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A B S T R A C T

This review assesses harmful algal bloom (HAB) modeling in the context of climate change, examining modeling
methodologies that are currently being used, approaches for representing climate processes, and time scales of
HAB model projections. Statistical models are most commonly used for near-term HAB forecasting and resource
management, but statistical models are not well suited for longer-term projections as forcing conditions diverge
from past observations. Process-based models are more complex, difficult to parameterize, and require extensive
calibration, but can mechanistically project HAB response under changing forcing conditions. Nevertheless,
process-based models remain prone to failure if key processes emerge with climate change that were not
identified in model development based on historical observations. We review recent studies on modeling HABs
and their response to climate change, and the various statistical and process-based approaches used to link global
climate model projections and potential HAB response. We also make several recommendations for how the field
can move forward: 1) use process-based models to explicitly represent key physical and biological factors in HAB
development, including evaluating HAB response to climate change in the context of the broader ecosystem; 2)
quantify and convey model uncertainty using ensemble approaches and scenario planning; 3) use robust ap-
proaches to downscale global climate model results to the coastal regions that are most impacted by HABs; and
4) evaluate HAB models with long-term observations, which are critical for assessing long-term trends associated
with climate change and far too limited in extent.

1. Motivation and background

Climate change is expected to affect the frequency, magnitude,
biogeography, phenology, and toxicity of harmful algal blooms (HABs)
(Moore et al., 2008; Hallegraeff, 2010; Anderson et al., 2015; Wells
et al., 2015). Projecting likely responses of HABs to climate change is
critical for informing the development of societal response strategies to
mitigate their impacts and requires development and application of
various types of models. Models used to project HAB response range
from simple conceptual exercises to complex, highly resolved dyna-
mical systems (Anderson et al., 2015). Regardless of model complexity,
their efficacy depends on how well fundamental physical, biological,
and biogeochemical processes are represented, as well as the ability to
prescribe accurate initial conditions (i.e., model starting conditions)
and model forcing at boundaries (i.e., time series of external variables
essential to run the model). The challenges associated with representing
physical and biological processes important for HAB development and
prescribing accurate forcing vary greatly by region, HAB species, and
time horizon, and inevitably introduce some level of uncertainty in

model output. HAB scientists have struggled with how to address this
uncertainty, as the complexity and multitude of processes that influence
HAB response can be overwhelming (e.g., Wells et al., 2015). This
difficult conundrum of anticipating climate change effects but strug-
gling with how to evaluate potential HAB response has been described
as a “formidable predictive challenge” (Hallegraeff, 2010), and has
inhibited the development of actionable projections to increase resi-
lience to future HABs.

The term “harmful algal bloom” applies to a diverse subset of algae
that cause a variety of negative impacts when they bloom, including
human illness from eating contaminated food, drinking contaminated
water, or breathing harmful aerosols, fish kills, and environmental
degradation due to high biomass (Erdner et al., 2008). Major types of
HABs include toxin-producing pelagic diatoms (e.g., Pseudo-nitzchia),
dinoflagellates (e.g., Alexandrium, Pyrodinium, Gymnodinium, Dino-
physis, Karenia), and cyanobacteria (e.g., Microcystis, Nodularia); toxin-
producing benthic dinoflagellates (e.g., Gambierdiscus); fish-killing ra-
phidophytes (e.g., Heterosigma); and high-biomass events (e.g., Phaeo-
cystis, Ulva). Consistent with this diversity in HAB organisms, the
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expected HAB response to climate change is also diverse. The sensitivity
and even the sign of the response of HABs to climate change may vary
depending on the organism and the setting. For example, increased
temperature may increase growth rates of organisms that are currently
at the poleward limit of their thermal habitat at a particular location,
but may also result in some locations becoming too hot to support
growth (e.g., Kibler et al., 2015).

A number of in-depth reviews of climate change impacts on HABs
identify a range of potential responses to environmental factors in-
cluding warming temperature, increased stratification, altered nutrient
availability and composition, light intensity, and ocean acidity (Moore
et al., 2008; Hallegraeff, 2010; Anderson et al., 2015; Wells et al.,
2015). HAB response may also depend on how climate change will
affect zooplankton grazers or microbial pathogens that limit their
growth, which is particularly difficult to characterize since grazer ac-
tivity may also respond to the same changes in environmental factors
that determine HAB response and are also likely to be regionally spe-
cific (Wells et al., 2015). Many of the projected responses of HABs to
changing environmental factors rely primarily on theory or laboratory
studies that isolate particular organisms or processes. The derived rates
and responses from these culture studies do not always correspond with
those observed in the field, potentially reflecting variation among iso-
lates, effects of competition, and/or interactions among factors that
occur in the environment (Fu et al., 2012; Wells et al., 2015). Conse-
quently, these interactions are typically not well parameterized in HAB
models, if they are included at all. This may lead to greater uncertainty
in model projections if interactions emerge or become more important
to HAB formation in the future as a result of changing climate condi-
tions.

Directly linking changes in observed HAB distribution, frequency, or
intensity to shifts in climatic forcing remains difficult (Moore et al.,
2008; Wells et al., 2015), but examples are emerging as time series of
observations accumulate. Identifying HAB responses (or lack thereof) to
anomalous climate events or natural climate cycles provide the best
opportunities for formulating hypotheses as to how HABs might re-
spond to climate change (Trainer et al., 2019 this special issue). For
example, anomalously warm water associated with the 2014-16
northeast Pacific marine heatwave was associated with an intense,
widespread Pseudo-nitzschia bloom along the U.S. West Coast beginning
in spring 2015 that may have been fueled by the combination of higher
growth rates at warmer temperatures and nutrients supplied by up-
welling (McCabe et al., 2016). Increased closures of shellfish harvesting
due to domoic acid from Pseudo-nitzschia and saxotoxin from Alexan-
drium were linked with anomalously warm sea surface temperatures off
the coast of Oregon during a positive phase of the Pacific Decadal Os-
cillation (PDO) and strong El Niño event (McKibben et al., 2015). In the
Rias Baixas along the Northwest Iberian Peninsula, a decrease in up-
welling intensity over the past 40 years was linked to increased time
scales for flushing, which corresponded with increased Dinophysis oc-
currence and shellfish harvest closures (Álvarez-Salgado et al., 2008).
The frequency and magnitude of Pseudo-nitzschia blooms off the coast of
Southern California was linked to the PDO and more directly with the
North Pacific Gyre Oscillation (NPGO), but the correlations were weak
and exact mechanisms unclear (Sekula-Wood et al., 2011). Long time
series also reveal systems that are not responsive to climate regimes.
For example, warm water anomalies in Puget Sound (Washington State)
generated during El Niño winters do not persist into the seasonal
window (summer and fall) when blooms of the dinoflagellate Alexan-
drium typically occur. Because of this mismatch in timing, no robust
relationship exists between levels of paralytic shellfish toxins in Puget
Sound shellfish and an index of the El Niño-Southern Oscillation
(ENSO) (Moore et al., 2010). The use of models prognostically to re-
present mechanistic links between climate and HABs enables some
hypotheses of HAB response to future climate change to be tested and
remains a research priority.

Most models used to project HAB response at climate time scales

(i.e., decades to a century) were initially developed and applied over
shorter time scales (i.e., several days to a season) to provide hindcasts
or forecasts of present conditions. Other reviews have richly detailed
the current state of HAB modeling over shorter time scales (Glibert
et al., 2010; McGillicuddy, 2010; Flynn and McGillicuddy, 2018;
Franks, 2018), so modeling applications of present conditions will be
addressed here only in the context of how such models might be applied
to understand future conditions. As a simplification, most HAB models
can be characterized as being primarily statistical or process-based. Sta-
tistical models are developed from relationships between input and
response variables in observations. While they have proven effective for
hindcasts and near-term forecasts, the statistical relationships become
less predictable as forcing conditions shift outside the range of past
observations (Flynn and McGillicuddy, 2018). Process-based models
may be more robust for projecting HAB response under novel en-
vironmental conditions, but this assumes that the dominant processes
remain unchanged under a different set of forcing conditions. Ad-
ditionally, models of response to climate change are dependent on the
ability to predict forcing conditions such as water temperature, wind
strength, or river discharge at spatial and temporal scales relevant to
the processes represented in the HAB model. The uncertainty in the
environmental conditions increases greatly with the time scale of
forecast, in part because of greater uncertainty in the global circulation
models (GCM) at longer time scales but also because the unpredict-
ability of human behavior becomes a greater factor. For example, re-
presenting the source of nutrients that might fuel a bloom or affect
toxicity could depend on resolving shifts in upwelling wind intensity or
hydrologic response to precipitation events from local watersheds, but
changes in land use or direct anthropogenic nutrient inputs may have
even greater effects on regional nutrient concentrations (Glibert et al.,
2010). The paucity of successful HAB models at even interannual time
scales and the uncertainties in predicting future environmental condi-
tions make extending meaningful projections to climate time scales
challenging.

This review examines the state of HAB modeling in the context of
climate change. We assess the key components of modeling HAB re-
sponse to climate change, starting with an overview of the HAB mod-
eling methodologies currently in use, reviewing studies that have ex-
amined HAB response to climate change, and offering
recommendations on how to move forward by incorporating ap-
proaches used in the broader climate and ecosystem modeling com-
munities. Considerations include the spatial resolution, time horizon,
and forecast accuracy of HAB models developed in the present climate,
representation of future forcing conditions that govern bloom devel-
opment and transport, and an assessment of whether the models de-
veloped and calibrated under present forcing conditions can adequately
represent future response, or if additional factors might emerge to
dominate bloom dynamics.

2. Modeling HABs in the present climate

Most HAB models currently in use for present climate conditions
focus on either hindcasts in process studies or near-term (a few days to
seasonal) forecasts for operational and management uses. These ex-
isting HAB models are the most likely bases for projecting future re-
sponse to climate change. They use a wide range of methodologies, in
part reflecting the diversity of HAB species, the availability of data for
model forcing or calibration, and differences in motivation for model
development. Here we broadly classify HAB models as those that apply
statistical (or empirical) techniques, process-based formulations, or
merge multiple approaches (i.e., hybrid models). The categorizations
are not meant to be rigid. Other key model attributes could instead be
used to distinguish methodologies, such the level of complexity from a
single organism to full ecosystem, the degree of spatial and temporal
resolution, the time scales of simulation (event, seasonal, interannual,
or longer), and whether models are diagnostic hindcasts or prognostic
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forecasts. Nevertheless, we find our categorization of the current
modeling approaches facilitates thinking about how each of the meth-
odologies might be adapted to assess HAB response to climate change.
A brief summary of the modeling studies reviewed here is given in
Table 1, including this categorization, HAB organism, geographic re-
gion, and model type and time scales.

2.1. Statistical models

Statistical models use observations to relate key forcing variables
(e.g., a nutrient concentration, temperature, upwelling wind index, or
time of year) to relevant measures of HABs (e.g., the timing of HAB
events or the abundance, toxicity, and spatial distributions of HAB
species). A wide range of forcing variables are typically considered
during model development, some of which may be interrelated (e.g.,
temperature and time of year, salinity and river discharge). While the
choice of forcing variables is often guided by our understanding (the-
oretical or empirical) of the underlying physical and biological pro-
cesses, statistical models do not attempt to represent those processes
directly, only the cumulative effects of them. Statistical models require
extensive observations to develop robust relationships between forcing
variables and HAB response. As such, some of the most compelling
examples come from regions with long records of HAB monitoring and
investigation. Examples include Pseudo-nitzschia and Dinophysis blooms
off the Iberian Peninsula and Ireland (Raine et al., 2010; Cusack et al.,
2015; Díaz et al., 2016), Pseudo-nitzschia off the U.S. West Coast
(Anderson et al., 2009; Lane et al., 2009), Alexandrium in Puget Sound
and the U.S. Northeast (Moore et al., 2009; Ralston et al., 2014), Kar-
enia in the Gulf of Mexico (Stumpf et al., 2009), and multiple HABs on
the Northwest European Shelf and in Chesapeake Bay (Anderson et al.,
2010; Brown et al., 2013). Statistical models are typically used in
hindcasting, but may provide nowcasts if real-time observations of
forcing variables are available or limited forecasts if lags are built in to
the model. Alternatively, output from operational physical models can
be used in place of observations to provide input for statistical models,
enabling near-term forecasts of HABs. A wide variety of statistical ap-
proaches have been used to model HABs in the present climate, ranging
from simple linear regressions to more complex analyses using artificial
neural networks, fuzzy logic, or Bayesian inference. Here, we highlight
a few approaches that have been used to predict the timing and dis-
tribution of HABs.

Statistical analysis of observational data sets that record HAB re-
sponse to changes in environmental forcing at climate-relevant time
scales can be informative for identifying forcing variables that are cli-
mate sensitive. Past performance is no guarantee of future results, but
multi-decadal observations provide evidence at time scales relevant to
climate change of HAB variation with forcing conditions. For example,
in Puget Sound (Washington State), optimal conditions for Alexandrium
catenella blooms – warm air and water temperatures in combination
with low river discharge and wind speed – have become more common
over the past 30 years, as have the frequency and duration of toxic
blooms (Moore et al., 2009). In many cases, identification of a “window
of opportunity” with increased risk for bloom development and toxin
accumulation, and potential alterations to that window of opportunity
with climate change, is a primary goal of HAB modeling rather than
representing specific events or the phytoplankton community. Another
example is a study of a 30-year record of Dinophysis acuta in the rias of
northwest Spain that used a general additive model (GAM) based on
upwelling intensity, thermocline depth, tidal range, and inoculum
strength to predict cell abundances. The analysis did not find evidence
for increasing trends in bloom frequency or intensity, nor clear re-
lationships to long-term climate indices like the North Atlantic Oscil-
lation (NAO) (Díaz et al., 2016). The study did, however, find that an
exceptional bloom in 1989–1990 appeared to be associated with high
positive anomalies in sea surface temperature (SST) and the NAO index.
That analysis did not extend their GAM to climate time scales. To do so

effectively, a GCM would need to represent the combination of up-
welling and solar heating that are ideal for HAB development. These
ideal physical conditions occur relatively briefly and infrequently, and
remain challenging to reproduce in finer scale regional models that
would be needed to adequately represent the blooms (Ruiz-Villarreal
et al., 2016).

Forcing variables that represent dominant physical and biogeo-
chemical processes can serve as the basis for forecasting the timing of
HABs. For example, in southwestern Ireland, stratified, wind-driven
circulation during summer months can bring harmful Dinophysis spp.
from the continental shelf into coastal embayments where they can
cause toxic events (Raine et al., 2010). A simple model based on the 5-
day weather forecast for cross-shore wind and time of year was used to
predict Dinophysis import events and Diarrheic Shellfish Poisoning
(DSP) toxicity, and these model results were used to guide near-term
shellfish resource management. In Monterey Bay (California), a logistic
regression model incorporating multiple forcing factors including time
of year, chlorophyll, silicic acid, water temperature, upwelling index,
river discharge, and nitrate was developed from 8 years of observations
and used to predict the probability of Pseudo-nitzschia blooms (Lane
et al., 2009). Similarly, Pseudo-nitzschia blooms off the coast of Ireland
were linked to upwelling, and a statistical model using a wind index,
water temperature, and recent cell densities helped predict the timing,
but not intensity, of bloom events (Cusack et al., 2015).

Statistical models that spatially resolve forcing variables can pro-
vide information on HAB distribution based on habitat suitability for
the causative organism. For example, a regression model using satellite
ocean color and sea surface temperature (SST) detected 98 % of toxic
Pseudo-nitzschia blooms in Santa Barbara Channel (California) with less
than 30 % false positive cases (Anderson et al., 2009). In Lake Erie,
satellite imagery of Microcystis spp. bloom extent was correlated with
river discharge and nutrient loading, and could be used to generate a
seasonal forecast because of the several month lag between input
variables and bloom response (Stumpf et al., 2012). In northwest Spain,
the presence or absence of Pseudo-nitzschia blooms in several coastal
embayments was linked to location, day of year, temperature, salinity,
upwelling index, and, most importantly, recent bloom occurrence using
a support vector machine, which is a common machine-learning algo-
rithm (González Vilas et al., 2014). In Chesapeake Bay, a Generalized
Linear Model (regression-based approach allowing for both Gaussian
and non-Gaussian distributions) was developed with 22 years of cell
abundance data and used to make hindcast maps of Pseudo-nitzschia
bloom probability based on factors including time of year, temperature,
salinity, nutrients (phosphate, nitrate, silicic acid), river discharge,
dissolved organic carbon, and Secchi depth (Anderson et al., 2010).
Another approach in Chesapeake Bay used output from a physical
model as input for empirical habitat suitability models to make near-
term forecasts of HAB occurrence (Brown et al., 2013). The meth-
odologies (neural network or logistic regression) and input variables
(time of year, temperature, salinity, chlorophyll, nutrients, Secchi
depth, total suspended solids, dissolved oxygen) for the habitat models
varied for the three HAB species (Karlodinium veneficum, Prorocentrum
minimum, and Microcystis aeruginosa) modeled. This approach relied on
both physical model results and extensive HAB observations for de-
velopment of the empirical model.

2.2. Process-based models

Process-based (or mechanistic) models use mathematical equations
to explicitly simulate key physical and biological processes that govern
HABs and HAB outcomes. Their development requires detailed knowl-
edge of critical life history characteristics and the factors that modulate
them as well as transport pathways. As such, they require large amounts
data to represent the many processes in the system and can be limited
by their parameterizations of rates of growth, mortality, mobility, toxin
production, and other key processes that are typically derived from
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simplified laboratory studies of isolated strains. In situations where
observational or laboratory data are limited, process-based models in-
stead may be informed by data on similar organisms or may be limited
to focusing on a subset of processes that are particularly important to
bloom dynamics. Because process-based models are more comprehen-
sive than statistical models, they take more time and effort to develop
and are more computationally expensive to run. Process-based models
can be difficult to constrain given the nonlinearity and intermittency of
HABs, but they are usually more transferable across regions because of
their explicit representation of physical and biological processes.

In systems where transport processes are negligible, models based
only on biological processes have utility. For example, in Nauset
Estuary on Cape Cod (Massachusetts), a small embayment with limited
exchange and long residence times, interannual variability in timing of
A. catenella blooms was reproduced with a simple model based tem-
perature-dependent growth rates (Ralston et al., 2014). In contrast, for
many HABs physical transport provides the dominant control on bloom
distribution. For these cases a common approach is to use velocity fields
from a circulation model to advect particles that are representative of
the HAB. For example, the accumulation of Dinophysis acuminata in the
Bay of Biscay at temperature and salinity gradients associated with
river plumes, and subsequent dispersion of the bloom by winds and
tides, was well represented by passive particle tracking and circulation
model hindcasts (Velo-Suárez et al., 2010). A passive particle tracking
approach was also used in a forecast system for Dinophysis for the rias
(drowned river valleys) of the northwestern Iberian coast (Ruiz-
Villarreal et al., 2016). Particle tracking similar to that used for oil spills
was used for a Microcystis aeruginosa bloom in western Lake Erie by
linking satellite ocean color observations and a hydrodynamic model,
and importantly the study included quantitative skill assessment of the
predictions relative to persistence, or no influence of transport on the
bloom (Wynne et al., 2011).

More commonly, both physical and biological processes play im-
portant roles in HAB development and they cannot be treated in-
dependently. Individual-based models (IBMs), like passive particle
tracking, can be run within a circulation model or offline using model
output to represent advection by currents, but IBMs also can in-
corporate biological processes specific to the organism of interest. For
example, an IBM with growth dependent on temperature, mortality
dependent on shear and population density, and phototaxic vertical
migration was used to hindcast Karenia mikimotoi blooms along coastal
Scotland (Gillibrand et al., 2016). Results showed a strong dependence
on bloom source region and uncertainty in the biological rate para-
meters, making the model less practical for forecasts. In the Gulf of
Mexico, an IBM of Karenia brevis that included vertical migration based
on internal nutrient ratios was used to identify potential source regions
by running simulations backwards in time (Henrichs et al., 2015).

Rather than IBMs, HAB growth, mortality, and redistribution can
also be represented as cell concentrations within circulation or bio-
geochemical models. For example, a model of A. catenella that re-
presents cyst germination, growth dependent on temperature, salinity,
nutrients, and light, and mortality has been used in diagnostic hindcasts
and operational forecasts in the Gulf of Maine (Stock et al., 2005; Li
et al., 2009), and a related model that also imposed diel vertical mi-
gration was used to simulate A. catenella in an estuary (Ralston et al.,
2015). Those models treated the HAB as independent of the broader
plankton community by simulating only the species of interest and
prescribing the nutrient field based on observations rather than having
it evolve dynamically. A more complete ecosystem, biogeochemical,
and circulation model of the northwest European shelf incorporated
multiple phytoplankton, zooplankton, and bacteria functional groups
and benthic-pelagic coupling to simulate high biomass events, pro-
viding predictions after calibration to satellite ocean color (Allen et al.,
2008).

In general, the many biological processes that contribute to HAB
development remain poorly defined and present major sources of

uncertainty in process-based models. Passive particle tracking models
ignore this and IBM or Eulerian-based hindcasts typically calibrate
model parameters within acceptable ranges that optimally correspond
to observed blooms. However, models used to generate forecasts that
have operational utility cannot rely on retrospective calibration, and so
many adopt hybrid approaches that use physical models to predict
transport processes along with empirical models to integrate biological
response. For example, near-term forecasts for Pseudo-nitzschia in
Bantry Bay in southwest Ireland were based on the combination of a
passive particle tracking model to represent cross-shore advection by
upwelling, a circulation model, satellite observations, and in-situ sen-
sors to characterize local water properties, and recent toxicity reports
(Cusack et al., 2016). Similarly, transport of Pseudo-nitzschia from for-
mation regions offshore to the coast depending on upwelling or re-
laxation along the Pacific Northwest coast of the U.S. was simulated
with particle tracking, and the rate of false positives for toxicity events
was reduced by incorporating thresholds for overall phytoplankton
abundance from an ecosystem model (Giddings et al., 2014). A hybrid
approach using satellite SST and ocean color along with particle
tracking was used to explain accumulations of Karenia spp. in the
eastern Gulf of Mexico (Stumpf et al., 2008), although bloom forecasts
are based primarily on satellite data (Stumpf et al., 2009). Satellite
algorithms for bloom identification are important components of many
hybrid systems for early warning, using either overall levels of chlor-
ophyll-a (Stumpf et al., 2008; Cusack et al., 2016) or specific spectral
response like for Microcystis in Lake Erie (Stumpf et al., 2012). The
utility of satellite data in hybrid models depends on the HAB, as for
example in Europe it was found to be useful for early warning of Kar-
enia mikimotoi and Lepidodinium chlorophorum but not Dinophysis
(Maguire et al., 2016).

3. Modeling HABs in a changing climate – what has been done?

Projecting HAB response to climate change involves extending the
simulation period of existing HAB models to decades, centuries, or
potentially paleo time scales for retrospective climate analyses. Data
describing future forcing conditions can be obtained from GCM simu-
lations and used as input variables to HAB models. GCMs forecast ocean
circulation and water properties under future climate scenarios in-
formed by various greenhouse gas concentration trajectories. These
scenarios describe a range of possible futures based on greenhouse gas
emissions, economic development, population growth, and other fac-
tors. The output generated by GCMs quantify changes in physical and
biogeochemical conditions and can be combined with statistical re-
lationships from past observations to project changes in HABs.
Additional model layers to represent climate change effects outside of
the ocean, such as watershed hydrology or land use, can also be in-
tegrated. This offers a relatively simple approach for examining climate
impacts on HABs, but statistical models become increasingly error-
prone when projecting into conditions different from the training data
set (Flynn and McGillicuddy, 2018). This is because the statistical re-
lationships may represent the cumulative effect of multiple processes or
interactions that cannot be extrapolated, and also because thresholds or
tipping points that were not identified or characterized by prior ob-
servations may be exceeded in the projections. Process-based models
are less prone to these potential issues, but they represent only a portion
of the physical and biological complexity due to computational con-
straints and data limitations, and so even process-based models vali-
dated under present conditions may not simulate many of the hy-
pothesized responses to climate change. Here we discuss some of the
approaches for using statistical and process-based HAB models to pro-
ject HAB response to climate change. The different approaches vary in
complexity in terms of how many forcing variables are considered and
how they are derived.
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3.1. Statistical models

A statistical modeling approach was used to link HAB observations
in Puget Sound (Washington State) with physical observations and
climate model forecasts to evaluate long-term shifts in environmental
conditions favorable for blooms (Moore et al., 2011). Based on a 15-
year record of paralytic shellfish poisoning toxins in shellfish tissues, A.
catenella blooms were associated with warm air and water tempera-
tures, low streamflow, weak winds, and small tidal height variability.
The relationship was extrapolated back in time using observations of
the forcing variables, and the annual window of favorable environ-
mental conditions for A. catenella was found to have increased from
1967 to 2006, with two step-like increases occurring in 1978 and 1992
when higher annual values were attained compared to previous years.
The 1978 step change may have been related to the reversal of the
Pacific Decadal Oscillation (PDO) from cool to warm phase in 1977.
The 1992 shift did not directly correspond with regional climate in-
dices, and a lagged response to a regime shift to warmer summer SST off
the Washington coast in 1989 could not be distinguished from natural
variability. Projections of the statistical relationship using output from
a GCM indicated that by the end of the 21st century, the duration of
favorable environmental conditions for A. catenella would increase by
about 2 weeks annually on average (Moore et al., 2011).

Another statistical approach to climate response defined habitat
zones for the shelf sea of northwest Europe based on temperature,
salinity, depth, and stratification from regional climate projections,
finding a general northward shift in HAB species composition (Townhill
et al., 2018). Species distribution modeling based on current distribu-
tions was projected forward using a maximum entropy approach for
multiple HAB species. On the shelf, Dinophysis acuta and Gymnodinium
catanatum had the greatest northward shift of 200−500 km by 2055,
while optimal habitat suitability for three species (A. ostenfeldii, A.
minutum, and P. australis) shifted southward. The southward shift was
attributed to factors in addition to temperature change, including how
the regional bathymetry affects habitat suitability.

Models of HAB response have also been coupled to models of future
changes in freshwater or nutrient delivery from rivers, which are often
not resolved in global models. For example, a Bayesian network model
was used to link GCM results with process-based models of watershed
hydrology and a lake ecosystem model to project climate impacts on
cyanobacteria biomass in Lake Vansjø (Norway) (Moe et al., 2016). The
Bayesian approach allowed assessment of multiple land use scenarios
and incorporation of monitoring data and expert knowledge in the
probabilistic links between nodes. Results suggest that the benefits of
better land-use management were partly counteracted by future
warming.

3.2. Process-based models

Temperature is a keystone parameter of climate change, and
warming of the sea surface is apparent in many regions in observational
records from satellites and in-situ measurements. Because temperature
is a strong determinant of growth, changes in temperature can be used
to approximate changes in potential growth rates of HAB organisms.
Warmer waters may already be affecting bloom dynamics. For example,
sea surface temperature records from 1982 to 2016 were combined
with laboratory-based growth rates for A. catenella (fundyense) and D.
acuminata (Gobler et al. 2017). In the North Atlantic, calculated mean
growth rates increased by about 0.01 d−1 over the study period and the
duration of favorable growth conditions increased by 2–3 weeks. In the
North Pacific trends were less clear, but some regions (the Salish Sea
and coastal Alaska) were identified as having increasingly favorable
growth conditions and HAB prevalence.

Temperature is an important forcing variable in nearly every HAB
model of climate response reviewed here. A number of studies use
projected changes in sea surface temperature at certain locations to

approximate changes in growth rates and identify expansions (or con-
tractions) of optimal growth windows for HAB organisms. The windows
are defined as the number of days each year when temperatures are
projected to be within thresholds that support optimal growth (e.g.,
Moore et al., 2008). For example, an ensemble of GCM projections were
used to quantify changes in temperature-dependent growth rates of
Gambierdiscus and Fukuyoa species, dinoflagellates associated with ci-
guatera fish poisoning (CFP), at six sites in the Gulf of Mexico through
the end of the 21st century (Kibler et al., 2015). The results suggest
increased abundance and diversity of Gambierdiscus spp. and greater
CFP risk in the Gulf of Mexico, but a shift in the species composition at
higher temperatures suggests lower overall risk in the Caribbean. A
similar ensemble approach was used to calculate shifts in the timing of
temperature growth windows for A. catenella and Vibrio spp. bacteria in
Puget Sound and Chesapeake Bay, with the A. catenella bloom period
predicted to start 1 month earlier and end 1 month later (Jacobs et al.,
2015). In addition to changes in bloom timing, the study identified
geographic shifts in optimal temperature zones along coastal Alaska for
Vibrio, which while not a HAB, presents a methodology that could be
applied in HAB studies to examine potential latitudinal shifts in species
distribution without directly simulating HAB dynamics.

Potential shifts in the timing of optimal growth windows as well as
the spatial distributions of HABs can be evaluated by utilizing spatially
resolved information on future forcing conditions from GCMs or re-
gional models of climate change rather than projections at a single lo-
cation. For example, in Puget Sound, regional scale atmospheric, ocean,
and hydrologic models were combined to represent multiple potential
influences on optimal temperature (and salinity) windows for growth of
A. catenella (Moore et al., 2015). Comparing model results for circa-
1990 and circa-2050, atmospheric heating was projected to increase the
duration of favorable growth conditions by 30 days per year with the
biggest increases in HAB-favorable conditions occurring in the North
Basin and Strait of Juan de Fuca. Changes in the timing and magnitude
of river discharge and upwelling on temperature and salinity were
found to have less effect on calculated growth rates. The study did not
address potential changes in nutrient loading due to upwelling or an-
thropogenic sources.

In addition to HAB growth rates, warming temperature may also be
expected to increase growth rates of some grazers that prey on HAB
species, including zooplankton, benthic invertebrates, and fishes.
Moreover, predator-prey interactions and the response to changing
environmental conditions are more complex than species growth rates,
as changes in the distribution, abundance, community composition,
toxicity, and nutritional quality of HAB species may all depend on
temperature and can affect the relative balance of growth rates and loss
from predation, and thus bloom development (Wells et al., 2015). Re-
presenting quantitatively the many factors contributing to effects of
predation on HAB growth and decline, including temperature, remains
a major challenge for process-based models in both current and climate
change scenarios. To this point, most of the modeling of temperature
impacts has focused on HAB growth rates alone rather than assessing
the potentially differential responses of grazers and prey.

The above examples directly link changes in temperature to tem-
perature-dependent growth rates of HAB organisms to examine changes
in bloom timing and spatial distribution. Some other examples also
consider salinity, but the relatively small changes in salinity projected
in the study regions meant that the growth responses were primarily
driven by changes in temperature. Nutrients are another forcing vari-
able that strongly determine growth rates and toxicity of HAB organ-
isms and are projected to be altered by climate change. For example, a
model of the mixotrophic dinoflagellate Karlodinium veneficum and its
algal prey, Rhodomonas salina, was used to simulate growth under
various temperature and nutrient stoichiometry scenarios (Lin et al.
2018). While these scenarios were not directly linked to GCM output of
future climate change scenarios, they were informative of future HAB
response and suggest that warmer, wetter springs combined with
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increased nitrogen inputs to Chesapeake Bay may be more favorable to
HAB development. In contrast, GCM output was used as boundary
conditions for a coupled oceanographic and biogeochemical model with
four classes of phytoplankton, three for zooplankton, one for bacteria,
nitrogen and phosphorous in different forms, and benthic mineraliza-
tion on three regional grids at 1/10-degree resolution to assess condi-
tions for Prorocentrum and Karenia spp. around 2100 (Glibert et al.,
2014). The study defined regions of suitable habitat or propensity for
toxicity based on temperature, salinity, and nutrients for two time
slices: the period 1980–1990 for the present day and 2090–2100 for the
future climate scenario. Model results showed expansion both spatially
and temporally of both species on the northwest European shelf and
northeast Asia, and relatively little change in southeast Asia.

4. Modeling HABs in a changing climate – what should be done?

The fact that relatively few modeling studies quantitatively project
how climate change may affect the distribution and abundance of HAB
populations or toxicity is symptomatic of the challenges associated with
this important task. Challenges associated with understanding the
biological response of HABs to climate change, as well as suggestions
for best practices that should be employed to address them, are dis-
cussed in Wells et al. (2015); however, little attention was given to the
modeling infrastructure needed to project HAB response to climate
change. Generating useful projections of HAB response to climate
change will require engagement with other communities that can help
refine the representation of future conditions in HAB models, including
climate scientists, marine ecologists, watershed hydrologists, invasive
species biologists, and environmental managers and policy makers
(Glibert et al., 2010). Here we offer several suggestions to improve
modeling of HABs in a changing climate, schematically summarized in
Fig. 1.

4.1. Use process-based models

Even though there are challenges associated with uncertainty in
model parameterizations, nonlinear feedbacks, and computing power,
process-based models have distinct advantages over statistical ap-
proaches for projecting impacts of climate change on HABs. In many
cases, data limitations initially hinder development of process-based
models for emergent HABs or regions without many observations, and
so statistical models can be extremely important in the diagnosis of
bloom mechanisms and development of process-based models.
Statistical models are often well suited for shorter-term projections and
management applications, particularly when the models incorporate a
dominant influence of periodic forcing like from ENSO or PDO.
Importantly for climate change response, process-based models ex-
plicitly represent physical and biological mechanisms involved in HAB
development, and so they are less likely to lose validity when forcing
variables are applied that extend outside of periods of historical ob-
servation. Incorporating multiplicative effects of changes in tempera-
ture, nutrient availability, or stratification (among other factors) into
process-based HAB models requires focused, process-oriented field or
laboratory studies that record organism response beyond just abun-
dance, ideally in the context of the ecosystem response rather than just
for individual strains (Flynn and McGillicuddy, 2018). Changes in HAB
severity will depend on the cumulative effects of factors including
differential responses of predators and prey, changing nutrient avail-
ability, and shifts in transport patterns rather than a simple parameter
dependence from on lab studies. Circulation models can be directly
coupled with ecosystem models to simulate projected physical and
biogeochemical changes at climate time scales. This approach is in-
trinsic to many earth system models that have been used to examine
changes in ecosystem and nutrient dynamics globally and regionally
using various downscaling methods. For HAB models, the limited un-
derstanding of complex predator-prey interactions and competition

among classes within the ecosystem limit our ability to parameterize
process-based models (Wells et al., 2015), and should be a focus of
future research.

Process-based models are typically more complex than statistical
models. The introduction of additional processes and parameters may
improve model fit, but can also reduce predictive skill if not based on a
robust representation of the underlying processes (Bell and Schlaepfer,
2016). Regime shifts, in which the dominant processes or forcing
variables controlling bloom development change in large, abrupt, and
persistent ways, are particularly challenging to model, and additional
complexity may increase variability in the results without incorporating
the relevant combination of stressors leading to the regime shift, par-
ticularly if the model is not validated with data independent from the
training region and forcing conditions. HAB models used to assess cli-
mate impacts should be rigorously evaluated to identify model para-
meters that most sensitively determine model outcomes, and this
should guide efforts to simplify complex models and to focus laboratory
and field studies to refine the uncertainty in those key parameters
(Flynn and McGillicuddy, 2018). The development of process-based
models requires parallel efforts of laboratory and observational studies
to refine key rate parameters and process dependencies, including the
effects of changes to multiple forcing factors changing simultaneously.
The applicability of process-based models is predicated on validation
across a broad set of forcing conditions, and so data collection is par-
ticularly critical for in developing models for HABs in regions that have
a sparse history of monitoring and research. Statistical approaches
should continue to play an important role in HAB modeling, particu-
larly for resource management and public health protection over event
to seasonal time scales, but extending statistical models to predict cli-
mate change response has limited merit.

4.2. Use an ensemble approach

An ensemble approach can be used to address the uncertainty that is
introduced to long-term projections of HAB response from a wide range
of sources, including HAB or ecosystem model parameterizations,
variability in the climate model forcing (GCM selection, emissions
scenario, downscaling approach), and the stochastic response of non-
linear physical-biological interactions within the model system. An
ensemble approach considers multiple model scenarios to quantify how
different choices of key input factors, and potentially within the model
formulation as well, affects the uncertainty in model projections. The
selection of scenarios to use in an ensemble approach depends on the
particular application and available resources, but sensitivity testing
based on a subset of potential cases can be used to identify components
of the model system that are particularly important sources of un-
certainty in the long-term response. The central tendency (or “most
likely” scenario) of the ensemble might be the focus of analysis and
reporting on the modeling, but it may also be informative to select
scenarios that encompass the full range of possible future outcomes.
The process used to develop the scenarios and the sensitivity to various
model aspects within the ensemble provide critical context for inter-
preting the results and for guiding future research efforts to minimize or
mitigate model uncertainty.

HAB models constitute a small subset of the broader array of ocean
biogeochemical models, so models representing similar processes can
provide context for assessing climate change response. A common ap-
proach is to couple global or regional circulation models with bio-
geochemistry models of varying complexity to project ecosystem re-
sponse under future climate forcing. The ecosystem response depends
both on the circulation model and the biogeochemical formulation, so
generally an ensemble approach evaluating multiple, independent
models with the same set of forcing conditions provides critical context
for evaluating model results. For example, a study using six climate
model simulations along with an empirical model for predicting
chlorophyll from physical model fields projected a global increase in
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primary productivity of 0.7–8 % in response to warming over the 21st

century (Sarmiento et al., 2004). In contrast, analysis of four coupled
climate-carbon cycle models projected a global decrease in primary
productivity of 2–20 % (Steinacher et al., 2010). The differences be-
tween the results were attributed to differences in the biological model
formulations, in that nutrient availability was incorporated in the
coupled model but not directly in the empirical approach. Both studies
found large regional variability in the response to climate change, as
well as regional differences in the agreement among the ensemble
members. Model skill varied regionally depending on the model, so
appropriately weighting the ensemble members based on their skill
regionally can provide a better solution than a simple average of en-
semble members, and quantifying the inter-model variation provides a
valuable measure of the uncertainty in the region of interest (Steinacher
et al., 2010; Stock et al., 2011). Evaluation of model skill for ecosystem
response requires long-term observations, as discussed in greater detail
below. For chlorophyll, identifying observational declines at both re-
gional and global scales required using Secchi depth measurements
spanning more than 100 years because fluctuations in chlorophyll at the
interannual to decadal time scales were sufficiently large that long-term
trends were not robust over the∼30 years of satellite data (Boyce et al.,
2010).

Modeling studies of climate impacts on HABs have typically ex-
amined responses at time scales of 50–100 years (e.g., Moore et al.,

2008; Glibert et al., 2014; Townhill et al., 2018), as this is when
greenhouse gas concentration trajectories associated with the different
potential futures diverge and high emission scenarios become distin-
guishable from natural variability. Yet for management and public
policy decisions, characterizing changes in HAB risks at shorter time
scales (i.e., decadal) may be more critical. For physical models, pro-
jection of climate response at decadal time scales remains a major
challenge (Zhang and Kirtman, 2019). At decadal time scales, both
external forcing and internal ocean response can be dominated by
noise, making model response unpredictable. Internal climate varia-
tions like ENSO, AMO, or PDO may dominate responses of key climate
variables like upwelling strength or river discharge, particularly at
decadal time scales, swamping trends at century time scales that are
more robustly represented across the suite of climate models. Climate
predictability at decadal time scales varies regionally with the local
modes of internal variability, such that some regions have greater
predictability (North Pacific, North Atlantic, Southern Ocean) than
others (tropical Pacific) (Zhang and Kirtman, 2019). An understanding
of the regional predictability of climate model, including variation
among models, is particularly important for HAB models that are ty-
pically only simulating regional scales at decadal time scales.

Using validation and sensitivity testing to understand uncertainty in
HAB models, in addition to the uncertainty in projections of the phy-
sical and biogeochemical conditions, is a critical step prior to projecting

Fig. 1. Schematic diagram summarizing considerations for im-
proving modeling of HAB response to climate change. Multiple
global earth systems models, emissions scenarios/relative con-
centration pathways, and downscaling approaches should be
considered in an ensemble approach to generate downscaled climate
and ocean model output. Downscaling is necessary to resolve cri-
tical physical and biogeochemical processes for HAB development
at coastal scales. These downscaled data should be used to force
process-based models of HAB response with the results considered in
an ecosystem context. Models should be evaluated with long-term
observations. This step can be informative for selecting global
models, identifying biases in downscaled model projections, and
validating models of HAB and ecosystem response. An important
final step is to identify components of the model system that are
key sources of uncertainty in the long-term HAB response (i.e.,
evaluate uncertainty) and to develop scenarios (i.e., scenario plan-
ning) around those sources of uncertainty in the development of
societal response strategies.
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HAB response to climate change. HAB models of present conditions
need to include more thorough assessments of model uncertainty, with
ensemble sensitivity studies or more formal means like Bayesian models
that incorporate uncertainty estimates in the results (Anderson et al.,
2015), as the uncertainty compounds when run in climate forecast
scenarios. HAB model failures also are instructive particularly in the
context of potential regime shifts with climate change when major
shifts in forcing conditions are not adequately represented in the model
setup, as with anomalous conditions that affected Alexandrium in the
Gulf of Maine (McGillicuddy et al., 2011).

Scenario planning is becoming a popular approach for decision-
makers to address uncertainty in future projections and help prepare for
conditions that may be substantially different from current conditions
(Star et al., 2016). Scenario planning involves crafting stories about
how the world might turn out in the future, it is not about predicting
what will happen. Scenarios are developed around major uncertainties,
or what ifs, in how key parameters m ight change in the future. Scenario
planning can combine both quantitative and qualitative components,
and involve input from researchers as well as stakeholders. Working
through scenarios not only informs the development of societal re-
sponse strategies to deal with future HABs, but also helps to understand
how socioecological systems work and respond to HABs under current
climate conditions. Benefits from scenario planning include increased
flexibility to react quickly to a changing world, more thoughtful stra-
tegic planning and decisions, innovative ideas, early and broad risk
assessment, and increased ability to achieve a common vision (Star
et al., 2016). The use of scenario planning for evaluating HAB response
to climate change offers a path forward for addressing some of the
major uncertainties in biological responses identified in Wells et al.
(2015) while still providing actionable projections.

4.3. Use downscaled climate models

Global earth system models typically have spatial resolution too
coarse (nominally 1° for CMIP5 generation of climate models) to re-
present regional variability like tides, river inflows, coastal topography,
or water column structure in detail. Even high resolution global models
at 1/12° can’t resolve features at the scale of the baroclinic Rossby
radius (ci/f, where ci is the internal wave speed and f the Coriolis
parameter), which is relevant to coastal upwelling, frontal jets, and
buoyant plumes, in more than 90 % of the coastal ocean. To get to 70 %
coverage, 6 times higher resolution would be required (Holt et al.,
2017). Higher resolution regional circulation models provide better
model skill for resolving stratification and variability at seasonal time
scales, but linking regional scale models to forcing from GCMs requires
accounting for the coarse resolution and regional biases through
downscaling, bias corrections, and multi-model ensembles (Stock et al.,
2011). Resolving physical and biogeochemical processes at coastal
scales is critical for HAB modeling, as the HABs that have the greatest
impacts on fisheries, aquaculture, or through direct exposure typically
occur near the coast.

Downscaling from global models can be statistical or dynamical.
Dynamical downscaling provides physically consistent representations
of the dynamical system at higher resolution, but it is comparatively
expensive to setup and run the models and remains subject to regional
biases in the global models (Stock et al., 2011). For example, dynamical
downscaling was used to model the North Sea at 3 km resolution to
project changes in bottom temperature and salinity, and these physical
model fields were used to project changes in distributions of 75 benthic
species (Weinert et al., 2016). The results indicated northward shifts for
about 2/3 of species and southward shifts for the rest, and the down-
scaled model illustrated the strong influence of bottom topography on
habitat gains and losses. An ensemble of dynamically downscaled re-
gional models of the Baltic Sea with different nutrient loading scenarios
was used to assess hypoxic and anoxic extent and potential influences of
changes in river discharge, air-sea fluxes, and intensified nutrient

cycling (Meier et al., 2011). The variance in biogeochemical response
with forcing from three physical models with different structures but
similar forcing provided a metric of the robustness of the results relative
to model variability.

Statistical downscaling can take various forms, including linear re-
gression, general additive models, and neural networks, and can link
global climate model output variables to variables of interest in a
particular region. Approaches for selecting appropriate downscaling
approaches are reviewed elsewhere (e.g., Wilby et al., 2004; Haylock
et al., 2006). The robustness of the downscaling depends in part on the
data available to develop statistical relationships between predictor and
response variables, and it requires keeping a subset of the observations
separate from the training data for validation. Statistical downscaling
also faces limitations when extrapolating into climate conditions that
are outside the bounds of the observational record, as model failures
may not be apparent even when using independent validation data from
the same parameter space as the training data (Bell and Schlaepfer,
2016).

Various statistical downscaling approaches have been used to link
climate model outputs to biogeochemical models at regional, coastal, or
estuarine scales. A constructed analogues approach that represents
sharp geographical gradients and daily variability through linear re-
gressions of model output to observations (Hidalgo et al., 2008) was
used to relate air temperatures from GCMs to water temperature in the
San Francisco Estuary, and thus project climate impacts on an en-
dangered fish species (Brown et al., 2016). Four different downscaling
methods were trained on 20 years of observations to downscale air
temperature and precipitation fields from four GCMs to the Susque-
hanna River watershed to generate inputs to a water balance model and
predict changes in surface salinity and temperature in Chesapeake Bay
(Muhling et al., 2018). Those downscaled salinity and temperature
projections were combined with habitat models for three Vibrio species
to predict future increases in the seasonal duration and spatial extent of
the pathogens (Muhling et al., 2017). Several examples using statistical
downscaling, bias correction, and ensemble approaches to model cli-
mate change impacts on regional fisheries are examined in Stock et al.
(2011), which details many of the considerations in using downscaled
climate models to drive ecosystem forecasts that are relevant to HAB
models.

4.4. Evaluate models with long-term observations

Global climate models are known to have biases and skill that vary
regionally, and these can be assessed by comparison with observation
records during GCM model hindcast periods. Observations to evaluate
physical parameters like air temperature or wind speed, and to lesser
extent water temperature and salinity, are far more prevalent than long-
term observations of biogeochemical parameters like nutrient or
chlorophyll concentrations. Extended time series of HAB abundance or
toxicity that are needed to evaluate HAB model hindcasts at climate
time scales are even rarer. Long-term observations of biologically re-
levant data are critical to identify trends in what are often sparse,
patchy distributions (Ducklow et al., 2009), and they also need to be
incorporated into assessments of climate forecasts. Fisheries surveys are
an example of a rich data type that has been used to identify decadal
scale variability associated with the PDO or NAO as well as seasonal to
interannual variability with ENSO (Lehodey et al., 2006). Models of
climate impacts on fisheries incorporate these long-term records into
statistical relationships between physical fields and the response of the
variable of interest, and those relationships can be continually updated
as additional data are collected (Hollowed et al., 2009; Hare et al.,
2010). The Continuous Plankton Recorder (CPR) survey is another
observational record that goes back more than half a century, and it has
been used to document shifts in community composition with de-
creased abundance of dinoflagellates and increases of some diatoms,
including Pseudo-nitzschia, which were attributed to increased sea
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surface temperatures and stronger stratification (Hinder et al., 2012).
CPR data were used to identify increases in warm-water phytoplankton
and zooplankton species and decreases in cold-water species that were
correlated with sea surface temperature in the northeastern Atlantic, air
temperature in the Northern Hemisphere, and the NAO (Beaugrand and
Reid, 2003). Northward shifts in community composition in a coupled
physical and biogeochemical model that were consistent with CPR
observations were used to diagnose the processes leading to the
changes, and showed that in addition to warmer temperatures that
changes in circulation and stratification contributed to the patterns in
the model (Barton et al., 2016).

To be useful for assessing climate impacts on biological systems,
models must be able to distinguish the response to climate variability
from internal biological dynamics (Lehodey et al., 2006), and ideally
HAB models of climate response should help in identifying similar re-
sponses among different regions. Successful modeling approaches can
be transferred to new regions, but requires accounting for similarities
and differences in the physical environment, ecosystem characteristics,
and HAB population, all of which are multi-dimensional and difficult to
quantify without observations. Identifying climate effects in observa-
tions requires at least several decades of consistent HAB monitoring,
and yet few regions have such high-quality time series data, nor is there
monitoring in regions where future outbreaks may occur (Anderson
et al., 2015; Wells et al., 2015). In addition to climate change, an-
thropogenic stressors such as fishing pressure, nutrient inputs, and in-
vasive species introduction increase the challenges of identifying trends
in observations of HAB abundance and distribution. Nutrient inputs
have increased more than ten-fold in some coastal regions over the past
few decades with usage of synthetic nitrogen fertilizer usage and ur-
banization, but the impacts vary widely (Howarth, 2008). Projecting
future nutrient conditions may require accounting for regional in-
creases or decreases in nutrient loading with watershed land-use
changes (Bouwman et al., 2009; Glibert et al., 2010) in addition to
physical changes in the nutrient delivery by river discharge or coastal
upwelling that are incorporated in models of HAB dynamics presently.
Shifts in nutrient inputs by eutrophication or climate change may also
affect nutrient limitation and require incorporating currencies in ad-
dition to nitrogen into HAB models (Flynn and McGillicuddy, 2018).

While it is generally accepted that HABs are globally increasing in
severity and extent, the role of climate change in the observed trends
has been challenging to isolate mechanistically among the many other
contributing factors (Moore et al., 2008). HAB models applied retro-
spectively at climate time scales may provide a useful means of hy-
pothesis testing as opposed to focusing on predictions of future impacts.
As has been done with observations (Moore et al., 2011), weather
events, anomalous seasonal conditions, or sharp changes in forcing can
be simulated retrospectively with HAB models as analogues for climate
change impacts. Such scenarios can more realistically incorporate
multiple stressors, and allow for quantitative assessment of model
performance and uncertainty using observations that are independent
from the model calibration. For example, laboratory studies have found
that growth rates for Alexandrium spp. increase up to 20−24 °C (Watras
et al., 1982; Etheridge and Roesler, 2005; Bill et al., 2016), suggesting
that warmer water will lead to faster growth and greater bloom in-
tensity. Observations of A. catenella in an estuary in the northeastern
U.S. found that the blooms in warmer years occurred earlier but did not
have longer duration or greater maximum cell abundance, and instead
the blooms terminated before water temperatures reached the values
corresponding with maximum growth rates from the laboratory
(Ralston et al., 2014). A process-based, single-species model that used
the laboratory growth rates could effectively reproduce the growth
phase across multiple years with widely varying temperature condi-
tions, but an empirical formulation for mortality that was not strictly
temperature-dependent was needed to represent bloom termination
across the years, and could only be calibrated based on comparison
with the multi-year observations (Ralston et al., 2015). Bloom dynamics

in that system remained similar enough over several years that the
empirical formulation for mortality had predictive skill, but climate
change can potentially induce more fundamental shifts in ecosystem
dynamics, for example changing from bottom-up (nutrient availability
regulating growth) to top-down (grazing control) control (Wells et al.,
2015). Developing robust models of the interactions between HAB
growth rates and grazer response under changing forcing conditions,
particularly when the relationships may be strongly non-linear, remains
a central challenge for HAB modeling across all simulation time scales
(Flynn and McGillicuddy, 2018).

5. Conclusions

Modeling HAB response to future climate change is still an emerging
field, as evidenced by the limited number of studies (fewer than 10) and
diversity of approaches reviewed here. Extending HAB models to dec-
adal time scales or longer, extrapolating into forcing regimes that are
outside historical observations, representing potential regime shifts in
the dominant processes controlling HAB development, and in-
corporating uncertainty and variability in physical climate model pro-
jections are challenging but feasible tasks. Based on this review, we
offer several recommendations for how to best move forward with
modeling HAB response to climate change. Statistical models have
predominantly been used for near-term and operational HAB forecasts,
but the uncertainty in model output increases as forcing conditions
diverge from the historical observations that were used to develop
them. Process-based models more directly represent key physical and
biological factors in bloom development, and thus are better suited to
extrapolation into future climate forcing conditions. HAB models
should be developed in the context of the ecosystem response to climate
change, recognizing that the response of many key processes and the
potential for regime shifts are common to the broader ecosystem.
Uncertainty in HAB model projections associated with process for-
mulations or climate model forcing should be quantified and conveyed
using ensemble approaches and scenario planning. Downscaling of
global (and potentially regional) climate models to coastal scales should
be done robustly in collaboration with physical climate modelers to
preserve features of the forcing that are key to HAB development.
Finally, long-term observations of HABs and forcing conditions are es-
sential to identify trends associated with climate change and for rig-
orously assessing HAB model results. Long-term observations are criti-
cally lacking in many HAB impacted regions, and this may represent the
biggest impediment to the development of models that can effectively
assess HAB response to climate change. Multiple decades of HAB
monitoring are often necessary to distinguish long-term trends from the
response to cyclic climate forcing, so any model-based assessment of
HAB response to climate change needs to be closely coupled to high
quality observations. Modeling studies of HAB response to climate
change will likely expand as resource managers and policy makers in-
creasingly demand projections of HAB impacts at both near-term and
longer time scales. As such, HAB models will be crucial for informing
the development of strategies to reduce socioeconomic and public
health impacts as well as to increase resilience of socioecological sys-
tems to future HABs.
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