with constant 5 m s−1 upfront winds. 
Our simple 2D ROMS model demonstrates that Ekman restratification could 
generate similar patterns of chlorophyll at the front compared to those ob-
served during AR29. In the first 3 days of the upfront wind model run, the 
front restratifies, the mixed layer becomes shallow, and chlorophyll rapidly 
accumulates in the shallow, stratified mixed layer (Figure 12b). In contrast, in 
the downfront wind case, the advection of denser slope water over less dense 
shelf water drives convective overturning on the shelf side of the front and 
the water column becomes well-mixed (e.g., D’Asaro et al., 2011; Thomas & 

Lee, 2005). As a consequence, frontal phytoplankton concentrations are lower than on the shelf or the slope, as 
phytoplankton are diluted with vertical mixing and growth rates remain low (Figure 12c). Nutrient concentrations 
were replete in both model cases (Figure S6 in Supporting Information S1).

4.  Discussion
We demonstrate here that frontal chlorophyll enhancements detected at the New England shelf break are transient 
features. Its development is triggered by the increase in stratification resulting from the Ekman advection of less 
dense shelf water over denser slope water (Figure 13). Nutrients were replete at the shelf break at the time of the 
spring surface frontal chlorophyll enhancement observed during AR29; suggesting it was driven by stratification, 
not nutrients. When light availability, rather than nutrient availability, is the dominant control on phytoplankton 
growth, the influence of surface mixing is likely to be of leading-order importance on the development of spring 
blooms (Hopkins et al., 2021). The patterns in density and chlorophyll measured by OOI gliders are consistent 
with the hypothesis that Ekman restratification triggers a transient chlorophyll enhancement at the front. This is 
consistent with the findings of Xu et al. (2011) that interannual variability in spring bloom magnitude is asso-
ciated with factors controlling water column stability, which is supported with a model testing the sensitivity to 
removing wind forcing (Xu et al., 2013). Our findings also agree with Xu et al. (2020), who found that increased 
wind mixing can delay the onset of the outer shelf spring bloom in the MAB. Given the small window during 
which shelf-break chlorophyll enhancements occur, they are masked in seasonal climatologies, though they are 
detectable in the DRM climatology (Figure 5a).

While our DRM chlorophyll climatology does not fully capture the transient quality of the shelf-break chloro-
phyll enhancements, which last less than a week, it agrees well with other studies of MAB chlorophyll variability. 
It is consistent with Ryan, Yoder, Cornillon, et al. (1999), who found annual shelf-break chlorophyll enhancement 
during the spring transition from well-mixed to stratified conditions. The climatology also agrees with the find-
ings of Hales et al. (2009), who showed that shelf-break chlorophyll enhancements were not present in June or 
August. The large-scale seasonal variability in shelf and slope chlorophyll concentrations also agrees well with 
other modeling and observational studies of MAB chlorophyll, exhibiting a clear fall-winter bloom on the shelf 
and spring bloom in the slope (Fennel et al., 2006; Hofmann et al., 2011; Ryan, Yoder, Cornillon, et al., 1999; Xu 
et al., 2011, 2020; Yoder et al., 2001, 2002).

The chlorophyll enhancements identified were short-lived and dominated by nanoplankton in 2018. Unlike these 
shelf-break enhancements, earlier-season blooms on the U.S. Northeast Shelf are dominated by large cells (Mar-
rec et al., 2021). Though nitrate and silicate concentrations are replete at the front in April 2018, microplankton 

Figure 11.  The mean (±standard deviation) upwelling index for n days 
leading up to first shelf-break surface chlorophyll enhancement.
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biovolumes are not enhanced. The observed enhancement of microplankton biomass offshore of the front during 
AR29 was not associated with elevated chlorophyll (Figure 8g), and may have been associated with an earlier 
spring bloom on the slope, though elevated slope sea chlorophyll is not apparent in the satellite data (Figure 4). 
It is unknown why nanoplankton should outcompete diatoms at the front, though small phytoplankton have 
previously been observed to dominate phytoplankton assemblages on the restratified side of a front (Sangrà 
et al., 2014).

For upfront winds to drive a chlorophyll enhancement at the shelf break, the following conditions must hold: (a) 
nutrient concentrations must be replete at the surface, (b) the upper water column must initially be unstratified, 
and (c) the upfront winds must be strong enough to drive the movement of the front offshore, but not so strong to 

Figure 12.  2-D ROMS model initial condition and output. (a) Initial salinity and temperature, with the gray boxes showing 
the boundaries of the output fields shown in (b) and (c); (b) chlorophyll fields from 2-D ROMS model output with constant 
5 m s−1 upfront winds; (c) output for constant 5 m s−1 downfront winds. The thick white lines show the frontal isohaline 
(34.5), and thinner white lines show isopycnals at 0.05 kg m−3 intervals. Chlorophyll is calculated from nitrogen units using 
the Redfield ratio (106 mol C:16 mol N; Redfield, 1963), and assuming 50 g C/g Chl.
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deepen the mixed layer. This leaves only short periods during the year where these enhancements are possible. In 
addition to spring chlorophyll enhancements, transient autumn enhancements may also be possible with upfront 
winds occurring after the water column has destratified. Autumn enhancements were sometimes detected at the 
shelf break in our satellite chlorophyll analysis, for example in 2010, but did not appear in the chlorophyll clima-
tology. While the mean winter winds in the MAB are also upfront, the upper water column remains well-mixed 
due to strong winds and buoyancy-driven mixing which prevent frontal slumping from occurring. The winter 
bloom on the inner shelf where the bottom is shallower suggests that there is still enough light in the region to 
allow phytoplankton to grow, presumably because the bottom depth restricts the extent of vertical mixing. The 
westerly winds weaken in the spring, although they continue to fluctuate substantially (Figure S1 in Supporting 
Information S1). The slumping may thus require intermediate westerly winds fluctuating on the time scale of 
days.

While Ekman restratification is an apparent trigger of enhanced surface chlorophyll at the shelf break, a variety of 
alternative restratifying dynamics are also possible. As strong horizontal density gradients adjust to geostrophic 
equilibrium (Ou, 1984), frontal restratification of the surface mixed layer can result (Tandon & Garrett, 1995). 
For example, frontal restratification can result from a reversal in wind direction (Dale et al., 2008) or from the 
rapid relaxation of winds (Johnson et al., 2020). In our analysis the presence of increasing upfront winds preced-
ing surface shelf-break chlorophyll enhancements indicates Ekman restratification as the simplest explanation for 
the observed restratification.

Frontal eddies may also result in frontal restratification processes with the potential to initiate spring phyto-
plankton blooms, analogous to those found in the open ocean (Mahadevan et al., 2010, 2012). The New England 
shelf-break front is characterized by abundant eddy formation from frontal meandering (Garvine et al., 1988) that 
has been associated with enhanced chlorophyll (Ryan, Yoder, Barth, et al., 1999). While eddies may also play an 
additional role, our exploration of the relationship between shelf-break chlorophyll derived from MODIS-Aqua 
to surface wind forcing, and our 2-dimensional model runs suggest that upfront winds appear to be sufficient 
to drive the Ekman restratification required to stimulate shelf-break chlorophyll enhancements. Understanding 
potential 3-dimensional mechanisms involved with these enhancements will likely require exploring how chloro-
phyll corresponds to shelf-break eddy activity, which is beyond the scope of this 2-dimensional study.

This study aimed to understand the mechanisms driving surface chlorophyll enhancements observed at the shelf 
break, a conundrum in the literature. While the surface chlorophyll was our focus, subsurface enhancements of 
chlorophyll at the front have also been observed later in the growing season (e.g., Marra et al., 1990). Various 
upwelling mechanisms may still supply nutrients to the euphotic zone in the frontal region, supporting enhanced 
subsurface biological productivity (e.g., Friedrichs et  al.,  2019). Such upwelling mechanisms include frontal 
meandering (e.g., He et al., 2011), oscillating winds (Siedlecki et al., 2011), upwelling from the bottom boundary 
layer (Gawarkiewicz & Chapman, 1992), upwelling from the seaward side of the front (Zhang et al., 2013), and 
irregular topography (e.g., canyons; Hickey & Banas, 2008). The 2D-framework used in this study also does 
not preclude 3D-processes at the shelf break. In fact, it is likely that these 3D processes occur in addition to 

Figure 13.  Conceptual diagram of an increasing vertical density gradient as isopycnals flatten with upfront winds, which creates a shallow, well-lit mixed layer that can 
support rapid phytoplankton accumulation.
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the 2D-frontal restratification mechanism, resulting in along-shelf variability in the frontal surface chlorophyll 
enhancement.

5.  Conclusions
The New England shelf break is thought to be highly productive in part due to enhanced chlorophyll detected 
at the shelf/slope front. Surface frontal enhancement is not discernible in seasonal climatologies (e.g., Zhang 
et al., 2013) although such enhancements are occasionally visible in synoptic images during spring. We demon-
strate that frontal chlorophyll enhancement is an ephemeral process, typically lasting only a few days. We suggest 
that Ekman restratification driven by upfront winds results in the advection of the lighter shelf water over denser 
slope water. This process creates a shallow mixed layer at the front which alleviates light limitation and supports 
transient surface enhancements of chlorophyll at the front. Alternative submesoscale restratifying mechanisms 
are not precluded by our assessment, but the presence of intensified upfront winds preceding the shelf-break 
enhancements suggests Ekman restratification as the most straightforward explanation.

Data Availability Statement
MODIS Aqua 8-Day 1 km composite chlorophyll concentrations were processed at the University of Delaware 
and can be accessed at http://basin.ceoe.udel.edu/erddap/griddap/MODIS_AQUA_8_day.html. SPIROPA AR29 
VPR Tow 1 and CTD Transect 5 data are archived at the Biological and Chemical Oceanography Data Man-
agement Office (BCO-DMO) project page: https://www.bco-dmo.org/project/748894. MAB historical nitrate 
and nitrate + nitrite data are available from the World Ocean Database provided by the National Centers for 
Environmental Information at the National Oceanic and Atmospheric Administration. OOI glider data, and 3 and 
10 m wind speeds can be accessed at https://ooinet.oceanobservatories.org/data_access/. ERA5 reanalysis wind 
speed data are available from the Copernicus Climate Change Service Climate Data Store (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview).
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