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Abstract

Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for

the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging

FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond

that hosts near annual, localized A. fundyense blooms. Machine-based image classifiers differentiating A. fun-

dyense life cycle stages were developed and results were compared to manually corrected IFCB samples, man-

ual microscopy-based estimates of A. fundyense abundance, previously published data describing prevalence

of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt

Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed

by a rapid and near complete conversion to small, gamete cells. The gametic period (�3 d) coincided with a

spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic

phase (�4 d) during which cell sizes returned to their normal range but cell division and diel vertical migra-

tion ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates

of division, which were more than twice those predicted from batch cultures grown at similar temperatures

in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fun-

dyense population through its complete bloom cycle and demonstrate growth and sexual induction rates

much higher than are typically observed in culture.

Blooms of toxic dinoflagellates within the genus Alexandrium

are among the most widespread and dangerous harmful algal

blooms (HABs) globally, and cause significant ecological, eco-

nomic and public health impacts to temperate and subarctic

coastal areas worldwide (Anderson et al. 2012). Toxic species

within the genus produce saxitoxins, a class of neurotoxins that

selectively block sodium ion channels in animals. Consumption

of animals contaminated with toxic Alexandrium causes para-

lytic shellfish poisoning (PSP), a syndrome that can lead to respi-

ratory arrest and death in humans. Therefore, understanding

the physiological and ecological factors that control the timing

and biogeography of Alexandrium blooms is important for ensur-

ing seafood safety.

For many Alexandrium species the recurrence and spread of

blooms depends on the formation of benthic resting cysts, a dip-

loid life cycle stage that is highly resistant to temperature, salin-

ity, and mechanical stress (Pfiester and Anderson 1987). The

cysts themselves can remain dormant and viable for decades,

leaving contaminated areas at risk for PSP even if conditions are

rarely favorable for new blooms (Miyazono et al. 2012). Cyst for-

mation occurs during the maturation of zygote cells and is there-

fore deeply entwined with the sexual life cycle of these

organisms. The factors controlling when and to what extent

Alexandrium undergo sex are not well understood but are impor-

tant determinants of bloom intensity and onset of termination

(Li et al. 2009; Anderson et al. 2013). Moreover, seasonal temper-

ature patterns and other climate-related factors that determine

bloom initiation and development are also likely to affect sexual
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induction and new cyst production, altering the range and

impact of PSP events under future climate conditions (Halle-

graeff 2010).

Two longstanding obstacles to documenting sexual events in

Alexandrium blooms have been the difficulty of differentiating

their vegetative, gamete and planozygote stages and also the

necessity of following single populations through time. A previ-

ous study advanced an approach that addresses both challenges

through a combination of imaging flow cytometry, quantitative

DNA content measurements, and repetitive sampling of single,

localized populations (Brosnahan et al. 2014). Here, we have

expanded upon that work through an in situ deployment of an

Imaging FlowCytobot (IFCB), a submersible flow cytometer that

captures high quality images of phytoplankton 10–100 lm in

length at rates up to 12 s21 (Olson and Sosik 2007). An accompa-

nying suite of image analysis and classification software makes it

possible to quantify the affinity of images to genus and species-

specific classes (Sosik and Olson 2007). The IFCB was deployed

in Salt Pond (Eastham, Massachusetts), a small, tidal subembay-

ment within the Nauset Marsh system (NMS; Fig. 1). This site

experiences nearly annual, localized blooms of Alexandrium fun-

dyense, a toxic Alexandrium species that is endemic to North and

South America (John et al. 2014). Blooms within the pond are

inoculated by local cyst germination and retention of plank-

tonic stages enables observation of their progression through

this species’ sexual life cycle. A. fundyense populations within

the NMS are also chronically impacted by intracellular parasites

from the genus Amoebophrya, a group of small dinoflagellates

that are associated with bloom termination, both through direct

lysis of host cells and, in some species, through induction of

host encystment (Toth et al. 2004; Chambouvet et al. 2011).

During its life cycle, the Amoebophrya parasite alternates

between a free-swimming, infective stage called a dinospore

and a multinuclear, intra-host growth phase called a troph-

ont (Cachon 1969). Dinospores infect new A. fundyense hosts

through invasion of the host cell’s cytosol, then nucleus

before transforming into the trophont stage through nuclear

division and flagellar replication. Mature trophonts are mul-

tinucleate and often displace the contents of the host cell,

eventually expanding through the host cell wall to form a

short-lived, vermiform that breaks apart into hundreds of

new infective dinospores (Fritz and Nass 1992).

Our goals in this study were (1) to develop A. fundyense

image classifiers for the detection of different life cycle stages

and Amoebophrya infection, (2) to evaluate the performance

of the IFCB and automated image classification for A. fun-

dyense bloom monitoring, and (3) to record and characterize

a natural A. fundyense bloom through its full duration, espe-

cially its transition from vegetative cell division to the for-

mation of gametes and planozygotes, and including

estimation of daily division rates. The results from these

activities are presented here and products from our IFCB

image analysis are compared to microscopy-based assess-

ments of A. fundyense abundance and Amoebophrya infection.

Materials and methods

Study site

Salt Pond is a drowned kettle pond and the northwestern

most extremity of the NMS (Fig. 1). It is approximately

320 m in diameter and has average and maximum depths of

3.4 m and 9 m. Tides are semi-diurnal with a range of 1–

1.5 m and short floods relative to ebbs (3–4 h vs. 8–9 h,

respectively). Stratification of the water column is main-

tained via salinity and temperature gradients, although the

relative importance of these factors changes seasonally, salin-

ity being the more important driver during winter and early

spring when air and water temperatures are similar. Surface

salinities near the pond’s center are typically 1–2 less than

oceanic water advected from Nauset inlet, a gradient pro-

duced through freshwater inputs from precipitation, run-off,

and groundwater discharge around the pond’s perimeter and

near its mouth (Crusius et al. 2005). As air temperatures and

solar irradiance increase in spring and summer, bottom

water within the pond heats more slowly than surface water,

leading to gradients sometimes>58C (Anderson and Stolzen-

bach 1985; Crespo et al. 2011; Ralston 2015).

Salt Pond is an ideal site for the study of A. fundyense

because its blooms of A. fundyense are “self-seeded” with new

vegetative cell populations initiated through the germina-

tion of cysts deposited during previous bloom cycles (Crespo

et al. 2011). Bloom populations are also retained and isolated

Fig. 1. Bathymetric map of the Nauset Marsh system. A shallow central
marsh area connects Salt Pond to the Atlantic Ocean via a narrow inlet

while also isolating its A. fundyense blooms. Inset: Salt Pond bathymetry.
The IFCB support raft was installed near the pond’s central hole (marked
by white cross).
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from those occurring in the southern reaches of the NMS

and along the coast due to a combination of swimming

behavior, the bathymetry of Salt Pond, and water column

stratification. Previous observations and a modeling study

suggest that these factors increase the residence time of A.

fundyense cells 1.5–4-fold compared to passive particles, from

�2 d to 3–8 d (Anderson and Stolzenbach 1985; Ralston

et al. 2015). Similar retention of blooms in the southern

NMS ponds causes advective fluxes of cells in and out of Salt

Pond to be low relative to local growth and loss processes

(Ralston et al. 2015). In this study, both the development

and termination phases of the 2012 A. fundyense bloom were

therefore identified directly from changes in cell abundance

and without consideration of advection in or out of the

pond.

Concurrent projects also quantitatively evaluated losses

due to parasitism by Amoebophrya (Velo-Su�arez et al. 2013)

and grazing by diverse species (Petitpas et al. 2015), enabling

comparisons between the roles of these losses and sexual

fusion as contributors to the A. fundyense bloom’s decline.

Cable-free mooring deployment of the Imaging

FlowCytobot

The IFCBs deployed in Salt Pond were second-generation

prototypes that incorporated several changes from the origi-

nal system (described by Olson and Sosik 2007). The purpose

of these modifications was to reduce both the size and power

consumption of the original IFCB. Changes included the fol-

lowing: (1) replacement of the camera with a new, smaller

GigE camera; (2) replacement of the PC1041 computer with

a new Intel Atom processor based computer; (3) replacement

of the flash lamp module and power supply with a smaller,

low-power version; and (4) installation of a custom opto-

mechanical system that incorporated a more compact

syringe pump and reduced the number of control and data

acquisition boards. The updated design is approximately half

as heavy, uses 1/3 the power, and is more stable and simpler

to operate than the original version. It is also essen-

tially identical to the version that is now commercially avail-

able through McLane Research Laboratories (Falmouth,

Massachusetts).

The basic functionality of the second generation IFCB and

its accompanying software suite is essentially the same as

earlier versions that have been deployed for in situ monitor-

ing (Olson and Sosik 2007; Campbell et al. 2010; Peacock

et al. 2014). One modification to the instrument software

was addition of an alternating acquisition capability that

enabled switching between high- and low-sensitivity cell

detection modes. This was an effort to record the fullest

diversity possible of red fluorescent cells and particles in Salt

Pond while also improving the quantitation of A. fundyense.

The volume of seawater analyzed by the IFCB is inversely

related to its triggering rate because the system does not

record new images while processing camera data. High sensi-

tivity acquisitions recorded unbiased samples but effective

analysis rates were sometimes<5 mL h21. Low sensitivity

acquisitions applied a higher trigger threshold that more spe-

cifically targeted chlorophyll-rich cells like A. fundyense and

typically enabled analysis rates>10 mL h21.

The IFCB was deployed in Salt Pond at 5 m depth, below

a custom built raft that supplied power and an Internet con-

nection. Raft components included a 3000 kW gasoline gen-

erator (Yamaha), 10 LiFePO4 batteries and chargers (DeWalt,

790 Wh total capacity), and a PIC microcontroller that

monitored battery bank charge status and started the genera-

tor as needed (typically 1 h charging per day). The IFCB and

PIC microcontroller were connected to the Internet via an

Ethernet radio system (FreeWave FGRplus RE) and a DSL

connection at the nearby Cape Cod National Seashore Salt

Pond Visitor Center. Data bandwidth was adequate to trans-

fer data from the instrument to a shore-based server in near

real time while also controlling the IFCB acquisition soft-

ware. The system consumed about 1/3 gallon gasoline d21

during continuous operation of the IFCB and was refueled

every 7–10 d. The raft itself was secured over the deepest

area of the pond (8–9 m deep) by three mooring anchors.

These anchors both fixed the location of the raft and also

prevented tangling of the anchor lines and the IFCB.

The support raft was deployed 15 March and recovered 22

June 2012. One of two prototype IFCBs was deployed during

this period except for two gaps (17–20 March and 14–21

May) when maintenance was needed for the installed instru-

ment and the second was unavailable. Additional data gaps

occurred due to malfunctions in developmental versions of

the IFCB software. In most cases, these malfunctions were

detected in less than 1 d and normal sampling resumed after

restarting the instrument.

Weekly NMS surveys and other sampling in Salt Pond

during the raft deployment

Weekly surveys of NMS physical and biological conditions

were conducted during the IFCB deployment as described

elsewhere (Crespo et al. 2011; Ralston et al. 2014). These

activities are outlined again here with emphasis on data col-

lection within the confines of Salt Pond. An additional,

intensive survey of the A. fundyense parasite Amoebophrya

was also conducted (Velo-Su�arez et al. 2013) and data from

that study were used for comparison to IFCB-based estimates

of infection prevalence. NMS surveys coincided with daytime

high tides and were begun 14 February and repeated approx-

imately weekly through 8 May, about 2 weeks after the last

A. fundyense cells were detected by IFCB. Survey stations

included one adjacent to the IFCB raft and three around the

pond’s periphery, one each near the pond’s northern, east-

ern and western shores, but only data from the IFCB raft sta-

tion were compared directly to the IFCB record. During each

survey vertical profiles of salinity and temperature were

taken using a Sea-Bird 19plus CTD (Sea-Bird Electronics,
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Bellevue, Washington). Niskin bottle samples were taken

from depths of 1 m, 3 m, and 5 m and 1 m above the bot-

tom (7–8 m) at the IFCB raft station and at 1 m depth and

1 m above the bottom at the peripheral stations. Subsamples

from each bottle were analyzed for A. fundyense abundance

and nutrient concentrations. Samples from the IFCB raft sta-

tion (but not peripheral samples) were also analyzed for

Amoebophrya infection prevalence and Amoebophrya dino-

spore abundance.

A. fundyense were counted after staining with a species-

specific fluorescent oligonucleotide probe (NA1; 50-AGT GCA

ACA CTC CCA CCA-30) as described by Anderson et al.

(2005). All nutrient measurements (nitrate 1 nitrite, ammo-

nium, and phosphate) were made from 0.22 lm filtrates of

whole seawater that were collected in sample-rinsed bottles

and stored on ice in the field then frozen until analysis at

the Atlantic Research and Learning Center Laboratory at

Cape Cod National Seashore.

Amoebophrya dinospore and A. fundyense host infection

prevalence were assessed as described by Velo-Su�arez et al.

(2013). In addition to samples from weekly surveys, Niskin

bottle collections at 1 m, 3 m, and 5 m depths were col-

lected every 1–3 d through the full course of the A. fundyense

bloom (20 March–8 May). Whole seawater samples were

fixed in the field with 2.5% formalin (v/v) and stored on ice

until returning to the laboratory where samples were pre-

screened through 100 lm Nitex mesh then fractionated over

15 lm Nitex mesh. Dinospore (<15 lm) and A. fundyense

host (>15 lm) fractions were then concentrated on 0.8 and

5.0 lm polycarbonate filters, respectively, and dehydrated

through serial washes with 50%, 80%, and 100% ethanol.

After washing, filters were dried at room temperature then

stored at 2208C until staining with a horseradish peroxidase-

coupled oligonucleotide probe (ALV01; 50-GCC TGC CGT

GAA CAC TCT-30; Chambouvet et al. 2008) using fluores-

cence in situ hybridization coupled with tyramide signal

amplification (FISH-TSA). Individual host infections were

graded “early” if detectable as a small dot within the host

cell, “intermediate” if an Amoebophrya cell cluster was pres-

ent, and “mature” if the parasite had formed a multinuclear

trophont.

Several records of physical conditions at the pond were

made with instruments installed during the IFCB raft deploy-

ment and at a local environmental monitoring station.

Instrumentation included a pair of XR-420 conductivity–

temperature loggers (RBR, Kanata, Ontario, Canada) that

were hung from the IFCB raft at 1 m and 5 m depths to mea-

sure water temperature and salinity above and below the

pond pycnocline and a HOBO data logger deployed �30 m

from the southwestern shore of the pond that recorded tem-

perature and water level. Surface irradiance measurements

were taken from the Massachusetts Department of Environ-

mental Quality monitoring station in Truro, Massachusetts,

approximately 16 km north of Salt Pond.

Image classifier development

Development of Salt Pond-specific image classifiers was

undertaken using a suite of publicly available MATLAB-based

tools (https://beagle.whoi.edu/svn/ifcb/trunk). These tools

create a classification “machine” that compares an image’s

features (image dimensions, geometry, cell shape, texture,

etc.) to those from example image sets defining species- and

genus-specific classes. An early version of this software was

described by Sosik and Olson (2007) and subsequent devel-

opment has led to numerous improvements including inte-

gration with a web-based interface for data access in

standardized formats, interactive browsing of time series

images via a web “dashboard” (see http://ifcb-data.whoi.edu/

saltpond/), and use of a “random forest” based machine-

classification scheme. The random forest approach is a sig-

nificant improvement over the earlier support vector

machine approach: training set images do not need to be

withheld for performance assessments, there is no parameter

tuning, the machines are insensitive to redundant or low

information image features, and there is no risk of over fit-

ting to the training data (Breiman 2001).

Example images of over 60 species and genus-level catego-

ries were manually identified through an iterative process

that reviewed IFCB images collected at regular intervals over

the complete course of the A. fundyense bloom (mid-March

to early-May). Throughout this process, A. fundyense images

were given special attention, and additional training sets for

several life cycle- and cell number-specific subclasses were

created. These training sets included A. fundyense singlets,

doublets, triplets, and quadruplets; fusing gamete cells;

dividing vegetative cells; combinations of singlet, doublet,

and triplet cells captured in single images; cells with mature

grade Amoebophrya infections; and lysed A. fundyense singlets

(Fig. 2). Classes describing paired cells (dividing vegetative

cells, vegetative doublets, and fusing gametes) were differen-

tiated based on the orientation of the constituent cells’ cin-

gular grooves (parallel in vegetative cells and oblique in

fusing gamete pairs), their relative size (fusing gametes often

being unequal), and the length of the cells’ contact area.

Paired cell images in which these features are obscured were

classified as vegetative doublets.

Preliminary Salt Pond random forest classifiers were built

using limited sets of training images and then applied to the

dataset. The automated classifications were then reviewed to

define requirements for new training images. In addition to

A. fundyense, training classes included other dinoflagellates

(Amylax triacantha, Dinophysis acuminata, Gyrodinium sp., Het-

erocapsa triquetra, and Polykrikos sp.), diatoms (Chaetoceros

spp., Guinardia spp., Lauderia sp., Leptocylindrus spp., Skeleto-

nema sp., and Thalassiosira sp.), and ciliates (Favella spp.,

Laboea sp., Mesodinium sp., Strombidium sp., and other alori-

cate choreotrich spp. groups). Training set images were

sometimes heavily biased toward narrow temporal ranges

within the time series, which has the potential to weaken
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classifier skill against classes that vary in size or morphology

with time. Because significant changes in A. fundyense singlet

size were noted near the bloom’s peak and during termina-

tion, we drew roughly equal numbers of A. fundyense images

from three periods in the IFCB record (20 March–13 April,

14–18 April, and 19 April–1 June) whenever possible to con-

struct final versions of the training sets. Classes included in

final classifier versions had a minimum of 50 and no more

than 400 total images, yielding a total of 11 A. fundyense-spe-

cific subclasses and 40 classes for other taxa. Three final clas-

sifiers were constructed for performance comparisons: one

classifying all A. fundyense subclasses separately (11-subclass),

one lumping all A. fundyense subclasses into a single class (1-

subclass), and one lumping A. fundyense subclasses into sin-

glet and doublet subclasses (2-subclass). Of the complete set

of 11 subclasses, “singlet,” “Amoebophrya infected,” and

“lysed” subclasses were all counted as singlets in the 2-

subclass classifier and “doublet,” “fusing gametes,” and

“dividing” subclasses were all counted as doublets. Images

from the remaining five subclasses—“doublet pair,”

“quadruplet,” “singlet and doublet,” “singlet pair,” and

“triplet”—were not included in the 2-subclass training sets.

The performance of the three final classifiers was assessed

for (1) sensitivity and specificity for A. fundyense (measures

of the classifiers’ ability to detect A. fundyense images and to

reject other classes from the A. fundyense subclasses), (2)

accuracy of total A. fundyense cell abundance estimates, and

(3) detection of A. fundyense singlets across their full size

range. The samples examined were drawn from 04:00 to

16:00 h (EDT) IFCB samples at 3-d intervals from 24 March

Fig. 2. Example images from a subset of A. fundyense subclasses and select grazers. Subclass collages are outlined by colors used in subsequent fig-

ures when applicable. Classes lumped together as singlets and doublets in the two A. fundyense subclass classifier are bounded by solid and dashed
black lines. All scale bars are 25 lm. Examples in the “grazed” collage are from species that were commonly observed to have ingested A. fundyense
and are identified as Polykrikos sp., Gyrodinium sp., and an aloricate choreotrich ciliate (top to bottom).
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to 26 April and 0:400, 10:00, 16:00, and 22:00 h, every day

from 13 to 20 April.

Sensitivity and specificity were evaluated without regard

to whether subclasses were correct because the number and

character of the subclasses differed between classifier versions

and were defined as:

Sensitivity 5
TP

TP1FP

Specificity5
TN

TN1FN

where TP, FP, TN, and FN were the number of true positive,

false positive, true negative, and false negative images

according to whether they were classified as a member of

any A. fundyense subclass (or not).

For comparison of abundance estimates, counts from the

manually corrected, 11-subclass classifications were used as a

benchmark because these were the only classifications that

accurately counted A. fundyense from multi-cell images (dou-

blets, triplets, quadruplets, and combinations of these and

singlet cells captured within single A. fundyense images).

Assessment of bias across the observed size range in sin-

glet A. fundyense subclasses (singlet, Amoebophrya infected,

and lysed cells) was undertaken because estimates of cell

division rate and sexual stage partitioning relied on auto-

mated classifications to extract the population’s size distribu-

tion. Singlet size was evaluated using the IFCB image

processing suite’s automated biovolume estimator (Moberg

and Sosik 2012) and converted from voxels to cubic microns

using a conversion factor of 2.66 pixels per micron. After ini-

tial assessment showed that the full singlet size range was

observed within the period from 13 to 27 April, singlet cell

images identified in manually corrected samples from this

period were compiled and sorted into 75 volume bins

equally spaced along a base-2 log scale ranging from 4096 to

131,072 lm3 (or 2122217 lm3). For conciseness, cell volume

quantities are hereafter expressed as powers of 2 since 1 unit

changes in the exponent indicate twofold changes in cell

size (as expected during a cell division).

The miss rate (Pmiss) for each volume bin and classifier

version was calculated by dividing the number of false nega-

tives by the actual number of singlet images (evaluated after

lumping vegetative, infected, and lysed singlet classifica-

tions). The performance of the three classifier versions was

then ranked according to which minimized the volume-

dependent variation and overall mean of Pmiss.

Estimates of accumulation, loss, and cell division

A. fundyense populations in Salt Pond, like other algal

blooms, are patchy in their spatial distribution, a characteris-

tic that can complicate comparisons of cell abundance over

time, especially if patchiness is a larger source of variance

than population-level changes associated with its temporal

evolution. Therefore, mean estimates of overall abundance

recorded during weekly surveys and abundance at each survey

sampling station were compared with the IFCB record to

assess whether the dates when the bloom transitioned from

development to decline were consistent. Abundance estimates

from 1 m (the only depth sampled at all four stations within

the pond) were also analyzed by ANOVA to assess the relative

contributions of survey date (temporal evolution) and station

(sampling location) to differences in cell abundance.

A. fundyense cells migrate vertically through the water col-

umn, forming layers at depths of 2–3 m during the day,

then 4–6 m at night (Anderson and Stolzenbach 1985),

introducing an additional source of variability in the abun-

dance estimates. Vertical migration caused strong diel oscil-

lations in cell concentration at the IFCB that were

superimposed over shorter time scale variability associated

with spatial patchiness. The strength of the diel pattern was

assessed through a Lomb–Scargle spectral analysis of IFCB-

based abundance estimates (p � 0.001), which was consist-

ent with overnight aggregation of cells near the IFCB sam-

pling port (5 m). To minimize effects of patchiness,

accumulation and loss from the population were calculated

from changes in mean overnight concentration of IFCB-

based abundance estimates (typically 18 samples taken from

21:00 to 03:00 h each night). Specific rates of net accumula-

tion (or loss when<0) were denoted lnet and calculated as:

lnet5
ln �Ct=�C0

� �
t

where �Ct and �C0 are the overnight means on nights sepa-

rated by t days. Importantly, estimates of lnet combined sev-

eral population growth and loss factors including

germination, cell division, grazing, parasitic lysis, sexual

fusion, encystment, and advective processes.

In parallel, IFCB images of A. fundyense were also used to

estimate daily rates of cell division by comparing mean cell

volume before and after the population underwent phased

division (DuRand and Olson 1998). Estimates of the cell divi-

sion rate relied on the identity:

Ndivided

Nundiv:
5

�Vundiv:

�Vdivided

where Nundiv: and Ndivided are the number of cells before and

after the Salt Pond population underwent a phased division

and �Vundiv: and �V divided are the mean cell volumes of those

populations. �Vundiv: and �Vdivided were determined from a 2-h

moving time average of singlet volume that maximized daily

volume shifts within a period of 12 h. The restriction to sin-

glet images was necessary because volumes from multi-cell

images were often grossly underestimated due to rotation of

chained cells out of the plane of focus. Note that the enu-

meration of these forms was not similarly compromised.

Under the assumptions that (1) all divisions are phased and

(2) that there is no growth in the population’s total
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biovolume during the division period, estimates of the spe-

cific daily division rate were calculated as:

ldiv5ln
�Vundiv:

�Vdivided

� �

The ldiv expression provides a minimum estimate of divi-

sion rate since it underestimates to the extent that assump-

tions (1) and (2) are violated. The restriction to singlet

images further underestimates ldiv because chained cells

(doublets, triplets, and quadruplets) are younger (and there-

fore their constituent cells smaller) on average than singlets,

causing overestimation of �Vdivided. An additional and uncon-

trolled source of error is the potential for size distribution

bias between pre- and post-mitotic periods as A. fundyense

singlets swam toward the surface (and away from the IFCB)

during their morning migration to shallower depth.

DNA content analysis

DNA content of A. fundyense cells collected during weekly

surveys was assessed to measure the proportion of planozy-

gotes and post-replication vegetative cells (i.e., those in the

G2 and M phases of the cell cycle). Both planozygotes and

G21M phase vegetative cells have 2c DNA content or

approximately twice the typical DNA content of haploid, G1

phase vegetative cells (Brosnahan et al. 2014; McGillicuddy

et al. 2014).

Subsamples for DNA analysis were taken from seawater

concentrates produced through our standard A. fundyense

counting procedure (described above; Anderson et al. 2005).

The DNA analysis presented here was limited to samples

collected at the raft from periods when A. fundyense were

dominant (3, 10, 17, and 24 April) and to depths where con-

centrations were>20,000 cells L21. Subsamples contained

approximately 10,000 A. fundyense cells and were stained

with propidium iodide (PI) for analysis with a FACSCalibur

flow cytometer (BD Biosciences) as described by McGilli-

cuddy et al. (2014). Because surveys could only be completed

during daytime high tides, the time of day when samples

were collected varied but was always between mid-day and

mid-afternoon when most vegetative cells are typically in

the G1 phase of the mitotic cycle. Although the instrument

and sample preparation used could not unambiguously iden-

tify individual A. fundyense during analysis, the approach is

relatively insensitive to staining variability associated with

the duration of formalin fixation in the field (Brosnahan

et al. 2014). A. fundyense singlet populations were readily

identifiable via a series of forward scattering, side scattering,

and PI fluorescence gates because they have extraordinarily

high DNA content per cell and were dominant in the sam-

ples analyzed.

PI fluorescence was recorded from 700 to 1200 A. fun-

dyense cells per sample using CellQuest Pro software version

5.2.1 on a Macintosh computer running operating system

version OSX 10.4.11. Acquisition scaling of PI fluorescence

was set to linear with voltage and threshold settings adjusted

to capture the complete distribution of 1c–4c A. fundyense

cells. All other light scattering and fluorescence parameters

were acquired with logarithmic scaling. System and sample

stability were assessed through analysis of a culture control

immediately before and after analysis of the field samples.

To identify and compare the relative abundance of DNA

content populations, data were imported to MATLAB and

analyzed using mmvn_toolkit for Gaussian mixture model-

ing (GMM; Boedigheimer and Ferbas 2008).

Continuous culture experiment

A continuous culture of A. fundyense was established and

monitored by an IFCB under light and temperature condi-

tions similar to those observed during the peak of the Salt

Pond A. fundyense bloom. The purpose of this experiment

was to evaluate IFCB-based estimates of infection and cell

division under laboratory-controlled conditions and also to

explore behavioral differences between a clonal culture and

the Salt Pond population.

A 1-L culture of clone ATSPF7-5 was grown in a glass

water-jacketed flask with light supplied by a combination of

fluorescent and tungsten-halogen bulbs. Culture lights were

turned on and off in a stepped fashion to approximate the

light: dark cycle experienced by vertically migrating A. fun-

dyense field populations (Anderson and Stolzenbach 1985;

Brosnahan and Ralston unpubl.). The overall light period was

approximately 12 h long including two, 2-h long, four-step

ramps between darkness and peak light intensity. Irradiance

within the flask under full light was measured with a QSL-

100 wand-type radiometer (Biospherical Instruments) and

ranged from 325 lmol photons m22 s21 to 540 lmol photons

m22 s21. The uninfected culture was sampled hourly by an

IFCB that was configured to replace samples with an equal

volume of nutrient-replete medium. The medium was pre-

pared essentially as f/2 minus silicate (Guillard and Ryther

1962) but modified through addition of 1028 mol L21 H2Se03

and by reduction of CuS04 to 1028 mol L21. Vineyard Sound

seawater (0.2-lm filtered, salinity �31) was used as the

medium base. Prior to sampling, the culture was mixed

gently by a caged magnetic stir bar (approximately 6 min

each hour). Temperature within the culture oscillated

between 10.28C (culture night) and 10.88C (culture day) due

to heating from its lamps. From a prior experiment it was

known that ATSPF7-5 divides with a specific growth rate of

�0.2 d21 under these conditions. Therefore the hourly sam-

ple/replacement volume was set to 8.5 mL h21 (204 mL d21),

which approximately balanced growth and dilution. Cell

concentrations were monitored for 6 d to ensure that cells

were dividing normally before the culture was infected with

free-swimming Amoebophrya dinospore cells.

A 300-mL inoculum of Amoebophrya was prepared in a

128C incubator using ATSPF7-5 as its host. Dinospores (�3
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lm in diameter) were separated from their infected host cul-

ture by filtering through a 20 lm Nitex sieve. The volume of

the continuous culture was reduced by 300 mL immediately

prior to inoculation with a pipette whose end had been cov-

ered by 20 lm Nitex mesh. After inoculation, the culture

was mixed approximately 2 min by magnetic stir bar before

triplicate, 1-mL samples were collected to estimate the initial

concentration of dinospores. Samples were fixed with 2.5%

(v/v) formalin and stored in a refrigerator (48C) 10–14 h. Fol-

lowing fixation, samples were concentrated on 0.8 lm poly-

carbonate filters and prepared for FISH-TSA staining as

described for Amoebophrya field sampling. The frequency of

IFCB sampling was also reduced to 8 d21 (sampling every

3 h) because exposure of the culture to Amoebophrya was

expected to arrest cell division, leading to excessive dilution.

Additional FISH-TSA samples were taken approximately 1 h

after culture daybreak and 1 h before nightfall for 10 d post

infection. The IFCB continued sampling every 3 h through-

out the infection period but images collected at one sam-

pling point in the third day after infection and from late in

7th day after infection until the end of the experiment were

unusable due to obstructions in the instrument’s flow cell

that compromised cell detection and image focus.

Results

Image classifier assessments

All three of the final classifiers described similar temporal

trends in the abundance of A. fundyense in Salt Pond, includ-

ing short-term diel oscillations due to vertical migration and

longer-term phases of increasing (bloom development) and

decreasing (termination) overnight cell concentrations

(Fig. 3). This concordance between the versions reflected

similarly excellent specificity (discrimination of A. fundyense

from other organisms) throughout the bloom’s full duration

(mean values between 0.995 and 0.997; Fig. 4). Differences

among the classifiers included their ability to accurately

account for multi-cell images (e.g., doublets), their sensitiv-

ity for A. fundyense, and their bias across the observed range

in A. fundyense singlet size.

Like specificity, the sensitivity (ability to detect A. fundyense

images) of the three classifiers was high on average but the

classifiers were consistently ranked such that the sensitivity of

the 2-subclass version was greater than the 1-subclass version,

and both were greater than the 11-subclass version (mean val-

ues 0.865, 0.812, and 0.705, respectively). Lowest sensitivities

for each of the classifier versions were clustered in time, occur-

ring between 16 and 24 April (Fig. 4), a period that coincided

Fig. 3. (Top axes) Abundance estimates derived from the two A. fundyense subclass machine classifier. Lines are loess smoothing results from sample
estimates. Classifier data (fine black points) are estimates taken directly from the 2-subclass classifier output. Overnight means are derived from obser-
vations collected between 21:00 and 03:00 h EDT when A. fundyense were concentrated near the IFCB intake. Corrected data are abundance esti-

mates from manually corrected IFCB samples. Microscope data are abundance estimates from weekly surveys (Bottom axes) Select A. fundyense
subclass frequencies. Large ringed circles are manually corrected estimates from IFCB images and fine points are results from the 11-subclass machine

classifier. Lines are loess smoothing results from manually corrected data. Fusing gametes and dividing vegetative cells were never greater than 5% of
A. fundyense images within a single sample and are plotted against the right y-axis. Open square symbols are FISH-TSA-based estimates of mature
Amoebophrya infection prevalence.
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with a marked sexual transition by the bloom (Fig. 3). The

lowest sensitivities produced by the 11-subclass version some-

what undermined its unique strength as the only version con-

structed to discriminate between several life cycle stages.

Classifier-derived estimates of overall A. fundyense abun-

dance were well correlated with corrected 11-subclass counts

for each of the classifier versions (R2 5 0.932, 0.993, and

0.943 for the 1-, 2- and 11-subclass versions, respectively; Fig.

5). The four most abundant subclasses—singlets, doublets,

infected cells, and lysed cells—accounted for greater than

90% of all samples’ A. fundyense images in the Salt Pond

record (Fig. 3). The 2-subclass version’s highest skill ranking

reflects both its accurate counting of cells from these highly

abundant subclasses and its comparatively high overall sensi-

tivity for A. fundyense, while weaker performances by the 1-

and 11-subclass versions occurred for different reasons. The

1-subclass version did not account for doublets, which were

frequently>20% of A. fundyense during bloom development

(Fig. 3). The 11-subclass version exhibited high error rates

among the other scarcer, non-singlet and non-doublet sub-

classes (e.g., triplet, quadruplet, dividing, and fusing gamete

cells), making direct interpretation of automated, rare sub-

class classifications doubtful. Because of the scarcity of these

rarer subclasses, temporal patterns were hard to interpret

even in corrected samples. Notable exceptions to these gener-

alizations were the dividing cell and fusing gamete sub-

classes, whose frequencies surged sequentially near the onset

of bloom termination (Fig. 3).

The last assessment of the three classifiers examined their

relative bias across the full size range of A. fundyense during the

bloom’s gametic and termination phases. This set of samples

was taken between 13 and 27 April, the period when sensitiv-

ities were lowest and when two marked shifts in the A. fun-

dyense population’s mean cell volume occurred (Fig. 6).

Performance by the classifier versions in this assessment pri-

marily differed across cell volumes<213.8 lm3, a size class that

was only abundant at the bloom’s peak and is presumed to be

gametes (cells within this class were the only ones observed as

fusing pairs). The 2-subclass classifier also performed best in

terms of size bias, producing Pmiss values that were

always<0.29 for gametes within one standard deviation of the

mean gamete size (volumes between 213 and 213.5 lm3; Fig. 4).

In comparison, Pmiss values from both the 1- and 11-subclass

classifiers were>0.45 across the same gamete size range. Pmiss

values from the 2-subclass version still varied across the full

range of cell sizes observed and were higher for smaller

(gamete) cells than for larger ones; Pmiss was always<0.11

across volumes within one standard deviation of the larger size

class cells’ mean volume (2142215 lm3). This behavior may

have skewed estimated cell volume distributions of A. fundyense

toward larger cell sizes during the bloom’s termination phase.

Across all the assessed criteria, the 2-subclass classifier pro-

duced the most favorable results and was therefore used as

the basis for subsequent analyses that relied on machine-

based classifications. Results from the 11-subclass model

were also retained because these were the starting point for

Fig. 4. (Top and middle axes) Specificity and sensitivity of the 2-subclass version of the machine classifier through the full course of the 2012 Salt
Pond bloom. Only results from the 2-subclass machine are presented because it is the only version used in subsequent analyses that rely on machine

classification. (Bottom axes) Size bias of the 2-subclass version observed in detection of singlet images collected during the transition from bloom
development to termination. Counts (gray bars) indicate the relative abundance of different A. fundyense size classes (volume bins).
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manual correction of the samples that underlie our examina-

tion of shifts in the frequencies of different life cycle stage

subclasses (which hereafter are limited to dividing cells, fus-

ing gametes and infected cells).

Comparison of IFCB and microscopy-based estimates of

A. fundyense abundance and infection prevalence

Comparisons of counts from the IFCB and Niskin samples

taken adjacent to it showed that the two records were con-

sistent with one another. There was no significant difference

between Niskin-based abundance estimates and the mean of

IFCB-based estimates collected within 1 h of the bottle sam-

ples. Correlation between these records was somewhat weak,

however, (R2 5 0.63), a result that reflects both the patchi-

ness of A. fundyense within the pond and also uncertainty in

the Niskin-based estimates due to subsampling and lack of

replication.

Comparison of IFCB-derived and FISH-TSA-based esti-

mates of Amoebophrya infection were less affected by patchi-

ness, probably because the quantities compared were

proportions. Daily means of the IFCB-estimated prevalence

of infection were well correlated with the FISH-TSA derived

estimates of mature grade infections (R2 5 0.73) and their dif-

ferences were not statistically different from zero. The result

was further supported by a similar analysis of the continuous

culture that compared simultaneous FISH-TSA and IFCB sam-

ples (Fig. 7). Again, the estimators were well correlated

(R2 5 0.84) and there was no evidence of systematic error

between IFCB- and FISH-TSA-based estimates of mature grade

infection prevalence.

Accumulation, loss, and cell division rate estimates

during three distinct bloom phases

Both the IFCB- and survey-based descriptions of A. fun-

dyense abundance in Salt Pond showed distinct development

and termination bloom phases, with cells accumulating in

the pond from late March through mid-April, then dissipat-

ing rapidly (Fig. 3). Spatial patchiness, although readily

apparent, did not obscure this temporal pattern.

The peak overnight concentration observed by IFCB

occurred 16 April (1.9 3 106 cell L21), approximately mid-

way between Niskin-based surveys on 12 and 19 April. The

maximum Niskin-based estimate of A. fundyense abundance

occurred during the latter survey when the mean overall

concentration reached 8.37 3 104 cells L21. Maximum sta-

tion concentrations were split between the 12 and 19 April

surveys, with peak mean concentrations at the north and

west stations 12 April (5912 and 7325 cells L21, respectively)

and at the east and raft stations 19 April (2.03 3 105 and

1.04 3 105 cells L21, respectively). Although concentrations

sometimes varied by more than two orders of magnitude

within individual surveys, only survey day, not station, had

a significant effect on abundance at 1 m (survey day:

F4,12 5 27.22, p � 0.001; station: F3,12 5 0.28, p 5 0.84). From

these results, and because the IFCB images indicated con-

certed life cycle transitions, the IFCB record was considered

the more precise estimator of A. fundyense bloom dynamics.

From analysis of the IFCB images, the mean overnight

biovolume of A. fundyense, like cell concentration, reached

its maximum on 16 April (33 mm3 L21; Fig. 6). The develop-

ment and termination phases of the bloom were therefore

identified as the periods before and after 16 April. The

bloom’s termination was split further into gametic and

Fig. 5. Comparisons of abundance estimates from 2- and 11-subclass

versions of the machine classifier with manually corrected counts that
accounted for multi-cell images.
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zygotic phases based on an assessment of cell volume

dynamics through the full course of the bloom.

In the development phase, A. fundyense accumulated nearly

monotonically from the time the IFCB was deployed (15

March) to the bloom’s peak. The mean lnet through this

period was 0.30 although this rate varied dramatically when

assessed at daily intervals. The most rapid accumulation (0.37

d21) occurred 5 to 16 April, a period that immediately fol-

lowed a slow 3-day decline in overnight concentrations. Both

the mean cell volume of A. fundyense and the doublet fre-

quency exhibited pronounced diel oscillations throughout

the development phase, which indicated a high proportion of

cells undergoing phased, asexual division. The specific divi-

sion rate, ldiv, was calculated for each day when 2-h moving

averages could be drawn from a minimum of 30 singlet images

through the division period (typically between 22:00 and

10:00 h). Estimates of ldiv were much less variable day-to-day

than lnet and increased from approximately 0.21 to 0.42 d21

from 3 to 16 April (Fig. 6). The mean of ldiv estimates during

the development phase was 0.30 d21, higher than the mean

lnet of 0.24 d21 for the same subset of days.

The transition to bloom decline (termination phase) was

marked by a sharp, twofold decrease in cell volume that was

sustained for 3–4 d before the size distribution shifted back

Fig. 6. (Top axes) Total biovolume concentration estimates of A. fundyense and all other image classes in Salt Pond. Estimates are calculated during

nighttime hours when A. fundyense were concentrated near the IFCB. The biovolume of the other classes was calculated from high sensitivity acquisi-
tion mode samples only. (Second axes from top) The cell volume distribution is presented as a grayscale histogram at each sample time. The 2-h mov-

ing window mean cell volume is overlaid (black line) and its daily minimum and maximum values are highlighted by white and black circles.
Thresholds defining “gamete” and “planozygote” size thresholds are drawn in blue and purple, respectively. (Third axes from top) Estimates of the
specific rate of division (ldiv, calculated from daily changes in mean cell volume, left y-axis) and partitioning of A. fundyense into sexual stage size

classes (right y-axis). (Fourth axes from top) Water temperature (left y-axis) and salinity (right y-axis) measured at 1 m and 5 m depths. Pycnoclines
within the pond are typically between 1 m and 2 m deep when present. (Fifth axes from top) Tide height (left y-axis) and surface irradiance recorded

16 km north of Salt Pond (right y-axis).
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to its development phase range (Fig. 6). The small cells are

presumed to be gametes because only cells in this size range

were observed fusing; the initial interval within the termina-

tion phase is therefore considered a gametic phase. Similarly,

the later period of the bloom’s termination is presumed to

be a zygotic phase since small cells were no longer present

and indicators of active division (doublets, oscillating mean

cell volume) were absent in spite of otherwise favorable

conditions for growth. Throughout the bloom period, the

concentration of dissolved inorganic nitrogen was consis-

tently>3 lM and N : P ratios were always<10. Toxic levels

of ammonium (>50 lM) were also never observed.

During the gametic phase (16–19 April), overnight cell

concentration declined at a rate of 20.33 d21 in spite of a

sharp increase in the population’s estimated rate of division

(ldiv: 0.51 d21, 0.54 d21, and 0.47 d21). Doublet frequency,

like cell concentration and mean cell volume, continued to

oscillate on a diel cycle, but the overall frequency of dou-

blets declined steadily to about 1% of cells by 20 April

(Fig. 3). During the subsequent zygotic phase, the population

all but ceased its previous diel oscillations in mean cell vol-

ume and abundance, indicating a cessation of both cell divi-

sion and diel vertical migration. Estimates of ldiv fell to

below 0.1 d21 and the specific rate A. fundyense loss (lnet)

increased dramatically to 21.0 d21.

Partitioning of A. fundyense into sexual

stage-linked size classes

Given that small A. fundyense were the only cells observed

to undergo sexual fusion, the compilation of all A. fundyense

images from the bloom’s sexual transition (13–27 April; Fig.

4) was used to define a threshold separating gametes from

other A. fundyense cells. The transition period included the

last 3 d of the bloom’s development phase and all of its

gametic and zygotic phases. The distribution of cell volumes

collected from this period was bimodal with peak gamete

and vegetative cell/zygote frequencies at approximate vol-

umes of 213.2 and 214.35 lm3 (Fig. 4). A. fundyense falling

Fig. 7. (Top axes) Concentrations of A. fundyense clone ATSPF7-5 (left y-axis) and Amoebophrya sp. dinospores (right y-axis) from a continuous cul-
ture experiment. Amoebophrya dinospores were inoculated into the culture at Day 0. (Second axes from top) The cell volume distribution is presented

as a grayscale histogram at each sample time. The 2-h moving window mean of A. fundyense cell volume is overlaid (black line) and its daily minimum
and maximum values are highlighted by white and black circles. Thresholds used to define gamete and planozygote size classes in the Salt Pond time
series are drawn in blue and purple. (Third axes from top) Estimates of the specific cell division rate (calculated from daily changes in mean cell vol-

ume, left y-axis) and partitioning of ATSPF7-5 into size classes used to define sexual stages during the Salt Pond bloom (right y-axis). (Bottom axes)
Select A. fundyense subclass frequencies. Large ringed circles are manually corrected estimates from IFCB images and fine points are results from the

11-subclass machine classifier. Lines are loess smoothing results from manually corrected data. Fusing gametes were extremely rare but are plotted for
comparison to Fig. 3. Open circles (dotted line), triangles (dash-dot line), and squares (dashed line) are FISH-TSA-based estimates of early, intermedi-
ate, and mature Amoebophrya infection prevalence, respectively. The smoothed line from IFCB-based estimation of infection rate is bolded to empha-

size its similarity to mature grade infection rate estimated by FISH-TSA.
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below the local minimum between these modes (213.8 lm3)

were classified as gametes and changes in their abundance

were examined over the full course of the Salt Pond time

series (Fig. 6). Gametes were occasionally present but never

abundant during the early and middle stages of develop-

ment, typically <5% of all A. fundyense and only present

near dawn when cells were dividing. Beginning 14 April,

gamete abundance rose rapidly, reaching a peak proportion

of >90% of A. fundyense cells during the morning of 18

April. Gamete abundance then fell precipitously, much faster

than the overall abundance of A. fundyense, and was never

greater than 2% of the population after 21 April.

Because past investigations have also classified cells as pla-

nozygotes based on cell size (e.g., Anderson et al. 1983; Bros-

nahan et al. 2014), singlet cells that exceeded a size

threshold comparable to the one used in these earlier studies

were also tracked. Here, the size threshold used was a vol-

ume of 215.3 lm3, which translates to an approximate mean

diameter of 42.5 lm. Development phase cells frequently

exceeded this threshold, especially at night when some cells

were poised to divide. For this reason the proportion of cells

presumed to have been planozygotes in earlier studies

actually declined as the bloom transitioned from develop-

ment to the gametic phase of termination. The proportion

of large cells then rose steadily during the zygotic phase of

the bloom, reaching a peak proportion of 39.4% on 23 April.

DNA content analysis

Because the remaining volumes from the weekly survey

samples were limited after cell counting, the number of sam-

ples analyzed for DNA content was limited to 5 m and 7 m

samples collected 3 and 10 April, respectively (the bloom’s

development phase); 1 m, 3 m, 5 m, and 7 m samples col-

lected 17 April (gametic phase); and 1 m and 5 m samples

collected 24 April (zygotic phase; Table 1). DNA content dis-

tributions from the development phase days (single depths)

are presumed to be representative of the whole population

because they are taken from where cell concentrations were

highest. GMM analysis to define 1c and 2c populations was

completed interactively but all samples from 3, 10, and 17

April (bloom development through the gametic phase) were

effectively modeled as three populations 21c, 2c and

“clumped cells”—using “inclusion” type and “most likely”

method parameters for gating. No combination of GMM

parameters was able to identify distinct populations in sam-

ples collected 24 April (zygotic phase), which were heavily

impacted by Amoebophrya and therefore difficult to interpret

(Brosnahan et al. 2014). Approximately one third of cells in

development phase samples were 2c, similar to cells at 5 m

and 7 m samples during the gametic phase. Proportions of

2c cells were about twice as high in the shallower, 1 m and

3 m depth samples from the gametic phase (Table 1).

Another conservative estimate of ldiv can be calculated

from these data under the assumption that all 2c cells are set

to divide during the next phased division. Estimates of ldiv

from the two development phase samples were 0.27 d21 and

0.30 d21 for 3 and 10 April, respectively. Notably, both are

essentially the same as cell volume-based estimates calcu-

lated the same day. Alternatively, the 2c cells recorded in

the weekly survey samples might have been set to undergo

unphased division. If instead all divided before the next

day’s phased division, cell volume-based calculations of ldiv

underestimated the true division rate by about 50%.

The especially high 2c proportions at shallower depths

during the gametic phase might be considered evidence of

new zygote formation near the surface since they suggest a

growth rate outside the conventionally understood envelope

of A. fundyense cells at any temperature (see Stock et al. 2005

and references therein). However, when controlling for the

observed vertical cell distribution, the 2c proportion is much

lower (0.405). If all 2c were to undergo division the next

morning, ldiv would be 0.34 d21, comparable to the cell

Table 1. Summary from DNA content analysis of samples collected from the IFCB support raft during weekly NMS surveys. Only
depths where A. fundyense concentrations were greater than 20,000 cells L21 were analyzed. The proportion of 2c cells reported
from 17 April is adjusted according to differences in cell abundance between depths. Projected ldiv values are calculated under the
assumption that all 2c cells will divide during the next phased division and are compared to estimates of ldiv from comparisons of
mean cell volume (�V ) before and after phased division the same day the DNA content sample was taken.

Date (Time) Depth (m) 1c 2c Clumped Proportion 2c Projected ldiv (d21) ldiv from �V (d21)

03 Apr (12:46) 7 0.67 0.31 0.02 0.316 0.27 0.26

10 Apr (16:06) 5 0.58 0.32 0.10 0.356 0.30 0.28

17 Apr (11:32)

1 0.34 0.61 0.05

0.405 0.34 0.51
3 0.30 0.61 0.09

5 0.61 0.35 0.04

7 0.66 0.28 0.06

24 Apr (16:11)
1 – – – – – –

5 – – – – – –
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volume-based estimates of ldiv during the earlier develop-

ment period but substantially less than those from the

gametic phase of the bloom (�0.5 d21).

Continuous culture

Analysis of the continuous culture considered two phases

of the experiment: an initial high dilution rate assessment of

cell volume-based ldiv estimation in uninfected culture, then

a low dilution rate assessment of an Amoebophrya infection

(Fig. 7), both under temperature and irradiance conditions

comparable to those experienced by A. fundyense 14–16

April, near the peak of the Salt Pond bloom (Fig. 6).

In the initial high dilution rate phase, ATSPF7-5 growth

compensated for dilution and concentration remained near

its inoculum level (350–525 cells mL21; Fig. 7). Phasing of

division was essentially complete, with minimums in mean

volume occurring simultaneous with exposure to full light

intensity each day (2 h after culture daybreak). Dividing cells

were detected throughout the pre-infection period, oscillat-

ing from 1% to 4% during culture night and falling

to<0.5% during culture day. The mean of ldiv estimates was

0.193 d21, which was similar to the culture’s dilution rate

(0.204 d21). This growth rate was also indistinguishable from

results of batch cultures of ATSPF7-5 that examined growth

response to a temperature gradient under high light (>400

lE m22 s21) and a 14: 10 light: dark cycle (typical light con-

ditions for assessing maximal growth in culture; data not

shown). With regard to the continuous culture’s size distri-

bution, cells were rarely outside the range specified by the

gamete and mature planozygote thresholds used to classify

sexual stages in the Salt Pond time series (<5% for all time

points).

The inoculum of Amoebophrya dinospores at the start of

the slow dilution phase was one third greater than that

observed at any point during the Salt Pond bloom (>300

dinospores/A. fundyense host in culture compared to a maxi-

mum of �200 dinospores/host in Salt Pond; Velo-Su�arez

et al. 2013). Dinospore abundance declined steadily through

the first week of the infection (20.49 d21 after subtracting

losses from dilution).

A. fundyense division rate declined immediately on expo-

sure to Amoebophrya and divisions were not apparent 2 d

after infection. A subsequent decline in A. fundyense concen-

trations could be explained by dilution until the end of the

experiment. The difference in loss rates between A. fundyense

and Amoebophrya is attributed to new infections, which were

detected within minutes of inoculation (Fig. 7). Early stage

infections detected by FISH-TSA reached their peak just 1 d

into the experiment and subsequent peaks in intermediate

and mature stage infections followed 3 and 6 d later. Multi-

ple infections were common (about 75% of all infections

observed 1 d after inoculation with dinospores) with some

host A. fundyense infected by five or more Amoebophrya.

Seven days after the initial infection, lysed A. fundyense

became increasingly abundant (not shown) and Amoebophrya

dinospore concentration increased dramatically (>5000-

fold). A gap in the IFCB record then occurred because a

blockage in the system’s flow cell made its images unusable.

The system continued to exchange culture and media but its

imaging was not corrected until effectively all remaining A.

fundyense cells were lysed (10 d post infection).

Estimates of the duration of each Amoebophrya-infection

stage—2 d, 3 d, and 1 d for early, intermediate, and mature

stages, respectively—were made by comparing the timing of

peaks in each stage’s abundance and the pulse of new dino-

spores. The sum of these (6 d) is slightly longer than was

observed in Salt Pond (4–5 d; Velo-Su�arez et al. 2013). Expo-

sure to Amoebophrya did not cause ATSPF7-5 to produce

gamete-sized cells or promote fusion, nor were any cysts

recovered at the end of the experiment. Instead, ATSPF7-5

grew steadily larger with the cessation of cell division, such

that essentially all A. fundyense exceeded the planozygote

threshold 7 d after the introduction of dinospores (Fig. 7).

Discussion

The approach described here directly addressed three

longstanding challenges in studies of sexual transitions by

natural marine phytoplankton blooms: (1) the difficulty of

making detailed and high frequency observations, (2) the

need to sustain high frequency sampling for extended peri-

ods (more than 1 month), and (3) the need to follow single

populations. The IFCB—an automated imaging instrument

that was purposefully designed for long term, in situ deploy-

ments—was invaluable for addressing the first two of these

challenges. Our approach to the third challenge was made

possible through the development of a cable-free raft that

supported the IFCB deployment at Salt Pond, a site that

retains A. fundyense blooms and can be adequately character-

ized by sampling at a single location and depth. Deployment

at Salt Pond also enabled comparison to weekly surveys of A.

fundyense that were ongoing through other parallel projects

within the NMS (Velo-Su�arez et al. 2013; Ralston et al. 2014,

2015; Petitpas et al. 2015).

Comparison of the IFCB time series to data collected dur-

ing weekly surveys of A. fundyense abundance (and some-

times daily estimates of Amoebophrya infection) showed

reasonable correlations and no bias between sampling meth-

ods. The most obvious difference between the datasets was

the lack of temporal, physiological and ecological richness

from weekly surveys compared to the IFCB record. One

exception to this generalization was the sometimes daily

record of Amoebophrya dinospores and host infections from

FISH-TSA analysis since only the FISH-TSA approach charac-

terized the dynamics of the free-swimming and early-stage

host infections of Amoebophrya. However, mature stage infec-

tions could still be accurately identified in IFCB images and

were recorded with much higher sampling frequency.
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Another unique strength of the IFCB approach was its

ability to reveal cell volume dynamics in addition to simple

estimates of species abundance. One of the most striking

results from our analysis is the extent to which the A. fun-

dyense bloom was segmented into distinct, life cycle stage-

associated periods. These periods were marked by concerted

shifts in singlet cell volume (transition from vegetative divi-

sion to gametogenesis) and changes in the amplitude of diel

volume oscillations (transition from gametogenesis to zygo-

sis; Fig. 6). In several respects, the observations collected

here dramatically alter our conception of A. fundyense behav-

ior through its planktonic life cycle stages. These new

insights into the behavior of A. fundyense are outlined below

and are each being explored further through continued

deployments of IFCBs in the NMS.

Rapid vegetative division during A. fundyense bloom

development

Development of the 2012 A. fundyense bloom in Salt Pond

occurred earlier than in any previous year for which data are

available yet water temperatures near the bloom’s peak were

substantially cooler than is typical (Ralston et al. 2014). The

bloom was also among the most intense ever recorded at

this site, causing patches of “red water” to be visible in some

areas of the pond during the week of 15 April. A puzzling

aspect of this observation has been uncertainty about how

such an intense bloom arose.

Specific division rates of A. fundyense do not typically

exceed 0.20 d21 when grown in batch cultures at temper-

atures<118C (Stock et al. 2005 and references therein; Fig. 7

and batch culture data not shown) but the Salt Pond bloom

accumulated at an average rate 0.30 d21 from 25 March to

16 April, a period when temperatures increased from 78C to

118C near the surface (and were less at depth). Although

accumulation encompasses bloom development processes in

addition to cell division (e.g., cyst germination or introduc-

tion of cells via advection from outside the pond), these

have been shown to be insignificant at the study site. Past

and ongoing investigations have shown that Salt Pond does

not host nearly enough germinable cysts to significantly

affect population growth rates during the later stages of

development (Anderson et al. 1983; Anderson unpubl.). The

Salt Pond bloom is also well isolated from southern NMS

blooms, limiting the potential for these other populations to

be advected in (Crespo et al. 2011; Ralston et al. 2014).

Given the limited potential for inputs from germination and

advection, the fact that observed accumulation rates exceed

laboratory values suggests that cell loss rates due to grazing,

encystment or leakage from the pond are small. Some graz-

ing clearly does occur since some A. fundyense cells were

observed being ingested by microzooplankton (Fig. 2) and

larger mesozooplankton (Petitpas et al. 2015). Therefore the

discrepancy between the observed A. fundyense accumulation

rate and its division rate in culture is perhaps even greater.

Another implication of the high accumulation rates is

that culture experiments have substantially underestimated

the true growth potential of natural blooms. Because divi-

sion by A. fundyense was strongly phased, IFCB images of A.

fundyense singlets could be used to estimate minimum values

of ldiv using a cell volume-based approach that accurately

estimated division in the continuous culture (Fig. 7). Gener-

ally, these IFCB-based estimates were greater than the overall

rate of accumulation in Salt Pond and increased steadily,

reaching a maximum>0.4 d21, more than twice the rate

observed in the continuous culture incubated at comparable

temperature and light intensity (Fig. 6). The estimated rates

of division are also double those recorded from batch cul-

tures of several other isolates including an additional one

from the NMS (Watras et al. 1982; Anderson et al. 1984;

Anderson unpubl.).

Importantly, the division rates were calculated through a

set of assumptions meant to underestimate rather than over-

estimate their true values. Very similar ldiv estimates from

DNA content measurements taken 3 April and 10 April lend

support to the cell volume-based estimates although these

may also have been low (Table 1). At comparable division

rates, the 2c, G2 and M phases of the mitotic cycle have

been shown to last 10–15 h in batch cultures (Taroncher-

Oldenburg et al. 1999), so 2c cells likely divided sometime

between the weekly survey sampling time and the next

night’s phased division. Still, some cells may have under-

taken DNA replication (S phase) after the weekly sampling

times and would not have been included in ldiv estimates

from the DNA measurements.

The assumptions underlying the cell volume-based calcu-

lations of ldiv were largely supported by data from the IFCB

record. The first of these assumptions, that individual cells

do not grow larger during the phased division period, is rea-

sonable because volume shifts (and therefore phased divi-

sions) occurred in darkness, limiting the dividing cells’

potential for growth. The second, that all divisions were

phased, was assessed directly by examining the proportion of

dividing cells in night and daytime samples. Dividing cells

were rare (frequencies less than 0.5%), during the early

stages of development (28 March–11 April), but became

more abundant 13–17 April, a period that spanned the tran-

sition from the bloom’s development to its gametic phase

(Fig. 3). Early on 13 April, the frequency of dividing cells

was 2.3% then fell to 0% before reaching a peak of 6.8%

overnight on 13–14 April. The proportion fell again to 0%

later in the afternoon before reaching 3% the next night

(14–15 April) when the oscillations in dividing cell frequency

stopped and the frequency remained above 1% through 17

April (�1 d into the gametic phase of bloom termination).

Additional known sources of error, the restriction to sin-

glet cells and reliance on a single sampling depth, likely fur-

ther biased estimates to be low. Cell chains are formed

through division so their constituent cells are smaller on
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average than singlets. While volumes at different depths

were not compared during the 2012 deployment, a deploy-

ment in Salt Pond in 2013 found that during morning hours

(when most A. fundyense have divided and migrated to shal-

lower depths) cells remaining at 5 m were �9% larger than

shallower, migrated cells (Brosnahan and Anderson unpubl.).

If cells in the 2012 bloom behaved similarly, the constraint

of a fixed sampling depth likely caused underestimation of

ldiv by about 20%.

While the ldiv estimates provided here are much greater

than typical results from cultures, they are still well below

the highest rates reported. Smayda (1996) recorded a specific

division rate of 1 d21 from an A. fundyense isolate grown

under sunlight and speculated that similar rapid growth

might trigger blooms. Taroncher-Oldenburg et al. (1997) also

reported high division rates (>0.6 d21) after synchronizing

A. fundyense cultures with an 82 h dark period. The latter

experiments were conducted with fluorescent lights and a

14: 10 light: dark cycle similar to the batch culture experi-

ments reported here, but also used a much higher incuba-

tion temperature (208C) and aeration. Neither the Smayda

(1996) nor the Taroncher-Oldengurg et al. (1997) study is

representative of conventional approaches used to define

“normal” growth in response to changes in temperature, but

they provide starting points for future work that seeks to bet-

ter define the growth potential of A. fundyense and other

dinoflagellate species from cultures. Ultimately, however, it

will continue to be challenging to apply culture-based

approaches to understand the behavior of natural popula-

tions because the physical and biological factors impacting

growth are numerous, diverse and difficult to recreate and

manipulate in the laboratory.

The results presented here demonstrate that methods for

the estimation of specific division rates in situ may provide

more accurate (and greater) values. In addition to the cell

volume-based approach employed here, in situ division rates

can be estimated from dividing cell (or doublet) frequencies

(Chisholm 1981; Campbell et al. 2010) or through the appli-

cation of size-structured, population matrix models (Sosik

et al. 2003; Dugenne et al. 2014; Hunter-Cevera et al. 2014).

In the case of A. fundyense, the former, frequency of dividing

cell approach was made difficult because dividing cells were

rare and were not well classified by the 11-subclass machine.

Doublet cells, another marker of division, were much more

accurately classified but appeared to also have highly vari-

able lifespans; doublets were present in all development

phase samples and were sometimes observed forming triplet

or quadruplet cells. Both the dividing and doublet subclasses

were still informative as markers of division in the popula-

tion. The frequency of doublets oscillated with a diel cycle

similar to mean singlet cell volume throughout the bloom’s

development phase (about 20% of A. fundyense images), then

declined steadily to 0% by the end of the bloom’s gametic

phase. Dividing cells similarly declined to 0% after their

surge in abundance late in the bloom’s development. A

recent version of the size-structured, population matrix-

model has been applied to the Salt Pond dataset but its full

development is planned for a future study. One of the

advantages of this approach is its ability to account for peri-

ods of simultaneous division and cell growth as is likely to

occur during unphased divisions (Sosik et al. 2003). The pri-

mary advantages of the mean volume calculation employed

here are its simplicity and its conservatism, the latter making

its unusually high division estimates especially noteworthy.

A. fundyense cells were growing at much higher rates than

conventional culture-based experiments indicate, pointing

to a basic inadequacy in the culture-based approach. The

IFCB and other automated platforms for high frequency

observation of individual cells provide a means to address

this problem.

What triggers the transition from vegetative division

to the formation of gametes?

Several past studies in Salt Pond have noted the absence

of stressors that might reduce A. fundyense growth and drive

the population toward sex (Anderson et al. 1983; Crespo

et al. 2011; Brosnahan et al. 2014). More recently, Velo-

Su�arez et al. (2013) showed that a peak in early stage Amoe-

bophrya infections immediately preceded the transition of

the 2012 bloom to its gametic phase. In that study it was

hypothesized that early stage Amoebophrya infections may

have stimulated the bloom’s dramatic sexual transition, simi-

lar to life cycle interactions shown in other dinoflagellate-

parasitoid systems (Toth et al. 2004; Chambouvet et al.

2011).

In the IFCB time series, the gametic transition was

marked by the rapid conversion of the A. fundyense popula-

tion to relatively small singlet cells that were sometimes

observed as fusing pairs (Figs. 2, 6). Small cells were therefore

considered gametes and hypothesized as a marker of sexual

induction in our analysis of the continuous culture experi-

ment. In the culture, however, no small cells or decrease in

mean cell volume was observed after inoculation with dino-

spores, nor were cells observed fusing as sometimes occurs

when clonal cultures are nutrient stressed (Destombe and

Cembella 1990). Instead, cell division ceased and cell size

grew steadily. This latter result conflicts with our own earlier

report that infection did not increase cell size in SPE10-03,

another clonal isolate from Salt Pond (Brosnahan et al.

2014). It may be that the different results reflect clone- and/

or temperature-dependent differences in infection response,

or simply that our previous experiment was sampled too

early to record a size increase from infection.

While the continuous culture result does not support our

previous speculation that stress from Amoebophrya induces

sex, the lack of response may also be attributed to insensitiv-

ity of the ATSPF7-5 clone or the absence of other signals nec-

essary for sexual induction. Persson et al. (2013) have
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suggested that gametes produced in culture are the same size

as vegetative cells. If true, perhaps gametes were present in

the continuous culture but were also obviously different

than those present in the Salt Pond bloom. It is also possible

that the severity of the culture infection prevented A. fun-

dyense cells from transforming into gametes before being

infected. The dinospore-to-host ratio in the culture was com-

parable to the highest ratios observed during the Salt Pond

bloom, and the peak in early grade infections was much

greater. Approximately 60% of the cultured cells were

infected 1 d after dinospore inoculation, but the peak in

early infections 15 April was only 4% of A. fundyense in Salt

Pond (Velo-Su�arez et al. 2014). Further, all of the cells

remaining in the culture eventually succumbed to Amoebo-

phrya infection, but less than 1% of the Salt Pond population

did the same.

Other variables that may be tied to the Salt Pond bloom’s

sexual transition include increasing temperature stratifica-

tion during the transition to the gametic phase and the

bloom’s remarkable intensity. In culture, cyst formation by

the congeneric A. minutum is most robust when cultures are

incubated in warm, freshened media (>228C and salinity

<19; Figueroa et al. 2011). This is similar in one respect to

Salt Pond since gametogenesis coincided with neap tides and

increasing surface temperatures (Fig. 6). However, no compa-

rable freshening of the pond occurred, nor are major

decreases in salinity expected within the NMS due to its lack

of riverine inputs. With respect to bloom intensity, cell con-

centrations recorded during the peak of the bloom were

quite high but not necessarily unknown for NMS blooms of

A. fundyense. The similarity of several years of NMS blooms

sampled at weekly intervals as a function of degree-days sug-

gests a concentration-dependent threshold triggering bloom

termination (Ralston et al. 2014, 2015). A similar, rapid sex-

ual conversion of A. fundyense was also documented when

cell concentrations exceeded 106 L21 in the Gulf of Maine

(McGillicuddy et al. 2014).

Rapid gamete cell division and estimation of new cyst

production

Past studies in the NMS have concluded that gametogene-

sis occurs via a rapid series of divisions to produce non-

dividing gametes, that in turn fuse to produce planozygotes

and eventually new resting cysts (Anderson et al. 1983;

Anderson and Lindquist 1985). At first glance, the appear-

ance of large numbers of small gamete cells with the onset

of the 2012 bloom’s termination appears to support this

same mechanism. However, mean cell volume continued to

oscillate during the gametic phase, producing estimates of

specific division rate greater than observed in the preceding

development phase (�0.5 d21). This is even more surprising

given the onset of termination. Observations of grazing did

not indicate negative population growth on 17 April, one

full day into the bloom’s decline (Petitpas et al. 2015), sug-

gesting that the volume oscillations might reflect cycles of

gamete fusion and diploid division. Similar behavior has

been described in both A. minutum and A. tamutum (Figueroa

et al. 2006; Figueroa unpubl.). If such zygotic divisions were

occurring, perhaps the shift in dynamics explains the dis-

agreement between DNA- and cell volume-based estimates of

ldiv from 17 April (Table 1). It also is noteworthy that the

gametic divisions continued to be phased in a similar pat-

tern to divisions by development phase cells, but no similar

rhythmicity was apparent in the frequency of fusing

gametes.

The onset of termination in spite of high division rates

might also suggest that gamete cells are especially vulnerable

to grazing or leakage from the pond during ebbs. Concerted

gametogenesis may maximize the likelihood of gamete

fusion and also overwhelm the capacity of the grazer com-

munity to consume gamete cells.

Whether divisions during the gametic phase were by hap-

loid or diploid cells, their occurrence complicates estimation

of zygote production from observations of fusing gametes.

Sums of fusing gamete frequencies cannot simply be con-

verted to new zygote production if the gamete population

itself is growing or if new zygotes can reverse their progres-

sion through their life cycle. Instead, because the transition

to the zygote phase was also concerted, a first order approxi-

mation of new cyst production can be made from the initial

cell concentration at the start of the zygotic period. From

the rate of decline observed through the gametic phase and

the vertical distribution of cell abundance observed 17 April,

the average concentration of new planozygotes at the begin-

ning of the zygotic phase was likely about 50,000 L21.

Assuming all of these transformed to new cysts, average dep-

osition on the pond’s bottom would be approximately

15,000 cysts cm2, comparable to the cyst deposition

observed after the Salt Pond bloom in 2013, a year when

peak cell concentrations again were>106 cells L21 (Brosna-

han, Fischer, and Anderson unpubl.). Because the bloom’s

rate of decline during its zygotic phase (21.0 d21) far

exceeded estimates of overall losses due to grazing and para-

sitism (approximately 20.3 d21; Petitpas et al. 2015), encyst-

ment was likely the dominant factor leading to bloom

termination. We are unable to confirm this conclusion, how-

ever, because no comparable time series of cyst abundance

during the 2012 bloom exists. We have addressed this short-

fall in subsequent NMS deployments of the IFCB system and

will further explore the conversion of planktonic blooms to

new cysts in future studies.

Deployments of the IFCB like the one described here max-

imize this instrument’s potential to characterize the immedi-

ate causes of A. fundyense bloom development and decline.

At Salt Pond we are able to resolve critical transitions in the

population dynamics of this species including the timing of

gamete formation and cell fusion and also show the critical

importance of these life cycle processes to bloom
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termination. Likewise high frequency IFCB observations

combined with the retentive characteristics of the Salt Pond

site have revealed population division rates that are much

greater than previously predicted from culture studies. In

many respects these observations are radically altering our

conception of behavior during A. fundyense’s planktonic life

cycle stages. With the IFCB and its accompanying support

raft we can observe and ultimately understand many aspects

of dinoflagellate life history that until now were either elu-

sive or intractable.
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