
Coastal Engineering 136 (2018) 147–160
Contents lists available at ScienceDirect

Coastal Engineering

journal homepage: www.elsevier.com/locate/coastaleng
Evaluation of video-based linear depth inversion performance and
applications using altimeters and hydrographic surveys in a wide range of
environmental conditions

Katherine L. Brodie a,*, Margaret L. Palmsten b, Tyler J. Hesser c, Patrick J. Dickhudt a,
Britt Raubenheimer d, Hannah Ladner b, Steve Elgar d

a Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, 1261, Duck Rd, Duck, NC, United States
b Marine Geosciences Division, Naval Research Laboratory, Stennis Space Center, MS, United States
c Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 3909, Halls Ferry Rd, Vicksburg, MS,
United States
d Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA, United States
A R T I C L E I N F O

Keywords:
Remote sensing
Beach morphology
Depth inversion
Bathymetry estimation
Video imaging
Surfzone
* Corresponding author.
E-mail address: Katherine.L.Brodie@usace.army.

https://doi.org/10.1016/j.coastaleng.2018.01.003
Received 9 April 2017; Received in revised form 15 Dece

0378-3839/Published by Elsevier B.V.
A B S T R A C T

The performance of a linear depth inversion algorithm, cBathy, applied to coastal video imagery was assessed
using observations of water depth from vessel-based hydrographic surveys and in-situ altimeters for a wide range
of wave conditions (0.3< significant wave height< 4.3 m) on a sandy Atlantic Ocean beach near Duck, North
Carolina. Comparisons of video-based cBathy bathymetry with surveyed bathymetry were similar to previous
studies (root mean square error (RMSE)¼ 0.75m, bias¼�0.26m). However, the cross-shore locations of the
surfzone sandbar in video-derived bathymetry were biased onshore 18–40m relative to the survey when offshore
wave heights exceeded 1.2 m or were greater than half of the bar crest depth, and broke over the sandbar. The
onshore bias was 3–4m when wave heights were less than 0.8 m and were not breaking over the sandbar.
Comparisons of video-derived seafloor elevations with in-situ altimeter data at three locations onshore of, near,
and offshore of the surfzone sandbar over ~1 year provide the first assessment of the cBathy technique over a
wide range of wave conditions. In the outer surf zone, video-derived results were consistent with long-term
patterns of bathymetric change (r2¼ 0.64, RMSE¼ 0.26m, bias¼�0.01m), particularly when wave heights
were less than 1.2 m (r2¼ 0.83). However, during storms when wave heights exceeded 3m, video-based cBathy
over-estimated the depth by up to 2m. Near the sandbar, the sign of depth errors depended on the location
relative to wave breaking, with video-based depths overestimated (underestimated) offshore (onshore) of wave
breaking in the surfzone. Wave speeds estimated by video-based cBathy at the initiation of wave breaking often
were twice the speeds predicted by linear theory, and up to three times faster than linear theory during storms.
Estimated wave speeds were half as fast as linear theory predictions at the termination of wave breaking
shoreward of the sandbar. These results suggest that video-based cBathy should not be used to track the migration
of the surfzone sandbar using data when waves are breaking over the bar nor to quantify morphological evolution
during storms. However, these results show that during low energy conditions, cBathy estimates could be used to
quantify seasonal patterns of seafloor evolution.
1. Introduction

Accurate observations of surfzone bathymetry are critical to simu-
lating nearshore waves and currents and the subsequent sediment
transport and morphological change, as well as storm-induced over-
topping and flooding. Vessel-based acoustic hydrographic surveys
mil (K.L. Brodie).
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provide temporally infrequent, but spatially dense data, whereas in-situ
acoustic altimeters provide temporally dense, but spatially sparse ob-
servations of seafloor elevation (Moulton et al., 2014). Both acoustic
techniques provide bathymetric data with errors on the order of 0.1m
across the surf zone. Depth inversion methods using optical, infrared, and
radar imagery estimate bathymetry from wave speed observations with
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high spatial and temporal resolution (Holman et al., 2013), but accuracy
over a range of environmental conditions is not well quantified. Although
in development for more than 20 years, remote sensing methods rarely
have been used in applied coastal engineering projects to quantify surf-
zone bathymetry, and initial tests to calculate surfzone sediment volumes
have poor skill (Rutten et al., 2017). A potential application is to use the
data as boundary conditions for numerical models of surfzone processes
(Radermacher et al., 2014; Díaz M�endez et al., 2015; Smith et al., 2017).
For example, using remotely sensed data to estimate the position of the
sandbar in a surfzone bathymetric grid significantly increases the fidelity
of numerical simulations of surfzone circulation (Holman et al., 2014;
Wilson et al., 2014). Another application is to use the data to track
sediment exchange between the beach and surfzone sandbar for regional
sediment management (Moritz et al., 2007). Improved assessment of
algorithm skill in a wide range of environmental conditions, and evalu-
ation of the ability of remote-sensing-based bathymetry estimation
techniques to quantify surfzone sandbar morphology and seafloor evo-
lution through time are needed for practical implementation in coastal
engineering.

Optical nearshore remote sensing techniques exploit the image
signature of shoaling and breaking surface gravity waves in the surf zone
(Holman and Stanley, 2007). The morphology of surfzone sandbars can
be estimated qualitatively from time-averages of pixel-intensities that
map where waves break (Lippmann and Holman, 1990; Alexander and
Holman, 2004). In addition, surfzone bathymetry can be estimated
quantitatively from time-averaged images of wave breaking (a proxy for
wave dissipation) that are assimilated into numerical models that solve
for water depth (Aarninkhof et al., 2005; van Dongeren et al., 2008), as
well as from wave speeds estimated from the video imagery using either
linear (Stockdon and Holman, 2000; Dugan et al., 2001a) or nonlinear
(Holland, 2001; Cat�alan and Haller, 2008) dispersion relationships.

The cBathy algorithm (Holman et al., 2013) requires a time series of
imagery of waves in intermediate and shallow water to estimate depth.
The algorithm combines cross-spectral phase measurements with a
weighted nonlinear least-squares solution to the linear dispersion equa-
tion (Plant et al., 2008). The temporal evolution of cBathy-estimated
bathymetry is smoothed with a time-averaging Kalman filter based on
present and prior bathymetric estimates along with uncertainty esti-
mated from the least squares fit. Video-based cBathy bathymetry esti-
mates have been compared with vessel-based bathymetry surveys for a
range of beaches (Table 1), but rarely with waves bigger than 1.7m, and
never for waves bigger than 2.0m because of the difficulty of performing
in-situ surveys in the presence of large waves. Root mean square differ-
ences between cBathy-estimated and surveyed seafloor elevations in
Table 1
cBathy Performance Statistics From Prior Work, Organized By Decreasing Hs.

Date Hs (m) Tp
(s)

Bias
(m)

RMSE (m) Tide (m) Locat

2009–2011 0.25–2.00 – 0.19 0.51 0.98 Duck,
Mar-2013 to Mar-
2014

<1.65 – 0.59 0.79 – SandE

Mar-2013 to Mar-
2014

<1.65 – �0.01 0.34 –

Mar-2013 to Mar-
2014

<1.65 – �0.92 0.34 –

13-Jul-13 – 7.1 �0.41 0.56 >3 Agate
17-May-12 1.19 5–7 0 0.52 – New R
10-Apr-14 1.16 10.5 – 1.06 2.78 Porth

Engla
20-Feb-13 0.64 5.8 �0.18 1.01 1.4–1.9 Kijkdu

17-Apr-14 0.52 10.4 – 2.05 6.03 Porth
Engla

01 to 04 Jul-13 <0.50 – – 0.48–0.66 – SandE
17-Feb-13 0.22 8.5 �0.5 1.27 1.4 to

1.9
Kijkdu

Average: �0.26 0.91

148
previous studies range between 0.51 and 2.05m (Table 1, (Holman et al.,
2013; Rutten et al., 2017; Radermacher et al., 2014; Holman and Stanley,
2013; Wengrove and Henriquez, 2013; Bergsma et al., 2016)). Errors
frequently are largest in shallow water near the shoreline, where (1)
linear theory may not be valid; (2) the rapid cross-shore depth changes
(over a cBathy sample domain or smoothing distance) cannot be
resolved; and (3) wave speed estimates can be distorted by wave runup.
Errors in cBathy depth estimates are correlated with wave height and
water depth in some locations (Holman et al., 2013). cBathy estimated
uncertainties may be related to observed errors, but are often too small in
magnitude (Holman et al., 2013), and have not been evaluated during
storms.

Sources of error in cBathy include inaccurate parameter extraction
from the imagery data and inaccurate representation of the physics (e.g.,
environmental conditions outside of the algorithm assumptions). For
example, the linear dispersion relationship may be inaccurate as waves
shoal and break in the surf zone, underestimating wave speeds by
20–40% (Holland, 2001; Cat�alan and Haller, 2008; Guza and Thornton,
1980; Thornton and Guza, 1982; Elgar and Guza, 1985a; Okamoto et al.,
2010). The implementation of linear theory in (Holman et al., 2013) may
be inaccurate as waves shoal and become nonlinear, as well as near the
shoreline as waves break and transition to swash (Inman et al., 1971;
Suhayda and Pettigrew, 1977). Incorporating wave nonlinearity into
bathymetric inversions from wave speed reduced errors inside the
breakpoint to O(10%) in a laboratory study (Cat�alan and Haller, 2008),
similar to the performance of linear wave theory outside the surf zone.
The performance of cBathy when wave height exceeds 2m has not been
evaluated, and thus, it is unclear how errors in the estimated phase
speeds of nonlinear waves breaking over the sandbar affect the estima-
tion of the bathymetry.

Here, new field measurements are used to assess video-based cBathy
estimates of the position and movement of nearshore sandbars and of
seabed elevation changes over seasonal time-scales for a large range of
wave conditions (0.3<Hs< 4.6m, where the significant wave height Hs
is defined as 4 times the standard deviation of sea-surface-elevation
fluctuations) on a micro-tidal ocean beach. The bathymetry was sur-
veyed frequently over a large area with vessel-based systems, and seabed
elevation was measured nearly continuously over a year at three near-
shore locations with in-situ altimeters. The high-spatial resolution vessel-
based surveys were used to assess the ability of video-derived bathymetry
to correctly characterize the sandbar position and elevation, the domi-
nant morphologic feature in many sandy surf zones. The altimeter data
were used to assess cBathy's performance both during a range of wave
conditions and over long time periods, as well as to assess cBathy's
ion #
Obs.

Reference Notes

NC USA 16 Holman et al., 2013
ngine Netherlands 6 Rutten et al., 2017 �10< depth<�5m

6 �5 < depth<�1m

6 �1 < depth < 0m

Beach, OR, USA 1 Holman et al., 2013
iver Inlet, NC, USA 1 Holman and Stanley, 2013

towan, Cornwall,
nd

1 Bergsma et al., 2016

in, Netherlands 1 Wengrove and Henriquez,
2013
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towan, Cornwall,
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1 Bergsma et al., 2016
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uncertainty estimates. Observed errors and predicted errors were eval-
uated relative to seafloor elevation, wave height, and wave breaking
locations, and a detailed analysis of cBathy's Kalman filter during a storm
was used to elucidate the performance of the algorithm during energetic
conditions.

2. Methodology

Observations of nearshore wave heights, surfzone wave speeds, and
surfzone bathymetry were collected on a sandy Atlantic Ocean beach
near Duck, North Carolina, USA at the U.S. Army Corps of Engineers
(USACE) Field Research Facility (FRF) using a directional wave buoy,
remotely-sensed video imagery, amphibious-vessel based hydrographic
surveying, and in-situ altimeters. Spatial data are presented in a local
cross- and alongshore coordinate system, with origin at 36.1776� N and
75.7497� W and a rotation of 17.7� relative to true north (Fig. 1). Eight
bathymetric surveys were conducted between 15 Sep and 30 Oct 2015
with a Lighter Amphibious Resupply Cargo (LARC) vessel and the Coastal
Research Amphibious Buggy (CRAB). Video, seafloor elevation, and
wave data were collected from Sep 2015 through Sep 2016.

2.1. Wave observations

Wave data are used to characterize the environmental conditions for
each video-derived bathymetry estimate for analysis of performance
statistics. Wave conditions were estimated with a Datawell Directional
Waverider buoy at CDIP Station 433 in 17-m water depth, where wave
heights ranged from 0.3 to 4.3m and periods, Tp (corresponding to the
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frequency of the peak of the spectrum), ranged from 4 to 18 s over the 12-
month period (Fig. 2). The observations included six storms with sig-
nificant wave height, Hs, > 3m, two of which had Hs> 4m (Fig. 2A).
Between 15 Sep and 30 Oct 2015, frequent vessel-based surveys were
conducted to quantify surf-zone morphology evolution (see section 2.3).
Both a nor'easter and a tropical system influenced the wave conditions
during this focused data collection period. From 20 Sep to 01 Oct Hs
exceeded 2m (blue curve, Fig. 2B), and Tp ranged from 8 to 10 s (red
dots, Fig. 2B). From 04 to 07 Oct, Hurricane Joaquin passed offshore,
generating long period swell (Hs> 4m, 10< Tp< 13 s). From 08 to 26
Oct the wave climate was a mix of smaller (Hs< 1m) sea and swell
(4< Tp< 13 s), and from 26 to 30 Oct there were waves from the
northeast with Hs~2m (Fig. 2B).

2.2. Video imaging

Video images of the nearshore region (Fig. 1) were obtained with an
Argus coastal monitoring station (Holman and Stanley, 2007) located
43m above mean sea level on a tower. Time-averages (10-min) of pixel
intensity at the start of each half-hour (Fig. 1) were used to identify lo-
cations of wave breaking during the experiment. Time-series (2 Hz
sample rate for 17min every half hour) at a sub-set of pixels, with a
spatial resolution of 5 and 10m in the cross- and alongshore directions,
respectively, were used to estimate frequency and wave number over the
800m cross-shore by 1 500m alongshore analysis domain. The video
estimates of frequency and wave number were converted to water depth
via the linear dispersion relation using the cBathy algorithm (Holman
et al., 2013) with a spatial resolution of 10 and 25m in the cross- and
Fig. 1. Argus video time-average (10min)
imagery rectified into the FRF local coordi-
nate system from 15 Sep 2015 with location
of the 3 altimeters (red dots), and 1-m con-
tour intervals (white curves are seafloor
elevation relative to NAVD88) of the corre-
sponding gridded bathymetric survey. The
FRF pier is the beige colored horizontal
feature at 516m alongshore that extends
across the width of the image. (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the
Web version of this article.)



Fig. 2. 17-m water depth (A) significant
wave height (Hs) and (B) significant wave
height (Hs, blue curve, left axis) and peak
period (Tp, red dots, right axis) versus time.
The black box in (A) identifies the times
shown in (B), which correspond to the data
observed during and between the vessel-
based surveys (survey times indicated with
asterisks). (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the Web version of this
article.)
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alongshore. Thus, bathymetric variability with length scales greater than
~10 times the water depth are resolved (Plant et al., 2008). Other
sampling parameters matched previous literature (Holman et al., 2013).

The cBathy algorithm (https://github.com/Coastal-Imaging-
Research-Network/cBathy-toolbox) consists of three processing steps.
In step 1, the wave frequencies in the images are estimated from spectral
analysis of the video time series at the sub-set of pixels. Fourier co-
efficients are normalized to remove intensity differences across the im-
ages, and cross-spectra are computed within a 100 (cross-shore) X 200m
(alongshore) region centered on each cBathy output point. The wave
number and direction at each of the four dominant frequencies are
estimated from the cross-spectra, and the linear dispersion relationship is
used to produce four estimates of the water depth. These initial depth
estimates are mostly used for diagnostic purposes.

In step 2, a single depth estimate, hk, at each cBathy output point, k, is
determined from a nonlinear weighted fit of the four frequency-wave
number pairs to the linear dispersion relationship (Plant et al., 2008).
The 95% confidence interval on the weighted nonlinear fit is defined as
the measurement error confidence interval, εP2 for the step 2 depth es-
timate. εP2 is used to weight hk in the final Kalman filtered depth esti-
mate, as described below. The depth hk is subtracted from the measured

tide level to estimate the seafloor elevation, bhk .
In step 3, a Kalman Filter is used to compute the weighted running

average in time of the potentially noisy bhk. Success of the Kalman
filtering step depends on accurate representation of the process and
measurement noise variances (Kalman, 1960). Here, the smoothed sea-

floor elevation bhk depends on the previous estimate of bathymetry at that

location, hk�1, the new bathymetry estimate from step 2, bhk, and the
Kalman gain, K, as

hk ¼ hk�1 þ K
�bhk � hk�1

�
; (1)

where K is given by

K ¼ P�
k

P�
k þ R

; (2)

where R¼ (εP2)2 is the measurement error variance, and P�k , is the prior
estimate of error variance updated from the previous time step, given by

P�
k ¼ Pk�1 þ QΔt; (3)

where Q is the process noise covariance, and quantifies the expected
daily bathymetric variability, and Δt is the time interval between esti-
mates. The process noise covariance, Q, used here was derived empiri-
cally this site (Holman et al., 2013), and varies temporally and spatially
with wave height and cross-shore position, respectively. The posterior
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error variance, Pk is updated as

Pk ¼ ð1� KÞP�
k ; (4)

Equations (1)–(4) produce the best estimate of bathymetry from the
cBathy algorithm, hk , and an associated estimated error, εP3¼

ffiffiffiffiffi
Pk

p

(Holman et al., 2013). hk and εP3 thus provide a seafloor elevation and
confidence interval that can be thought of as a probabilistic estimate of
the bathymetry at each time-step. True error should fall between the
depth estimate and� εP3 95% of the time. Prior work suggests εP3may be
too small by a factor of seven, but that it may be related to the true error
(Holman et al., 2013). The Kalman filter is used as a smart smoothing tool

that reduces the effect of poor quality bhk based on εP2, and thus no
additional quality checks were performed on the cBathy results (Holman
et al., 2013).
2.3. Vessel-based hydrographic surveys

Vessel-based hydrographic surveys using real time kinematic (RTK)-
GPS and acoustic sensors mounted on amphibious vehicles and water-
craft (Birkemeier and Mason, 1984; Dugan et al., 2001b; MacMahan,
2001) quantify seafloor bathymetry at high spatial resolution (hong Lee
et al., 1998; Ludka et al., 2015; Ruggiero et al., 2016) during mild con-
ditions. Here, hydrographic surveys complement the continuously
sampled, but spatially sparse, altimeter observations (Section 2.4).

Six bathymetric surveys were performed (asterisks, Fig. 2) with the
Coastal Research Amphibious Buggy (CRAB) (01, 08, 16, 19, 23, 30 Oct)
and two with the Lighter Amphibious Resupply Cargo (LARC) vessel (15
Sep and 21 Oct). The CRAB is a 10.7m tall amphibious wheeled tripod
that drives along the seafloor and measures topography and bathymetry
across the surf zone (Birkemeier and Mason, 1984) approximately every
1m with a vertical accuracy of 0.03m (Lee and Birkemeier, 1993). The
LARC is a 10.7-m long amphibious vessel that measures bathymetry
roughly every 2mwith a vertical accuracy of 0.05m (Dugan et al., 1999).
The surveys were conducted along cross-shore transects spaced 25m
alongshore between 500 and 1 000m alongshore (Fig. 1), except on 15
Sep when the alongshore spacing was 50m. On 01 October, only a partial
survey (875< alongshore< 1 000m) was completed owing to rapidly
increasing wave heights. The survey data were gridded to match the
cBathy analysis points using scale-controlled interpolation (Plant et al.,
2002) with a smoothing length scale equivalent to the smoothing length
scale in the cBathy algorithm.
2.4. Altimeters

Acoustic altimeters measure seafloor elevation with order 0.1 m ac-
curacy at high temporal resolution (Moulton et al., 2014; Gallagher et al.,

https://github.com/Coastal-Imaging-Research-Network/cBathy-toolbox
https://github.com/Coastal-Imaging-Research-Network/cBathy-toolbox
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1996). Here, three altimeters were deployed across the nearshore region
at cross-shore distances 150, 200, and 300m in the local coordinate
system (Fig. 1) and are referred to as the inner, middle, and outer al-
timeters, respectively. To ensure a stable platform capable of with-
standing strong storms without significant motion or damage, the
altimeters were mounted to heavy, 0.05m diameter, round pipes jetted
~4.5m into the seafloor. Armored cable provided power, instrument
control, and real-time data collection. The sensors were not power or
memory limited and were designed to collect long-term observations.
The inner and middle altimeters were installed at the end of September
2015, and the outer altimeter was installed in late October 2015. Data
from these altimeters were analyzed through the end of September 2016.
The elevation of the altimeters relative to NAVD88 was determined to
within 0.04m with RTK-GPS using corrections from a local base station.

The altimeters provided nearly continuous observations of seafloor
elevation across the sandbar for ~1 year with 0.25 < Hs< 4.3m
(Fig. 2A). The altimeters report acoustic backscatter intensity at 1 Hz
every 0.0075m over a 3.5m vertical profile. Bottom-finding algorithms
estimated the location of the seafloor from the profiles of acoustic
backscatter. During optimal conditions, the seafloor was identified using
Fig. 3. Contours (color scale on the right) of seafloor elevation (relative to NAVD88)
and (B) 30 Oct. Black curves are 1-m elevation contours, with the shoreline indicated
Oct, (D) 08 and 14 Oct, (E) 14 and 23 Oct, and (F) 23 and 30 Oct. Black curves in (C)
shoreline of the initial survey indicated with a thick black curve. (For interpretation
version of this article.)
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2–5min of observations, whereas during energetic conditions (Hs> 3m)
up to 1 h of data was required to identify the seafloor because bubbles
and suspended sediments resulted in a low signal to noise ratio. Except
during the largest events (Hs> 4m, when the seafloor was in some places
obscured for as long as 45 h), the seafloor elevation was identified
numerous times throughout storms. Thus, the altimeters quantify ba-
thymetry continuously during a wide range of conditions, including
during storms when significant bathymetric changes occur (Moulton
et al., 2014; Gallagher et al., 1996).

2.5. Sandbar position extraction from surveys

Surfzone sandbars are large morphologic features that impact surf-
zone hydrodynamics and evolve through time as a result of complex cross
and alongshore sediment transport patterns. Many applications in coastal
processes research and operational coastal engineering require knowl-
edge of the position and elevation of the surfzone sandbar. To evaluate
the ability of the video-derived bathymetry to quantify the morphology
of the surfzone sandbar, an algorithm was developed to extract the cross-
shore location xSB and elevation zSB of the sandbar crest from the survey
measured with vessel-based GPS systems as a function of position for (A) 15 Sep
with a thick black curve. Bathymetric change maps between (C) 15 Sep and 08

- (F) are 1-m elevation contours of the initial survey of each time period, with the
of the references to color in this figure legend, the reader is referred to the Web



Fig. 4. Contours (color scale on the right) of seafloor elevation (relative to NAVD88) as a function of position for (A, D) Kalman-filtered cBathy ðhkÞ and (B, E)
surveyed bathymetry. The filled circles are the location of the sandbar crest. (C,F) Sandbar crest locations estimated with cBathy (blue circles) and with surveys (red
circles). (A-C) are for 23 Oct (Hs¼ 0.8 m) and (D-F) are for 08 Oct (Hs¼ 1.2 m). The shoreline is indicated with a thick black curve (A, B, D, E). (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 2
cBathy and Survey Depth, Sandbar, and Error Comparison Statistics, Organized By Decreasing Hs.

Survey Date Hs (m) Tp
(s)

bhk

Bias (m)

bhk

RMSE (m)
hk
Bias (m)

hk
RMSE (m)

xSB
Bias (m)

xSB
RMSE (m)

zSB
Bias (m)

zSB
RMSE (m)

ɣ ¼ Hs/zSB

Hs> 1.2m 10/1/2015 2.00 10.00 �1.58 2.35 �0.38 0.68 17.50 18.02 0.10 0.13 0.93
10/19/2015 1.60 6.50 �0.96 1.75 �0.43 0.84 25.30 26.00 0.25 0.28 0.68
10/30/2015 1.40 10.00 �1.03 1.83 �0.41 0.63 40.00 40.80 �0.24 0.36 0.57
10/8/2015 1.21 10.80 �1.10 2.43 �0.70 0.93 29.40 30.70 �0.68 0.81 0.51

Hs< 1.2m 10/14/2015 0.80 8.00 0.02 0.51 �0.05 0.66 2.70 16.20 �0.44 0.65 0.34
10/23/2015 0.75 10.80 �0.25 0.89 �0.08 0.67 2.90 6.40 �0.01 0.30 0.32
10/21/2015 0.40 8.10 0.25 0.61 0.22 0.81 4.10 7.10 0.28 0.45 0.18

Mean �1.17 2.09 �0.48 0.77 28.05 28.88 �0.14 0.40

Table 3
cBathy and Altimeter Comparison Statistics.

Bias (m) RMSE (m) r2seafloor σseafloor Altimeter (m) σseafloor cBathy (m) Zrange Altimeter (m) Zrange cBathy (m)

Inner �0.33 0.49 0.26 0.31 0.54 1.76 5.47
Middle 0.22 0.52 0.34 0.50 0.59 2.10 4.22
Outer �0.01 0.39 0.64 0.58 0.74 1.79 4.53
Combined 0.04 0.50 0.51 0.58 0.69 3.16 5.47
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and also from the corresponding cBathy estimates bhk and hk . The
sandbar algorithm was initialized using a manual identification of the
location of the sandbar crest every 10-m in the alongshore in both vessel-
based and cBathy bathymetries from 15 Sep. This approximate crest
location was used to define a Gaussian-shaped region �200m cross-
shore from the initial estimate, from which the cross-shore crest loca-
tion xSB was identified using a two-stage dynamic programming (TSDP)
technique (Sun, 2002). Subsequent sandbar positions were determined
by applying the TSDP to the Gaussian region centered at the previous
152
survey's sandbar position. Sandbar crest elevation zSB was defined as the
seafloor elevation at the respective xSB for the survey and for the
video-derived bathymetry. zSB from the surveyed data was used to
calculate the ratio of offshore wave height to bar crest depth, ɣoff ¼
Hs/zSB., a non-dimensional parameter that may indicate wave breaking is
occurring on or offshore of the bar. Prior research at this site suggests that
wave breaking occurs when the local wave height to water depth ratio is
> 0.42 (Sallenger and Holman, 1985; Raubenheimer et al., 1996).



Fig. 5. Seafloor elevation estimated with altimeters (red curves) and with Kalman filtered cBathy (blue curves) in the (A) outer-, (B) mid-, and (C) inner-surf zone, and
(D) 17-m depth significant wave height, and (E) time-averaged video pixel intensities (grey scale) versus time. In (E) the cross-shore locations of the inner-, mid-, and
outer-surf zone altimeters (150, 200, and 300m, respectively) are given by the dashed red lines, and the location of maximum pixel intensity (a proxy for wave
breaking and the crest of the sandbar) is given by the black curve. Gaps in the red curves in (A) - (C) occur when the sensor was buried, or when the bottom finding
algorithm could not identify the seafloor. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.6. Surfzone sandbar locations & wave breaking over 1 year

The 10-min averaged video timex data provide half-hourly observa-
tions of locations of persistent wave breaking in the surfzone (see section
2.1 above), identified by high intensity or white pixels, that can be used
as a proxy for sandbar morphology (Lippmann and Holman, 1989, 1990;
Alexander and Holman, 2004). The cross-shore location of the surf-zone
peak in image intensity (whiteness), xbreak, assumed to be near the crest
of the sandbar, was estimated from the half-hourly video timex images
along the altimeter transect over the course of a year. The timex transect
data were analyzed using the TSDP technique to find a global maximum
in image intensities through time. Although the true location of the
sandbar crest can be offset from xbreak (van Enckevort and Ruessink,
2001), xbreak is used here as a proxy for the location of the sandbar,
allowing the onshore and offshore migration of the sandbar to be
determined over weeks to months. As the sandbar migrated, the middle
153
altimeter at times was onshore of, on, and offshore of the sandbar,
allowing quantification of the impacts of wave breaking over the sandbar
on the video-derived bathymetry.

3. Results

3.1. Comparison of video-derived bathymetry with vessel-based surveys

Nearshore bathymetry observed with vessel-based systems and esti-
mated with cBathy was alongshore variable in Sep and Oct 2015 (Figs. 3
and 4). The surveyed bathymetry often included a sandbar, with the bar
crest in 1- to 2-m water depth between 200 and 250m cross-shore. In Oct
the sandbar attached to the shore, creating a narrow terrace between 800
and 875m alongshore that was flanked by two 3- to 4-m deep troughs to
the north and south (Fig. 3B). These temporal changes in the bathymetry
between 15 Sep and 30 Oct (Fig. 3C-F) were related to varying wave



Fig. 6. cBathy Kalman filtered bathymetry ðhkÞ versus altimeter bathymetry for
the inner (circles), middle (cross-hair), and outer (diamond) altimeters colored
by wave height, Hs (scale on bottom). The solid black line represents the 1:1
line. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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conditions (Fig. 2). The largest changes occurred between 15 Sep and 08
Oct during the nor'easter and tropical storm systems, with the sandbar
migrating 50m offshore (Fig. 3A, C). Bathymetric evolution through the
rest of Oct was smaller in magnitude, with southern migration (50m) of
the shore-attached terrace and shoaling of the flanking troughs (Fig. 3D-
F).

Qualitatively, estimates of bhk and hk agree with the vessel-based ba-
thymetry estimates, including the development of three-dimensional
morphology (crescentic bar, terrace, and flanking troughs) between 15
Sep and 08 Oct, and the persistence of that morphology through the end
of Oct (Fig. 4A, D). Quantitatively, the root mean square error (RMSE)

and bias of bhk relative to the surveys increased with wave height, with
0.51< RMSE< 0.89m and �0.25< bias< 0.25m when Hs< 1.2m, and
1.75< RMSE< 2.43m and �1.58< bias<�0.96m when Hs> 1.2m
(Table 2, columns 4 & 5). In contrast, the RMSE of hk relative to the
surveys showed no relationship to wave height (Table 2, column 7).
However, the bias in hkwas higher when Hs> 1.2m (Table 3, column 6).
The average RMSE and bias for all survey-hk pairs was 0.75m and
�0.25m respectively, similar to previous results reported at Duck (Hol-
man et al., 2013).

Video-based cBathy sandbar positions identified with the automated
algorithm described in section 2.5 (symbols in Fig. 4) qualitatively are
consistent with the corresponding surveyed estimates of sandbar position
(color contours in Fig. 4A, B, D, E). The RMSE of sandbar location xSB
estimated from hk relative to the sandbar location estimated from the
bathymetric surveys ranged from 6.4 to 40.8m and the bias from 2.9 to
40.0 m, all in the onshore direction (Table 2, columns 8 & 9). Sandbar
position biases from hk increased with wave height and ɣoff (Table 2,
column 12). When Hs< 1.2m and ɣoff< 0.35, the bias ranged from 2.7 to
4.1 m and was smaller than the cross-shore resolution of the cBathy so-
lution (Table 2), whereas when Hs> 1.2m and ɣoff> 0.5, the bias ranged
from 17.5 to 40.0m (Table 2). For example, the video-based cBathy and
surveyed sandbar positions are similar for Hs¼ 0.8m (Fig. 4C), whereas
the video-based cBathy sandbar is biased onshore by 30.7m for
Hs¼ 1.2m (Fig. 4F, Table 3).
3.2. Comparison of video-derived and altimeter estimates of seafloor
elevation

At the outer altimeter, cBathy estimates of the seafloor elevation, hk ,
over the year-long observation period (blue curve, Fig. 5A) are qualita-
tively similar to altimeter estimates (red curve, Fig. 5A). The altimeter-
and video-derived seafloor elevation at the outer-surf zone sensor
accreted 1.7m between Oct and mid-Apr (Fig. 5A). Between mid-May
and mid-Sep, the seafloor eroded 0.5m. The altimeter data suggest that
accretion occurred in short bursts corresponding with larger wave events
(Hs> 2m), followed by gradual erosion during the calmer periods
(Fig. 5A red curve & Fig. 5D). In contrast, when Hs> 2m (Fig. 5D) and
the surf zone was wide (white pixels extending far offshore between Jan
and May, Fig. 5E), hk indicated rapid erosion and deposition (up to 1m)
that was not observed with the altimeters (Fig. 5A). Relative to the other
altimeter locations, RMSE was smallest at the outer altimeter (0.39m)
where hk explained 64% of the observed variance (Table 3). Video im-
ages of breaking waves in the surf zone (Fig. 5E) suggest the surfzone
sandbar moved offshore ~100m between Mar and mid-Apr, and then
moved ~50m onshore between Apr and Sep (black curve, Fig. 5E),
consistent with the accretion until mid-Apr and the erosion from Apr
through Sep observed in the outer-surf zone (Fig. 5A).

At the middle altimeter, seafloor elevation changes occurred more
frequently from Oct through early Mar (Fig. 5B). The patterns of erosion
and accretion at the middle altimeter are consistent with the changing
location of the sandbar (compare the black curve with the dotted red
lines in Fig. 5E). For example, the maxima (minima) in seafloor elevation
estimated from the altimeter typically occur when xbreak is near (far from)
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the middle altimeter [i.e., when the black curve in Fig. 5E is near (far
from) the center dotted red line]. It is unclear if the sometimes rapid
accretion and erosion at the middle altimeter, were caused by migrating
large bedforms or by rapid sandbar position changes. For example, in
early Oct and early Feb, the altimeter indicated 1.2 m of erosion in 4
days, and in early Jan, the altimeter observed 1.0 m of accretion in 12 h
(not visible at the scale shown in Fig. 5E). Similar to the outer altimeter,
there are significant differences (as much as 2m, compare blue with red
curve in Fig. 5B) between the middle altimeter and hk , particularly
during storms (black curve in 5D). The video-derived depths hk and
altimeter elevations agreed best during the calm summer months May
through Aug. However, hk were 0.5–1.0m shallower than the middle
altimeter observations during late Oct, Dec, and from mid-Feb through
Apr, when the altimeter was located just onshore of the sandbar
(compare middle dotted red line with the black curve, Fig. 5E). Over the
whole year, RMSE and bias were 0.52 and 0.22m, respectively (Table 3).

The seafloor elevation estimated at the inner altimeter (located be-
tween the shoreline and the surfzone sandbar for all 11 months, Fig. 5E)
had the lowest standard deviation over the year relative to the other
gauge locations (Fig. 5C, Table 3). Similar to other locations, the seafloor
elevation changes were more frequent between Sep and mid-Apr, and
sometimes evolution was rapid. For example, on 05 Jan during the start
of a storm, the altimeter indicated 0.8m of erosion in 6 h, followed
immediately by 1m of accretion in 3 h (not visible at the resolution of
Fig. 5). At the inner altimeter, hk were often biased deep by 0.5 m from
mid-Mar through the end of Sep. Over the whole year, RMSE and bias
were 0.49 and �0.33m, respectively (Table 3).

The continuous observations of seafloor elevation from the three al-
timeters provide a unique data set to evaluate video-based cBathy's
performance in a wide range of environmental conditions. Overall,



Fig. 7. The RMSE and bias between (A, D) cBathy bhk and altimeter bathymetry and (B, E) cBathy Kalman-filtered hk and altimeter bathymetry as a function of

altimeter seafloor elevation and wave height, Hs (color scales at right). (C) RMSE and (F) bias versus Hs for cBathy bhk (red circles) and cBathy hk (blue circles)
calculated over all depths for each wave height bin. The percentage of time (divided by 100) observed errors, EP2 and EP3, were smaller than cBathy confidence

intervals, εP2 and εP3, as a function of altimeter seafloor elevation and wave height, Hs for (G) cBathy bhk and (H) cBathy hk (color scale at right). The black line in A-H
represents Hs/h¼ 0.42. The number of observations in each wave height bin are shown in (I) for the inner (blue), middle (red), and outer (green) altimeters. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Seafloor elevation (along-
shore¼ 715m) versus cross-shore location
on (A) 08 and (B) 23 Oct, 2015 estimated
with surveys (solid black curves), cBathy
(solid red curves), and Kalman filtered cBa-
thy (solid blue curves). The range of cBathy
estimated errors εP2 are shown by the dotted
red curves, and εP3 are shown by the blue
dotted curves. Pixel intensities (white is
wave breaking) on (C) 08 and (D) 23 Oct,
2015 as a function of time and cross-shore
position near the alongshore position of the
altimeters. The vertical dotted black lines
are the cBathy estimates of the sandbar crest
locations, and the vertical dashed black lines
are the survey estimates of the sandbar crest
location. (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the Web version of this
article.)
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standard deviations (σZ) and range (Zrange, calculated as the difference
between the maximum and minimum seafloor elevation observed over
the whole time series) in hk, were larger than the altimeter observations
(Table 3). The standard deviation σZ estimated from altimeters and
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cBathy decreased from offshore to onshore (0.6–0.3m and 0.7 to 0.5m,
respectively) (Table 3). Combining the data from all three altimeters into
one data set allows a synthesis of performance of hk over a range of water
depths (�4.8m< h<�1.5m) and wave conditions (Fig. 6). RMSE and



Fig. 9. Difference between cBathy and altimeter estimates of seafloor elevation
versus distance of the estimate from the location of peak wave breaking. Positive
(negative) distances are offshore (onshore) of the peak in wave breaking, and
positive (negative) errors indicate cBathy underestimated (overestimated) depth
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bias for the combined data set were 0.50 and 0.04m, respectively, and hk
explained 50% of the variance in the observed altimeter seafloor eleva-
tions (Table 3, Fig. 6). Similar to the survey data, during low waves
(Hs< 1.2m, blue symbols Fig. 6), hk and the altimeters compare well
with each other. However when Hs> 1.2m, there is significantly more
scatter (departure of warm colored symbols from the black 1:1 line,
Fig. 6). The largest scatter occurred when �3.5< h<�3.0m with �6.8
< hk < �1.5m. The largest negative depth errors were observed at the
inner altimeter (circles, Fig. 6) when Hs> 2.5m, whereas the largest
positive depth errors were observed at the middle altimeter (crosses,
Fig. 6) when ~1.2<Hs<~2m. In the following section, video-based
cBathy depth errors will be quantified relative to depth and wave
height, and causes of the scatter in cBathy bathymetry estimates,
including effects of the Kalman filter, also will be discussed.

4. Discussion

4.1. Video-based cBathy accuracy assessment

Video-based cBathy errors have been related to both depth and wave
height (Holman et al., 2013; Holland, 2001), although previous analyses
have not included conditions whereHs> 2m. To investigate errors over a
wider range of conditions, the data were organized into seafloor eleva-
tion (h) and wave height Hs bins (0.25m resolution), and performance

statistics (RMSE& bias) for both bhk and hk were analyzed for all observed
h-Hs combinations (Fig. 7).

At all depths and wave heights, RMSEs for bhk were larger than those
for hk (compare the color contours in Fig. 7A with those in Fig. 7B, and
the blue circles with the red circles in Fig. 7C), illustrating the utility of
the Kalman filter in moderating error in the depth inversion. During low
waves (Hs< 1.2m) which are unlikely to be breaking (Hs/h< 0.42),

RMSE was smallest (0< RMSE< 1m) across all depths for both bhk and hk
(blue colors below the black line, Fig. 7A and B; where the black line
indicates Hs/h¼ 0.42), consistent with (Holman et al., 2013). When

Hs> 1.2m, the RMSE for bhk increased with Hs for all depths, and was
particularly large (RMSE> 3m) whenHs/h> 0.42 and waves likely were
breaking at or offshore of that depth (dark red colors above the black line,

Fig. 7A). Localized peaks in RMSE for bhk also occurred at h��2 and
�4m, when 1.2 < Hs< 2m. For hk , 1.0< RMSE <1.5m when 1.2 <

Hs< 2m and �4< h<�3m or h��2m (light blue colors, Fig. 7B), and
RMSE> 1.5m when Hs> 2m and h��3m (yellow and orange colors,
Fig. 7B).

Biases for bhk and hk had similar trends with wave height and water
depth (Fig. 7D and E). Slight positive biases (0< bias< 0.5m) occurred
when Hs< 1m and Hs/h< 0.42, and a trend towards negative biases
occurred with increasing wave height and decreasing depths (cool colors

above the black line in Fig. 7D and E). Negative biases were larger for bhk

than for hk , particularly when Hs> 2m (compare cool colors in Fig. 7D
with those in Fig. 7E, and red with blue circles in Fig. 7F). When 1.2 <

Hs< 2m and �4< h<�3m, where there were localized peaks in RMSE
(Fig. 7A and B), biases in hk were either positive or negative, with the
negative biases occurring at slightly deeper depths.

Combining data from all water depths allows extension of Fig. 6 from
(Holman et al., 2013) to higher wave heights (2<Hs< 4m) (Fig. 7C, F).
Both RMSE and bias for hk followed similar trends to (Holman et al.,
2013), maintaining a similar, linear slope through the higher wave

heights. The bhk results (not shown in (Holman et al., 2013)) are of in-
terest when using cBathy from data collected from unmanned aerial
systems (UAS) (Holman et al., 2017) where continuous sampling over
hours to days may not be possible, and thus cBathy analysis may be

restricted to bhk results. Although the RMSE in bhk maintained a linear

slope with increasingHs, bias in bhk increases more rapidly whenHs> 2m
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then when Hs< 2m (red circles, Fig. 7F).
The performance of cBathy confidence intervals also was assessed by

evaluating how often the observed errors, EP2 and EP3 were less than the
predicted errors, εP2 and εP3 for each wave height-water depth bin
(Fig. 7G and H, respectively). Following the suggestion of (Holman et al.,
2013), εP3 were multiplied by 7 for this analysis. The error εP2 did not
bound the errors at a 95% confidence interval level for any water
depth-wave height combination (no deep red colors, Fig. 7G), suggesting
εP2 were not well calibrated. When multiplied by 7, εP3 bounded the
errors at least 75% of the time across most of the domain (deep red
contours in Fig. 7H), except when 1<Hs< 2m and�4< h< -3 m. When
not multiplied by 7, results for εP3 were similar to εP2, and did not bound
the errors more than 50% of the time for any (Hs, h) bin. Correct cali-
bration of video-based cBathy confidence intervals will be important as
cBathy results are assimilated into numerical models (Wilson et al., 2010,
2014) or used operationally to quantify coastal change.
4.2. Sandbar position estimates

Although the sandbar position in hk is similar to the surveyed ba-
thymetry for relatively small waves (Fig. 4C), the sandbar in hk was
biased onshore relative to surveyed sandbar positions during larger wave

conditions (Fig. 4F). On 08 October (Hs¼ 1.2m, ɣoff¼ 0.51) both bhk (red
curve in Fig. 8A) and hk (blue curve in Fig. 8A) agreed well with surveyed
bathymetry (solid black curve in Fig. 8A) offshore of the region of wave
breaking (x> 300m in Fig. 8A and B), where the linear dispersion
relationship is accurate to within 20% (Thornton and Guza, 1982).

However, bhk and hk diverged from the surveyed bathymetry onshore of
x¼ 300m, especially near the sandbar crest (dashed black vertical lines

in Fig. 8), where a deep trough exists in hk . The largest errors in bhk

relative to the survey occurred at the initiation of wave breaking (white
regions in Fig. 8C are from breaking waves), similar to previous results
(Holman et al., 2013). Although the hk estimate of uncertainty was large
over the sandbar crest (dotted red curves in Fig. 8A), it was less than the
observed error (i.e., εP2 EP2). Near the onshore edge of the breaking
region, hk was shallower than the surveyed seafloor elevation in the
relative to the altimeter.



(caption on next column)

Fig. 10. (A) Argus video time-average imagery rectified into the FRF local co-
ordinate system and (B) the ratio of cBathy-estimated wave speed to linear
theory (color scale at bottom) as a function of position for 08 Oct 2015. 1-m
elevation contour intervals of the corresponding gridded bathymetric survey are
overlain in white (A) and black (B). (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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trough between the sandbar and the shoreline (Fig. 8A, x~ 200m).
Similar to near the sandbar crest, the video-based cBathy estimate of
uncertainty was less than the observed error (εP2 EP2). The combination
of the deep anomaly over the crest and the shallow anomaly over the

trough resulted in an onshore bias in sandbar location in bhk . Onshore of
x¼ 150m, where waves broke at the shoreline (white regions in Fig. 8C),
bhk estimates were deeper than surveyed bathymetry.

The Kalman filtered estimates of bathymetry, hk , (blue curves in

Fig. 8) were smoothed in time relative to the unfiltered bhk (red curves in
Fig. 8), with the degree of smoothing dependent on measurement error,
εP2, and process noise variance, Q (Holman et al., 2013). On 08 Oct, εP2
near the surveyed bar crest was large, and thus reduced the influence of
bhk (i.e., reducing K). In contrast, onshore of the sandbar, the Kalman filter

weighed the shallow anomaly in bhk more heavily because εP2 was small.

The errors in bhk and εP2 combined to result in the apparent 30-m onshore
shift of the sandbar in hk (Figs. 4F and 8A, Table 3).

In contrast, on 23 Oct (Hs¼ 0.75m, ɣoff¼ 0.32) waves broke only at
the shoreline (Fig. 8D), and the video-based cBathy sandbar position
agrees well with the surveyed sandbar position (Fig. 8B). Accordingly,

the bias between the surveyed and the cBathy estimates (bhk and hk ) in
sandbar position was small on all days with minimal wave breaking over
the sandbar (ɣoff< 0.35).

The opposing depth biases apparent at the initiation and termination
of wave breaking relative to the survey data also were apparent relative
to the altimeter data. For example, the errors between hk and altimeter
estimates of seafloor elevation at the middle altimeter depended on its
location relative to xbreak (i.e., relative to its location in the surfzone)
(Fig. 9). When the altimeter was located nearby, but offshore of xbreak
(offshore or outer surfzone, negative abscissa values in Fig. 9), hk was too
deep relative to the altimeter-estimated seafloor elevation (negative
ordinate values in Fig. 9). When the altimeter was located nearby (within
~30m), but onshore of xbreak, hk was too shallow relative to the
altimeter-estimated seafloor elevation (positive ordinate values in Fig. 9).
When the altimeter was more than ~40m onshore of xbreak, the errors
were evenly distributed� 0.50m. The sign of these errors is consistent
with the sign of the errors between the video-derived and surveyed ba-
thymetry, with hk too deep near the initiation of wave breaking and too
shallow where wave breaking ceases (often in the trough between
sandbar and shoreline). These negative and positive biases near the
sandbar when waves were breaking may also explain the high RMSE and
alternating negative and positive biases observed when 1 < Hs< 2m and
�4< h< -2 m in Fig. 7E (see section 4.1).

4.3. Sources of errors

4.3.1. Errors in bhk

Errors in bhk can be caused by deviations in wave speeds from the
linear dispersion relationship and by errors in how wave speeds are
estimated from the video imagery. To evaluate the speed estimates,
weighted averages of the wave speeds calculated for the four video-based
f-k pairs determined in step 1 (using the weights from step 2) were
compared with weighted-average speeds using the same frequencies and
weights, but with wavenumbers calculated with linear theory and the
observed depths from the altimeter data (not shown) and from each
survey (example from 08 Oct shown in Fig. 10). On 08 Oct (Hs¼ 1.2m)
waves broke on the sandbar (Fig. 10A), and the wave speed estimated



Fig. 11. (A) Significant wave height and (B)
outer surfzone seafloor elevations measured
with an altimeter (black circles), and esti-
mated with Kalman-filtered cBathy (red
circles, hk), half-hour unfiltered cBathy

(blue circles, bhk), and updated Kalman-
filtered cBathy (magenta circles, hk’)
versus date in Jan 2016. (For interpretation
of the references to color in this figure
legend, the reader is referred to the Web
version of this article.)
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from video-based cBathy was 1.2–2.2 times higher than linear wave
theory at the onset of wave breaking on the offshore edge of the sandbar
(warm colors near cross-shore¼ 275m in Fig. 10B), and 0.6 to 0.8 times
lower than linear theory in the trough between the sandbar and the
shoreline near the termination of breaking (cool colors for 150< cross-
shore< 250m in Fig. 10B). The sign of the deviations in wave speeds
from linear wave theory are consistent with the onshore shift in the
location of the video-based cBathy sandbar (Fig. 8A), and with previous
laboratory and field studies (Cat�alan and Haller, 2008; Guza and
Thornton, 1980; Thornton and Guza, 1982; Elgar and Guza, 1985a,
1985b; Okamoto et al., 2010; Inman et al., 1971; Svendsen et al., 2003;
Tissier et al., 2011; Postacchini and Brocchini, 2014). Over the year-long
altimeter data set, video-derived wave speeds were up to 3 times linear
theory values during storms (not shown). The magnitudes of the de-
viations in breaking wave speeds from linear theory at the onset of wave
breaking (1.2–3 times linear theory) are larger than in prior observations
of wave speeds for waves breaking over sandbars in the field (1.2–1.4
times linear theory (Holland, 2001; Thornton and Guza, 1982; Inman
et al., 1971; Suhayda and Pettigrew, 1977; Tissier et al., 2011)).

The relatively high video-derived wave speeds at the initiation of
wave breaking may be a result of errors related to incorrect estimates of f
or k from imagery, possibly owing to a shift in the transfer function
relating the optical signature of waves to the true waveform (Stockdon
and Holman, 2000). Offshore of the breakpoint, the imaged seaward face
of the wave tends to be light, whereas the imaged landward face of the
wave tends to be dark. During wave breaking and the initiation of the
wave roller, the landward face of the wave becomes bright (white foam)
and the seaward face becomes darker (e.g., Fig. 8C). At the onset of wave
breaking, the transition in the transfer function could lead to a jump in
wave phase (an apparent acceleration), whereas at the end of wave
breaking the second transition in the transfer function may cause an
apparent deceleration (Stockdon and Holman, 2000). The corresponding
errors in wave speed are consistent with the video-derived depth errors
observed here. More data and analyses are needed to determine whether
video-derived wave speeds near the sandbar reflect true accelerations
and decelerations in the speed of breaking waves or whether they are an
artifact of the transition in the optical transfer function (or some com-
bination of both). Nevertheless, this analysis suggests that although
video-based cBathy bathymetry can be used to quantify sandbar
morphology during low non-breaking waves, caution should be used as
wave heights increase and waves break over the sandbar. It is important
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to note, that depending upon the source of these errors (linear wave

theory vs. the optical transfer function), radar-derived bhk may not have
similar cautions, as radar-based cBathy exploits a different transfer
function, avoiding problems associated with the optical signature of
wave breaking.

4.3.2. Errors in hk
Errors in hk can be caused by incorrect assumptions in the Kalman

filter and by incorrect estimates of bhk and εP2. The Kalman filter in the
cBathy algorithm is used to increase the quality of the final bathymetry

estimates, hk , by more strongly weighing high quality bhk , and mini-

mizing the effects of low quality bhk , such as may occur at the onset of
wave breaking or during fog or storms (Holman et al., 2013). However,
depth biases of 1–2m across the surfzone still occur in hk during many
storms [Fig. 5, compare blue with red curves in panels A, B, and C].

The altimeter data enable evaluation of the effectiveness of the Kal-

man filter at reducing large errors in bhk during storms. The Kalman filter
in cBathy requires a site-specific process error, Q, and the measurement
error, R, which, if estimated poorly, may be a source of error in the final
hk estimate. For example, εP2, which are used to calculate R, are not
calibrated with EP2, particularly at high wave heights (Fig. 7G). To assess
the performance of the Kalman filter independent of errors in εP2 or Q,
the altimeter seafloor elevations during a storm in January
(0.4<Hs< 4.0m) can be used to define the true measurement error,
R¼ Robs¼ EP22 , and the true process noise variance as

QΔt ¼ ΔZ2 ¼ ðZt � Zt�1Þ2; (5)

where Z is the seabed elevation measured by the outer-surf zone altim-
eter at sequential cBathy solution times (t-1, t), and using (2) and (3)
estimate the Kalman gain as

K ¼ K ' ¼ Pk�1 þ ΔZ2

Pk�1 þ ΔZ2 þ Robs
: (6)

Substituting (6) for K in (1) to solve for updated Kalman-filtered ba-
thymetry, h'k , results in improved bathymetry estimates at the outer surf-
zone altimeter on 23–24 Jan (Fig. 11B, compare magenta curve with red
and blue curves). However, even with accurate inputs of Q and R, h'k is
still biased deep by 1m at the end of 25 Jan. These incorrect estimates
occurred because the seafloor accreted 0.25m overnight from 24 to 25
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Jan (black curve, Fig. 11B), which caused an increase in ΔZ2 and in the
resultant process error (not shown). The unsigned increase in process
error decreased confidence in the prior estimate of h'k , and therefore

more weight was placed on the biased estimate of bhk , even though Robs

was large. Assimilation of the biased estimate of bhk caused apparent

erosion, because bhk were too deep, even though the observed elevation
changes in ΔZ2 were accretionary. h'k became more accurate on the

morning of 26 Jan when bhk were accurate and Robs decreased (compare
blue dots with the black curve in Fig. 11B). The largest deviation between
both hk and h'k and the altimeter occurs after the peak of the storm, due to
lag induced by the Kalman filter.

Improving measurement and process variance estimates improved

the Kalman-filtered results, until erroneous values of bhk overwhelmed the
filter (compare magenta and red curves with the black curve in Fig. 11B).

Both hk and h'k tended towards the erroneously deep bhk with increasing
time and error variances because the Kalman filter is not designed to
account for systematically biased errors that occur on the time-scale as
real bathymetric change. Correctly accounting for real bathymetric
change is problematic both because 1) Qmust be redefined for each new
location where cBathy is used, and 2) the scale of real bathymetric
change is of similar magnitude to the errors in cBathy. Process error is
difficult to quantify even when data are available to establish an
empirical relationship. For example, there were no statistically signifi-
cant relationships between the process error defined for Duck by (Hol-
man et al., 2013) and the true bathymetric change at each altimeter over
the year-long data set (not shown).

To improve bathymetry estimates during storms, future work should

focus on improving the quality of bhk during large waves, reducing the

effects of biased estimates of bhk on the Kalman filter, and developing
advanced approaches to utilize numerical models to estimate bathymetry
(Wilson et al., 2010, 2014). The results here suggest that video-based
cBathy bathymetry may not provide reliable estimates of surfzone
morphology change during storms. The results also suggest that with

improved quality control of biased bhk during breaking waves,
video-based cBathy may provide reliable estimates of seasonal bathy-
metric change, particularly offshore of the sandbar. For example, if hk
estimates when Hs> 1.2m are removed from the analysis (27% of the
sample time period), hk explains 83% of the variability in seafloor
elevation changes at the outer altimeter over the year-long sample
period. This wave height threshold, which identifies when waves break
over the sandbar, could be translated to other sites by converting to ɣoff
utilizing an estimate of the sandbar crest depth. For example, dividing the
offshore wave height threshold, Hs¼ 1.2, by the average sandbar crest
elevation for this study site, zSB¼ 2.4m, yields a threshold ɣoff¼ 0.50.
This ɣoff threshold could be used with a rough estimate of the sandbar
crest depth zSB to estimate a maximum operational wave height (ɣoff *hc)
for video-based cBathy at other locations. Alternatively, analysis of the
video timex images also may be sufficient to identify when waves are
breaking over the bar.

5. Conclusions

Surfzone bathymetry estimated with a video-based linear depth
inversion algorithm, cBathy, was compared with bathymetry estimated
with vessel-based hydrographic surveys and with in-situ altimeters for a
wide range of wave conditions. Surfzone seafloor elevation trends esti-
mated with cBathy are qualitatively similar to those observed over one
year with in-situ altimeters. When wave heights were less than 1.2 m,
RMSE < 0.5m and �0.5< bias < 0.5m in water depths between 1.5 and
4.5m, similar to previous results. During these conditions, cBathy
explained 83% of the variance observed in seafloor elevation changes
offshore of the sandbar over a 1-year time period. However, during
storms when wave heights exceeded 3m, video-derived bathymetry was
159
biased deep relative to the altimeters with 3< RMSE < 6m in unfiltered
results and 1.5<RMSE <2m for Kalman filtered results. Although the
Kalman filter improved the performance of video-based cBathy, the filter
could not maintain robust bathymetry estimates during storms. In addi-
tion, during calmer conditions, when waves broke over the sandbar,
video-based cBathy overestimated water depths by up to 2m over the
offshore edge of the sandbar, and underestimated depths in the deeper
trough between the sandbar and the shoreline, where waves ceased
breaking. As a result, the cross-shore location of the sandbar was biased
onshore by 18–40m when wave heights exceeded 1.2m and broke over
the bar (offshore wave height divided by bar crest depth ɣoff> 0.5). The
onshore bias was 3–4m when wave heights were less than 0.8 m and did
not break over the sandbar (ɣoff< 0.35). The onshore bias was caused by
over prediction (up to 300% faster than linear theory) of video-based
wave speeds at the initiation of wave breaking and under prediction
(as much as 60% slower than linear theory) of wave speeds at the
termination of wave breaking. The difference from linear theory may be
owing to nonlinear effects on the dispersion relationship and to artifacts
of the optical image processing of breaking waves.
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