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ABSTRACT: Salt contamination of water supplies in tidal rivers is a global problem, but it has received little attention beyond site-
specific studies. Drought, sea-level rise, navigation channel dredging, and watershed land-use change increase the risk of salinization
and threaten drinking water supplies, agricultural irrigation, and infrastructure (via corrosion). The emerging issue of salt
contamination of water supplies in tidal rivers and its diverse impacts highlight the critical need for interdisciplinary research that
must integrate knowledge from oceanography, hydrology, and water resource management. Here we elucidate oceanic and
hydrological processes regulating saltwater intrusion into estuaries and tidal rivers as well as watershed processes driving enhanced
chemical weathering and export of watershed salts into rivers. By synthesizing studies around the world, we discuss how sea-level
rise, prolonged drought, and increasingly extreme weather events in a changing climate are driving more frequent saltwater intrusion
events that threaten water security globally. We propose a convergent research agenda toward the development of a decision support
tool for salinity management. Specifically we recommend making ion-specific measurements and developing hydrological−
hydrodynamic models to simulate the transport of major salt ions. These models can then be combined with artificial intelligence
algorithms and enhanced monitoring to explore management strategies with stakeholders.
KEYWORDS: Tidal rivers, saltwater intrusion, freshwater salinization, water supplies, climate change

1. THE EMERGING GLOBAL ISSUE
About two-thirds of the global drinking water supply comes
from surface waters, including tidal rivers. The World Health
Organization recommends that drinking water should not
contain more than 250 mg L−1 of chloride, and that high
sodium levels (>20 mg L−1) in drinking water are linked to
hypertensive disorders and developmental delays in chil-
dren.1−4 Since seawater contains about 19,400 mg L−1 of
chloride and 10,670 mg L−1 of sodium, saltwater intrusion
poses a major threat to public health. Salt contamination of
drinking water intakes in tidal rivers has made headlines
worldwide in recent years. For example, the United States
(US) Army Corps of Engineers had to barge freshwater to
water treatment facilities in New Orleans to decrease the
salinity to levels safe for drinking in fall 2023.5 A temporary
emergency barrier was placed on the West False River in the

Sacramento−San Joaquin Delta in June 2021 to slow saltwater
intrusion from the ocean.6 Salt contamination of drinking
water also occurred in the Chao Phraya River in 2020, where
residents in Bangkok, Thailand, were urged to conserve water.7

The 2022 summer drought in Europe led to record low flows
in the Rhine River and triggered emergency water conservation
measures in The Netherlands.8 These events expose a void in
understanding the salt contamination of water supplies in tidal
rivers.
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Saltwater intrusion is a global problem affecting many
countries9 (Figure 1a). Several rivers in Africa are affected,
including the Pungue River between Zimbabwe and
Mozambique and the Incomati River in southeast Africa.10

In Europe, saltwater intrusion concerns range from the

Mediterranean to the Atlantic and North Sea coasts, including
the Po River Delta in Italy,11 the Garonne, Loire and Seine
Rivers in France,12 the Rhine River in The Netherlands, and
the Elbe, Weser and Ems estuaries in Germany.13 Many of
Asia’s megacities are vulnerable to salt contamination of water

Figure 1. (a) Global map of population density (color) and locations of the tidal rivers with reported saltwater contamination issues (blue dots).
Global maps of the projected (b) median regional relative sea-level change and (c) seasonal mean relative changes (%) in the number of dry days
(i.e., days with less than 1 mm of rain) from 1995−2014 to 2100 averaged across available Coupled Model Intercomparison Project Phase 6
(CMIP6) models in the high emission SSP5-8.5 scenario. The sea-level projection is from ref 111 and the dry days projection is from ref 135.
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supplies, including Shanghai on the Changjiang River,14

Zhuhai and Zhongshan on the Pearl River15 and several cities
on the Ganges-Brahmaputra-Meghna Delta.16 In South
America, saltwater intrusion affects the Valdivia River in
Chile,17 the São Francisco River in Brazil and the Magdalena
River in Colombia.18 In North America, saltwater intrusion
affects rivers that drain into all three coasts, including the
Delaware River (Figure S1 in the Supporting Information), the
Hudson River (Figure S2),19 Sacramento−San Joaquin Delta−
San Francisco Bay,6 the Mississippi River, and the Papaloapan
River. Saltwater intrusion into tidal rivers is occurring not only
in semiarid and Mediterranean-type climate regions, which are
exposed to annually recurrent drought periods,20,21 but also in
precipitation-rich temperate climates that may experience flash
droughts.22−24 Equally serious to the problem of oceanic
saltwater intrusion is freshwater salinization, the rise in salinity
in the “fresh” end member of tidal rivers, owing to various
anthropogenic activities within watersheds.25,26 Despite wide-
spread reports of drinking water supplies being threatened by
saltwater contamination, there is no global synthesis of the
commonalities faced by these coastal systems.
The risk of salt contamination extends to uses other than

drinking water, including thermoelectric power, agricultural
irrigation, industrial production, mining, and aquaculture.27

Salt contamination of irrigation water damages conventional
agricultural crops (e.g., corn and beans) and forces farmers to
grow salt-tolerant crops (e.g., cotton and grain sorghum) that

are less profitable.28 High salinity can be detrimental or even
fatal to many freshwater finfish species while favoring salt-
tolerant invasive species.29 High chloride concentration
promotes galvanic corrosion of lead-bearing materials30,31

and pitting corrosion of copper.32 Along water distribution
systems, elevated chloride concentration can increase mobi-
lization of lead from pipes into drinking water.33 Critical
transportation infrastructure, such as steel-reinforced concrete
bridges, may also suffer from corrosion after an initiation
period, in which the steel reinforcement becomes more
vulnerable when the oxide layer is removed due to chloride
exposure.34

2. A MULTIDIMENSIONAL AND MULTIDISCIPLINARY
PROBLEM

A tidal river, located in the upper part of an estuary, is
influenced by both river flows from land and tides from the
ocean (Figure 2a). It is a vital but understudied nexus between
hydrology and oceanography.35,36 Saltwater contamination of
tidal rivers is a multidimensional and multidisciplinary problem
involving physical and biogeochemical processes across the
watershed−river−estuary−ocean continuum.
2.1. Oceanic Saltwater Intrusion into Estuaries.

Although the river flow transports water including salt seaward,
other processes transport salt in the up-estuary direction. The
two most important of those processes are estuarine circulation
and tidal pumping (Figure 2b). Estuarine circulation is a

Figure 2. (a) A schematic plan view of an estuary showing different salinity (in units of g kg−1) subregions including the tidal river where many
drinking water intakes are located. (b) A schematic along-channel section view of the typical volume and salt transport regimes in an estuary. Blue
lines show isohalines, and colors show salinity. The white arrows indicate volume transports, while the black arrows indicate salt transports. The
dotted line shows the position of the mean sea level. Note that for corresponding pairs of arrows, incoming and outgoing salt transports are almost
identical, while outgoing volume transports are substantially larger than the incoming volume transports due to the river runoff.

Environmental Science & Technology Letters pubs.acs.org/journal/estlcu Global Perspective

https://doi.org/10.1021/acs.estlett.5c00505
Environ. Sci. Technol. Lett. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.estlett.5c00505/suppl_file/ez5c00505_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.estlett.5c00505/suppl_file/ez5c00505_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.5c00505?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.5c00505?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.5c00505?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.5c00505?fig=fig2&ref=pdf
pubs.acs.org/journal/estlcu?ref=pdf
https://doi.org/10.1021/acs.estlett.5c00505?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bidirectional residual circulation with a near-bottom, up-
estuary-directed current of increased salinity and a near-
surface, down-estuary-directed current of fresher water,
resulting in a vertically integrated up-estuary salt transport.37

Estuarine circulation38,39 is primarily due to the density
gradient between salt and fresh water,40 but it may also be
influenced by tidal straining,41,42 lateral circulation,43 and
estuarine convergence.44 Tidal pumping is the vertically
integrated temporal covariance of vertically averaged horizon-
tal velocity and salinity, meaning that higher salinity during
flood tide and lower salinity during ebb tide result in up-
estuary salt transport.45 Generally, in relatively deep estuaries
with weaker tides, estuarine circulation dominates, and in
shallow estuaries with strong tides, tidal pumping dominates.
In partially mixed estuaries, both processes may be of
comparable magnitude.46

Since the down-estuary transport scales with the river flow,
saltwater intrusion extends farther landward during droughts
and shifts seaward during high flows. Effects of variations in
tidal amplitude with the spring−neap cycle depend on the
dominant salt transport mechanism, with estuarine circulation
generally decreasing during periods with stronger tidal mixing,
while tidal pumping increases with tidal amplitude. Thus, water
depth, tidal amplitude, and river flows are the major processes
influencing saltwater intrusion.47−49 Additionally, differences in
saltwater intrusion length between estuaries are influenced by
differences in morphology such as channel area or depth,
curvature, channel−shoal geometry, branching, sills, constric-
tions, convergence, and much more.50,51

2.2. Oceanic and Estuarine Processes Influencing
Saltwater Intrusion. The influences of river flow, tidal
amplitude, and estuarine bathymetry on saltwater intrusion can
be estimated from scaling based on the salt transport
equation.40,52 In some estuaries like the Hudson River, the
saltwater intrusion length L has been observed to scale as
Q−1/3, where Q is the river flow,53,54 but L is much less
sensitive to river flow in other estuaries, such as the Delaware
Bay55−57 and San Francisco Bay.52 In the Delaware Bay, both
channel bathymetry and spring−neap variations in mixing
contribute to the weak dependence of L on Q,57,58 while in the
San Francisco Bay it has been attributed to influences of
stratification on mixing and the along-channel variation in
bathymetry.52,59,60 In partially mixed estuaries, L scales
inversely with the tidal velocity Ut as strong vertical mixing
limits the landward saltwater intrusion. In relatively shallow,
well-mixed estuaries where tidal pumping dominates, however,
L ∼ Q−1Ut.

60 These differing sensitivities of L to Q and Ut
highlight the challenge in predicting saltwater intrusion.
Saltwater intrusion is highly sensitive to water depth H, as

suggested in the scaling L ∼ H2 from theory.40 Both sea-level
rise and channel dredging can increase saltwater intrusion and
tidal range.61−64 In most industrialized estuaries, dredging
dominates other processes that increase the water depth.
Channel deepening has been shown to increase saltwater
intrusion and modify tidal amplitude in a number of estuaries
worldwide.63,65−67 Even in wide estuaries where deepening of a
narrow channel will only modestly increase channel cross-
sectional area, the impact on salt flux is still significant because
landward salt flux is focused in the deep channel.68,57

Saltwater intrusion is also influenced by coastal sea-level
oscillations and the direct forcing of the wind on the
estuary.69,70 Both the local and remote wind forcing drive a
barotropic adjustment that produces transient landward salt

fluxes reversing the river flow.53,57,71,72 Increases in saltwater
intrusion with the passage of storm events can temporarily
threaten water supplies, as seen in the Changjiang River73 and
Delaware River.74

Increased offshore ocean salinity enhances the density
contrast between river and oceanic water and, therefore,
intensifies the estuarine circulation and saltwater intrusion. For
example, the bottom salinity in the Chesapeake Bay covaries
with the salinity in the Mid-Atlantic Bight on decadal time
scales.75−77 Also, episodic events, such as upwelling and
downwelling, can change the salinity of the inflowing oceanic
water. An extreme example is the Western Baltic Sea, where
the salinity outside the estuary can increase from 10 to 20 g
kg−1 within a few hours.78,79 River plumes could also interact
and thus change the salinity of the inflow waters.80

2.3. Hydrological Processes Influencing Freshwater
Availability and Delivery. Transport of water and solutes
such as salts in the watershed occurs through multiple
hydrological pathways: surface runoff, soil percolation, subsur-
face lateral flow, groundwater flow, and river flow.81 The
connectivity among these pathways is critical for understanding
water transport in the watershed. Groundwater sustains about
half of the river flow on average and is dominant during low-
flow periods.82 Drought conditions can propagate across the
hydrological pathways. A decline of precipitation beyond
normal conditions reduces watershed soil moisture, which
may, in turn, lead to reduced river flow through lower
groundwater levels and decreases in groundwater contribution
to the river flow. This drought cascade has led to the
identification of different drought types:83,84 meteorological
drought measured using precipitation, agricultural drought
based on soil moisture, and hydrological drought measured
using river flow or low-flow indicators.
The hydrological cycle is highly sensitive to the temperature.

Warming increases evaporative demand and vegetation water
use and, in cold climates, can lead to shifts in the partitioning
between rain and snow.85 Increasing the level of evapotranspi-
ration (surface evaporation and plant transpiration) can lead to
soil drying. Besides reductions in soil moisture, drying is
associated with reduced groundwater levels and baseflow, and
the proportion of groundwater contributing to river flow.85

Changes in the partitioning of rain and snow can increase the
early spring river flow at the expense of summer river flow.
Rain-on-snow flooding events can result in freshwater pulses.
2.4. Freshwater Salinization and Secondary Effects

on Water Quality and Ecosystems. Besides oceanic
saltwater intrusion, salinity in the “fresh” end member of
tidal rivers has increased due to numerous anthropogenic
activities within watersheds, such as human-accelerated
weathering, road salts for deicing, irrigation, and fertil-
izers.25,86−88 Urbanization and agricultural land use led to
human-accelerated weathering of concrete impervious surfa-
ces,89 which increases pH and concentrations of base
cations.89,90 Due to the increased use of weathering agents
and easily weathered substrates, the concentrations and loads
of chemical weathering products such as alkaline salts and
carbonates are increasing in rivers.89,91−94 For example, there
have been increasing long-term trends in alkalinity and calcium
concentration in approximately 2/3 of the major rivers
draining the US East Coast92 and the seasonal impacts of
salinization extend to tidal waters.95 It is also recognized that
multiple ions (Ca2+, HCO3

−, Mg2+, and K+) contribute to
freshwater salinization.89,94,96−98
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Freshwater salinization can lead to secondary effects,
exacerbating hypoxia, mobilizing contaminants and affecting
the distribution and abundance of species.90,99−101 Salinization
can mobilize a wide variety of contaminants, including
nutrients, metals, radionuclides, and arsenic.90,102 Pulses in
salinity may trigger the release of many heavy metals from
sediments and soils to streams and rivers that can persist for
days and weeks.89,97 In addition, saltwater intrusion has been
shown to enhance mobilization of phosphorus, arsenic, and
other contaminants in groundwater.90 Recent research showed
that salinization effects on contaminant mobilization extend to
tidal rivers.103

2.5. Geographic Distribution and Use Types of Water
Intakes. To assess the societal impacts of salinization, we need
to identify and characterize the water intakes along tidal rivers.
In the US, water intakes have been characterized in terms of
use (public supply, irrigation, aquaculture, mining, domestic,
livestock, industrial, and thermoelectric power), source (sur-
face water or groundwater), salinity, amount of water
withdrawn, and fraction of the withdrawal that is con-
sumptive.27 As a first approximation of the uses of tidal rivers,
we considered all surface freshwater withdrawals in the US in
2015, 96% of which were in four use types: thermoelectric
power (48%), irrigation (31%), public supply (12%), and
industrial (6%). For the thermoelectric power and industrial
use types, saline water is also withdrawn. Therefore, the biggest
impacts on human water use of tidal rivers are expected to be
on irrigation and public supply.
None of the above water intake characterizations determine

equivocally the tidal character of the water. As part of an
ongoing study to identify water intakes on the Chesapeake Bay,
we contacted water agencies within the two states that cover
most of the Bay shoreline: Maryland and Virginia. The
Maryland database contained 895 intakes, 130 of which were
identified as tidal. Of those intakes, the use types were mainly
agricultural irrigation (53%). The Virginia data set did not
distinguish between tidal and nontidal intakes. The length of
the Maryland shoreline is 6% of that of the contiguous US,104

so if Maryland is typical, then there may be as many as 2000
tidal water intakes in the US.
Figure 1a shows where saltwater intrusion into tidal rivers

has impacted or is expected to impact irrigation and public
water supply around the world. Some notable examples of
impacts on irrigation from saltwater intrusion are the Ganges−
Brahmaputra delta in Bangladesh,105 the Changjiang River in
China,106 the Shatt-Al Arab River in Iraq,107 the Bay of Fundy
in Canada,108 and South Kalimantan in Indonesia.109

2.6. Critical Need for Interdisciplinary Research.
Currently, three research communities are working on different
aspects of salt contamination in tidal rivers. Estuarine
oceanographers have focused on salt transport in the
mesohaline region of an estuary, whereas saltwater intrusion
into the tidal river region may be controlled by different
physical processes (Figure 2). Hydrologists are mostly
concerned with the occurrence of floods and droughts, and
they have long ignored tides and their interactions with river
networks. Biogeochemists studying freshwater salinization have
mostly focused on nontidal rivers. To address the issue of salt
contamination of water supplies in tidal rivers, convergent
research that integrates these communities is needed.

3. CLIMATE CHANGE AS A MAJOR DRIVER OF
SALTWATER INTRUSION

The frequent reports of salt contamination of water supplies in
recent years point to climate change as a major driver of
saltwater intrusion into tidal rivers. Although the underlying
mechanisms are not yet well understood, recent research has
highlighted the role of several processes, including accelerated
relative sea-level rise, changing drought and river flow regimes,
and extreme weather events.
3.1. Impacts of Sea-Level Rise and Changing Ocean

Circulation. Sea level rose ∼0.2 m during the 20th century110

and is projected to increase ∼1 m by the end of the 21st
century,111 but there are large regional variations in the sea-
level rise rate due to Earth’s uneven gravity field, glacial
isostatic adjustment and ocean dynamics (Figure 1b).112 Sea-
level rise increases saltwater intrusion into estuaries. Analysis of
historical data in the Chesapeake and Delaware Bays showed a
clear connection between sea-level rise and estuarine salinity
increases.76,113 In the San Francisco Bay and the James River
the effects of sea-level rise were found to be stronger during
periods of low river flow.114,115 Climate change increases the
risk of extreme saltwater intrusion across European estuaries,
including the Loire, Scheldt, Rhine−Meuse, Elbe, and Humber
estuaries.116 In Asia sea-level rise is a major factor enhancing
saltwater intrusion into the Changjiang, Pearl, Mekong, Gorai,
and Ganges Rivers.117,118 A recent study of 18 estuaries
worldwide suggests that future climate change would increase
estuarine salt intrusion mainly through sea-level rise rather
than through reduced river flow.119 The effects of sea-level rise
may be cast as an increase in the mean water depth of the
estuary. Both salt flux and saltwater intrusion length increase
with the depth to the second or third power, depending on the
details of how mixing is modified by the increased water
depth.120,121

It is important to note that many estuaries are capable of
rapid morphological change such that the mean depth of an
estuary may increase more slowly, or not at all, with sea-level
rise due to sediment accumulation. The estuarine circulation
that drives landward salt flux also promotes trapping of fine
sediment from both riverine and marine sources.122 Near-
bottom residual currents transport sediment landward into the
estuary, and the strong feedback among channel cross-sectional
area, tidal currents, bed shear stress, and sediment erosion and
deposition results in estuaries maintaining morphological
equilibrium depths.123 Given sufficient sediment supply,
estuaries tend to accrete vertically at rates similar to the
relative sea-level rise.124,125 Consequently, the response of
saltwater intrusion may be muted relative to the nonlinear
scaling L ∼ H2.
Saltwater intrusion could also be driven by rising coastal sea

levels due to changing ocean circulation or warming. The
accelerated sea-level rise along the US east coast north of Cape
Hatteras during 1950−2009 was attributed to the weakening of
Atlantic Meridional Overturning Circulation and the Gulf
Stream,126,127 whereas the rapid sea-level rise in the US
southeast and Gulf coast in recent years was thought to be
either associated with stereodynamic effects due to warming of
coastal currents128 or amplified by internal climate variability in
the tropical North Atlantic.129 Significant correlation has been
found between El Niño−Southern Oscillation and extreme sea
levels across the Pacific,130 including the west coast of South
and North America131,132 and the South China Sea.133
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3.2. Impacts of Changing Hydrological Cycle and
Competing Water Uses. Hydroclimatic shifts, such as
increased drought severity, affect all of the continents (Figure
1c). The Mediterranean Sea region, southeastern Africa, parts
of Central and South America, and Indonesia could experience
significant increases in the number of dry days per year by the
end of this century.134,135 Climate model projections indicate
that drought risk will increase, with changes varying across
regions, seasons, and drought characteristics (e.g., drought
onset, severity, and duration).136,137 In high northern latitudes
and high-elevation areas of the midlatitudes, climate
projections show a consistent decline in river flow, an indicator
of hydrological drought, in the summer months due to
warming impacts on precipitation and changes in snow
dynamics (snowpack melts earlier in the season).138 In other
regions, river flow declines are closely associated with
decreased precipitation patterns, such as those in regions
with Mediterranean climates.
Coastal water supplies are threatened by compounding

stressors, including the challenge of balancing competing needs
for freshwater resources. Coastal population growth increases
needs not only for water supplies but also for energy,
infrastructure, and urban space. For example, maintaining
supplies for increasing water needs (municipal, agricultural,
etc.) might require shifts to groundwater aquifers or to
desalination, both of which have a higher energy burden than
surface water supplies.
3.3. Impacts of Increasing Climate Extremes. Although

saltwater intrusion is affected by long-term trends in river flow
and water depth, salinity spikes at water intakes typically occur
over a short period and may be affected by a flash drought or
short-term sea-level variability, such as from storm surge.139

Extreme sea levels may occur more frequently due to secular
sea-level rise and an increase in intensity or frequency of
storms.111,140 Despite an overall decline in the number of
tropical cyclones,141 several findings suggest conditions that
would increase the variability of coastal sea level142 (and, by
inference, salinity), including increases in major hurri-
canes143−145 and the number of landfalling tropical cyclo-
nes.146

Variability in river flow is also likely to increase from daily to
interannual time scales due to increases in heavy precip-
itation135 and extreme drought. At temperate latitudes, river
flow is highest during the winter and spring and lowest during
the summer and fall, but climate change is expected to increase
winter and spring precipitation, with an increasing fraction of
that precipitation as liquid.135 While summer and fall
precipitation projections are more variable, warming will
increase evapotranspiration, which will reduce river flow and
enhance saltwater intrusion. Hence, we can expect the
amplitude of the annual cycle in river flow to increase in the
future.

4. RECOMMENDATIONS FOR FUTURE RESEARCH
AND DEVELOPMENT

The above synthesis reveals a critical need for convergent
interdisciplinary research that must be integrated across
oceanography, hydrology, and water resource management.
We identify several key topics requiring immediate attention
and propose a research agenda for developing a decision
support tool to manage salt contamination of water supplies in
tidal rivers, as outlined below.

4.1. Ion-Specific Measurements. The relative propor-
tions of dissolved salts differ between seawater and nontidal
riverine water.147 Consequently, specific conductivity meters
cannot be used to infer the salinity of tidal rivers.148 Major
ions, such as sodium and calcium, can vary by an order of
magnitude among rivers.149,25 To characterize salt contami-
nation in tidal rivers, we need to measure concentrations of
major salt ions and enhance monitoring. These measurements
will expand our limited understanding of the sources, transport,
and fate of major salt ions over watersheds and in tidal rivers.
Some salt ions, such as Na+ and Cl−, behave conservatively,
whereas other salt ions, such as Ca2+ and Mg2+, may experience
changes in solubility. Other ions, such as carbonates, have been
increasing in rivers93,149 but may be influenced by biological
generation and biological uptake.150 In addition, the combined
use of conductivity and pH measurements may be useful as
proxies in predicting the behavior of nonconservative ions or
shifts in ion sources with changing hydrology.97

4.2. Development of Ion-Specific Hydrological−
Hydrodynamic Models. Coupled hydrological and hydro-
dynamic models are used to predict compound flooding151,152

and can be extended to predict salt transport. Given the salt
composition difference between riverine water and seawater,
we need hydrodynamic models that track not only the salinity
but also the concentrations of individual salt ions. The salinity
module recently incorporated into the Soil and Water
Assessment Tool (SWAT) has demonstrated the capability
to simulate salt transport in all major hydrologic pathways at
the watershed scale and capture important solution reaction
chemistry.81 The SWAT+ salt module simulates eight major
salt ions (Na+, Cl−, Mg2+, K+, Ca2+, CO3

2−, HCO3
−, and

SO4
2−), which fortunately includes the top seven (all but

CO3
2−) ions in seawater by weight. Some of these ions (e.g.,

Na+) are conservative and can be modeled as passive tracers.
Other ions (e.g., Ca2+) are nonconservative, but recent
progress in carbonate chemistry modeling could help predict
these ions.153−157 The standard seawater equation of state also
needs to be modified for calculating water density in tidal
rivers.158

4.3. Salinity Management Strategies Informed by
Mechanistic Models and AI Algorithms. Climate adapta-
tion and water plans reveal many different implementations of
salinity management strategies, ranging in expense and
complexity.159 For drinking water systems, desalination may
seem like an obvious strategy, but it requires large up front
capital expenditures160 and is expensive to operate and
maintain.161 Managing flow releases from reservoirs may
protect coastal water users from increasing salinity at a
relatively lower cost. This method has been in use in the
Delaware River and Hudson River basins and elsewhere.19,162

Climate adaptations, such as reservoir releases, are often
supported by optimization methods and used to tailor releases
to short- and long-term projections of regional hydroclimatic
conditions.163 These operations are affected by a “cascade of
uncertainties”164 that significantly affect our ability to quantify
the expected effectiveness of adaptive responses.165 Several
methods have been advanced to support dynamically adaptive
planning and operations.166 State-of-the-art reservoir operation
methods utilize tools from closed-loop control and multi-
objective optimization to design operational policies that meet
multiple goals by responding to dynamic conditions.167,163

These approaches have recently evolved to the use of
multiobjective reinforcement learning, a type of machine
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learning where Artificial Intelligence (AI) agents learn to make
decisions by receiving rewards or penalties for their actions.
The goal is to train adaptive policies that can meet diverse and
conflicting operational goals, by exposing them to a wide range
of dynamic conditions.165,168,169 As such, these policies can be
trained to also consider salinity mitigation goals in tidal rivers
with inland reservoirs,170 taking into account seasonal
variability and long-term changes in hydroclimatic conditions
so that dynamic salinity dilution needs can be met.

4.4. Developing a Decision Support Tool Using a
Human-Centered Design. By integrating ion-specific hydro-
logical−oceanographic models with AI-based optimization
algorithms, we recommend the development of a decision
support tool for predicting and managing salt contamination of
water supplies in tidal rivers, as illustrated in Figure S3. The
model predictions must be evaluated against enhanced real-
time monitoring of conditions in tidal rivers, including ion-
specific measurements. There is a wide range of stakeholders
and potential users, ranging from regulators and water resource
managers at local, state, federal, and intergovernmental
agencies to stakeholders from the public water supply,
agricultural, industrial, power generation, and environmental
sectors. They may have different goals, such as short-term
management strategies (e.g., reservoir releases) and long-term
planning decisions (adaptative policy pathways). To develop a
decision support system that can meet user needs, it is
important to apply human-centered design and engage with
stakeholders during all phases of software development.
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