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Abstract Low‐frequency surf zone eddies disperse material between the shoreline and the continental
shelf, and velocity fluctuations with frequencies as low as a few mHz have been observed previously on
several beaches. Here spectral estimates of surf zone currents are extended to an order of magnitude lower
frequency, resolving an extremely low frequency peak of approximately 0.5 mHz that is observed for a
range of beaches and wave conditions. The magnitude of the 0.5‐mHz peak increases with increasing wave
energy and with spatial inhomogeneity of bathymetry or currents. The 0.5‐mHz peak may indicate the
frequency for which nonlinear energy transfers from higher‐frequency, smaller‐scale motions are balanced
by dissipative processes and thus may be the low‐frequency limit of the hypothesized 2‐D cascade of
energy from breaking waves to lower frequency motions.

Plain Language Summary Extremely low frequency (periods approximately 30 min) horizontal
currents are observed in surf zones (breaking wave regions) on Atlantic and Pacific Ocean beaches for a
range of wave conditions. The strength of the low‐frequency currents increases as the offshore wave energy
increases and increases near undulations in the nearshore seafloor (e.g., near channels or trenches across
the surf zone) and near locations where alongshore flowing currents converge. The low‐frequency
currents may be the result of a transfer of energy from breaking waves to longer‐period motions.

1. Introduction

As waves break in the shallow water of the surf zone, momentum is transferred to the water column, raising
water levels near the shoreline, driving currents, and generating vorticity (Bonneton et al., 2010; Bühler,
2000; Peregrine, 1998). These currents and eddies transport sediment, pathogens, larvae, pollutants,
heat, and bacteria along the coast and between the shoreline and deeper water (Boehm, 2003; Cowen
et al., 2006; Grant et al., 2005; Halpern et al., 2008). The horizontal transport of material in the surf zone
is characterized by an eddy diffusivity that is much larger than diffusivities measured seaward of the
breaking region (Clark et al., 2010; Spydell et al., 2007, 2009; Spydell & Feddersen, 2009) and is associated
with relatively low frequency quasi‐two‐dimensional eddies (Clark et al., 2010, 2011; Spydell & Feddersen,
2009). Horizontal eddies with frequencies f as low as a few mHz (termed very low frequency or VLF motions)
and corresponding length scales of 20–100 m (lower frequency currents typically are associated with larger
spatial scales) have been observed and numerically simulated in surf zones on beaches with periodically
spaced rip channels and on alongshore uniform beaches (Geiman & Kirby, 2013; MacMahan et al., 2004,
2010; Spydell & Feddersen, 2009; Uchiyama et al., 2017).

2. Observations

To maintain stationarity in the presence of tidal sea level fluctuations and changing offshore wave condi-
tions, most estimates of VLF motions are based on 2.8‐hr or shorter data records and thus have relatively
few degrees of freedom and are restricted to frequencies above a few mHz, with VLF power increasing with
decreasing frequency (red spectra; MacMahan et al., 2010). However, often incident wave conditions do not
change for longer time periods, and although the water depth, and thus, the cross‐shore location of wave
breaking may be modulated by the tide, surf zone currents can have ~30‐min‐period oscillations throughout
the tidal cycle. Thus, although the water depth and few hour mean currents inside the surf zone might
change with the tide (e.g., near time = 5 hr, Figure 1), often the approximately 30‐min‐period fluctuations
in velocity (red and black curves, Figure 1) and current speed (blue curve, Figure 1) remain throughout
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the tidal cycle. Consequently, despite tidal modulations of water depth and the location of wave breaking,
~30‐min‐period surf zone currents may be stationary over tidal cycles, allowing extremely low frequency
(f ~ 0.1 mHz) motions to be explored. For example, on 14 November 1997 during the SandyDuck project
near Duck, NC, over a 24‐hr period the offshore (8‐m water depth) significant wave height Hsig (4 times
the standard deviation of sea surface elevation fluctuations for 0.05 < f < 0.30 Hz) was nearly constant
(Hsig ~ 1.5 m), the centroid of the spectrum fcent (the energy‐weighted mean frequency between 0.05 and
0.30 Hz) was 0.13 Hz (with 0.01‐Hz standard deviation of 1‐hr values), the mean direction relative to
shore normal Θ (energy‐weighted between 0.05 and 0.30 Hz) was 2° (with 3° standard deviation of 1‐hr
values), the tidal amplitude was about 0.5 m, and few hour‐averaged surf zone currents were small. By
averaging spectra from eight consecutive detrended 2.8‐hr records (2‐Hz sample rate), estimates of power
spectral density can be extended to an order of magnitude lower frequency than in previous studies,
indicating that cross‐shore and alongshore velocity fluctuations have extremely low frequency (ELF)
spectral peaks near 0.5 mHz, with rapidly decreasing spectral levels for lower frequencies (Figure 2a).

When converted to equivalent velocity using the linear finite‐depth dis-
persion relationship, sea surface elevation spectral levels within the ELF
band (not shown) are 1–2 orders of magnitude lower than the velocity
spectral levels, indicating that the motions are rotational, rather than
resulting from surface gravity waves (Lippmann et al., 1999).

ELF spectra have similar shapes (e.g., a maximum near f = 0.5 mHz)
across the surf zone (depths ranging from 3.5 to 1.5 m, Figure 2). The total

ELF power (∫
1:0 mHz

0:1 mHzE fð Þdf ;where E(f) is the power spectral density at fre-
quency f) increases shoreward (Figure 2), similar to previous results for
higher VLF frequencies (MacMahan et al., 2010).

Extremely low frequency motions were observed in two additional field
programs at Duck, with spectral peaks near 0.5 mHz and with ELF power
increasing with bathymetric inhomogeneity. During the BARGAP project
(2012), wave and current sensors were deployed within and adjacent to a
shore‐perpendicular channel excavated across the surf zone that gener-
ated 1‐m/s rip currents (Moulton et al., 2017). Power spectra of velocity
(Figure 3a) from the center of the channel (Figure 3b) include a f = 0.5‐
mHz peak (solid black curve in Figure 3a). In addition, there is a f~0.5‐
mHz spectral peak when the bathymetry was alongshore uniform (dashed
black curve in Figure 3a, uniform bathymetry not shown). Although the

incident wave energy (H2
sig∼1:4 m

2) was more than twice as high for the

uniform bathymetry than for the channeled bathymetry (H2
sig∼0:6 m

2 ),

there is more ELF power for the channeled case (compare the solid with
the dashed black curve in Figure 3a).
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Figure 1. Time series showing extremely low frequency surf zone currents. Alongshore (V, black curve) and cross‐shore
(U, red) velocity and speed ((U2 + V2)1/2, blue) of 512‐s mean currents and water depth (dashed black) versus time.
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Figure 2. Spectra of extremely low frequency surf zone currents. (a) The
sum of the cross‐shore plus alongshore velocity power spectral densities in
3.3 (black curve), 3.5‐ (red), 2.5‐ (green), and 1.5‐m (blue) depths versus
frequency and (b) depth versus cross‐shore position along the instrumented
transect. All sensors were in the surf zone. Colored symbols indicate the
locations of the corresponding spectra shown in Figure 2a. Spectra of cross‐
shore and alongshore velocity are similar to the combined spectra shown
here. Spectra are from 14 November 1997, with offshore significant wave
height ~1.5 m. The total power in the ELF frequency band (0.1 < f < 1.0
mHz) relative to the ELF power at the most offshore location (black curve in
Figure 2a) is listed in the legend. The vertical line at f= 0.5mHz is the lowest
frequency resolved in previous studies, and the vertical line at f = 4.0 mHz
was suggested as an upper limit to VLF motions (MacMahan et al., 2010).
Root‐mean‐square low‐frequency current speeds range from ~0.05 to
~0.15 m/s from offshore (black curve in Figure 2) to onshore (blue curve).
The spectra have 20 degrees of freedom.
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During the RODEX project at Duck (2013), the bathymetry evolved from alongshore uniform (not shown) to
alongshore inhomogeneous with ~150‐m‐long crescentic sand bars separated by deeper channels
(Figure 3c). In both cases, there were f ~ 0.5‐mHz peaks in power spectra of velocity, with more ELF power
for the nonuniform bathymetry with incidentHsig ~ 2.3 m (solid red curve in Figure 3a) than for the uniform
bathymetry with incidentHsig ~ 1.7 m (dashed red curve in Figure 3a). Vorticity estimated using Kelvin's cir-
culation theorem (Clark et al., 2012) from currents observed along a 5‐m‐diameter ring of sensors (including
the current meter used for velocity spectra in Figure 3a) in 2‐m water depth also has a spectral peak near
f = 0.5 mHz (green curve in Figure 3a).

Observations from the surf zone on a San Diego, CA, beach onshore of a large submarine canyon during the
NCEX project (2003, for instrument array details see Apotsos et al., 2008; Gorrell et al., 2011; Hansen et al.,
2017) also have ELF peaks at f ~ 0.5 mHz (Figures 4a and 4b). During the periods examined here, the bathy-
metry did not change significantly, and there was little variation in wave height in 5‐m water depth for
1.1 < X < 2.7 km (with X the alongshore coordinate; not shown), but surf zone circulation patterns differed
for different incident wave directions (Apotsos et al., 2008; Hansen et al., 2017; Long & Özkan‐Haller, 2016).
Regardless of the incident wave direction, there is significant alongshore variability in ELF power
(Figures 4a–4c). When incident waves were from the west‐northwest (10 October), integrated ELF power
(black symbols in Figure 4c) was maximum near ~1.5 < X < 2.0 km, where surf zone flows converged (black
arrows in Figure 4d; see also Apotsos et al., 2008, Long &Özkan‐Haller, 2016; Hansen et al., 2017) and where
time‐lapse images of the surf zone are consistent with offshore flow (white arrows in Figure 4e; Long &
Özkan‐Haller, 2016). Although there is indication of offshore flow in the time‐lapse image (Figure 4e) near
X = 0.7 km, ELF power there is low, possibly owing to smaller wave heights in the shadow of the submarine
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Figure 3. ELF spectra on different bathymetries. (a) The sum of the cross‐shore plus alongshore velocity power
spectral densities (average of spectra from eight consecutive detrended 2.8‐hr records of 2‐Hz samples averaged to 1 min)
for the BARGAP rip channel bathymetry (shown in Figure 3b; solid black curve, Hsig = 0.8 m, fcent = 0.12 ± 0.01 Hz,
Θ = 5° ± 2°), the BARGAP alongshore uniform bathymetry (dashed black curve, Hsig = 1.2 m, fcent = 0.17 ± 0.01 Hz,
Θ = −3° ± 6°), the RODEX crescentic‐shaped bars bathymetry (shown in Figure 3c; solid red curve, Hsig = 2.3 m,
fcent = 0.14 ± 0.01 Hz, Θ = 6° ± 2°), and the RODEX alongshore uniform bathymetry (dashed red curve, Hsig = 1.7 m,
fcent = 0.17 ± 0.00 Hz, Θ = 5° ± 2°), and of vorticity on the crescentic‐bar bathymetry (green curve (arbitrary units),
Hsig = 2.3 m, fcent = 0.14 ± 0.01 Hz, Θ= 6° ± 2°) versus frequency. The observation locations (black and white concentric
circles) are superposed on color contours (scale on the right) of the (b) BARGAP rip‐channeled and (c) RODEX
crescentic‐shaped bar bathymetry. There was no significant alongshore variation of the bathymetry in the uniform
bathymetry cases (not shown) and no significant alongshore variability other than the excavated channel (Figure 3b) in the
BARGAP case. The observations were in 2–3‐m water depth.
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canyon (depth contours in Figure 4d), consistent with observations in 2.5‐m depth (Gorrell et al., 2011).
When incident waves were from the west‐southwest (31 October), integrated ELF power (red symbols in
Figure 4c) was maximum near X ~ 1.0 km, where surf zone flows converged (red arrows in Figure 4d; see
also Apotsos et al., 2008; Long & Özkan‐Haller, 2016; Hansen et al., 2017) and where time‐lapse images
are consistent with offshore flow (white arrow in Figure 4f; Long & Özkan‐Haller, 2016).

3. Discussion

There are several hypotheses for the generation of low‐frequency motions in the surf zone. Low‐frequency
currents have been observed on bathymetrically alongshore‐inhomogeneous beaches, including those with
one or more rip channels (Castelle et al., 2010; Johnson, 2004; MacMahan et al., 2004), and theoretical and
numerical simulations of waves propagating across rip channeled surf zone bathymetry often include low‐
frequency motions (Bruneau et al., 2011; Geiman & Kirby, 2013; Johnson & Pattiaratchi, 2006; Kennedy

Figure 4. Alongshore‐varying ELF properties. The sum of the cross‐shore plus alongshore velocity power spectral
densities (average of spectra from eight consecutive detrended 2.8‐hr records of 2‐Hz samples averaged to 1 min) versus
frequency for (a) 10 October and (b) 31 October during NCEX. The colors indicate the current meter alongshore
coordinate X (listed in the legends) along the ~2.5‐m depth contour. The 24‐hr averaged significant wave heights in 5‐m
water depth were Hsig ~ 1.3 (10 October) and ~1.0 m (31 October) and were approximately constant for 1.5 < X < 2.7 km
and varied ±10% for 1.1 < X < 1.5 (not shown). The standard deviations of 24 1‐hr centroidal frequencies and mean
directions were less than 0.01 Hz and 3°, respectively. At each location, hourly wave heights varied ±10% from the 24‐hr
mean. (c) Total power in the ELF frequency band (normalized by the maximum ELF power for each time period)
versus alongshore coordinate and (d) 24‐hr mean currents (arrows) and contours of water depth (black curves, labeled in
m relative to mean sea level) versus cross‐shore and alongshore coordinate. Black symbols and arrows are for 10 October,
and red symbols and arrows are for 31 October. Maximum (not normalized) ELF power on 10 October was ~20%
higher than the maximum ELF power on 31 October. The 10‐min time‐lapse images taken on (e) 10 October and (f) 31
October contain white areas (arrows) from breaking‐wave‐induced bubbles and foam that may indicate offshore flow in
rip currents. The white areas are located near alongshore locations X where mean currents converge and ELF power is
high (~1.5 < X < ~ 2.0 km on 10 October, black symbols in Figures 4c and 4d, and X~1 km on 31 October, red symbols in
Figures 4c and 4d). Rectified images were provided by J. Long.
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et al., 2006; Reniers et al., 2007; Uchiyama et al., 2017). On alongshore uniform beaches, low‐frequency velo-
city fluctuations have been hypothesized to be generated by instabilities of the alongshore current (Bowen &
Holman, 1989; Oltman‐Shay et al., 1989; Özkan‐Haller & Kirby, 1999) and by wave‐group‐induced modula-
tions of sea surface elevation fluctuations (Haller et al., 1999; Long & Özkan‐Haller, 2009; MacMahan
et al., 2010).

An alternative hypothesis for the generation of low‐frequency surf zonemotions is via a nonlinear transfer of
energy from high‐frequency, small‐scale motions to lower frequency, larger motions. Theoretically, high‐
frequency, few meter‐scale vorticity is generated in the surf zone by short‐crested breaking waves
(Bonneton et al., 2010; Bühler, 2000; Peregrine, 1998). In agreement with theory, numerically simulated
short‐crested breaking waves generate vorticity (Bruneau et al., 2011; Bühler, 2000; Johnson &
Pattiaratchi, 2006; Kennedy, 2005), with vorticity variance and dispersion increasing with the number of
crest ends (via directional spread; Clark et al., 2010; Feddersen, 2014; Spydell, 2016; Spydell et al., 2007,
2009; Spydell & Feddersen, 2009; Wei et al., 2017).

For the shallow water depths in the surf zone, eddies with horizontal scales greater than a fewmeters can be
considered two‐dimensional (2‐D), possibly becoming quasi‐2‐D in the deeper water near the outer edge of
the surf zone where there is evidence for weak vertical structure in higher‐frequency nearshore eddies
(Henderson et al., 2017; Lippmann et al., 2016). In contrast to three‐dimensional turbulence, two‐
dimensional flows have an inverse cascade where energy from stirring at small scales is transferred to larger
scales (Boffetta & Ecke, 2012; Kraichnan, 1967; Tabeling, 2002). Thus, forcing at small length scales, as
expected from short‐crested breaking waves, can be a source of the lower frequency, larger‐scale motions
that are correlated with mixing in shallow water. The observed and simulated evolution of drifters deployed
in the surf zone is consistent with a transfer of energy from breaking waves to lower frequency motions with
larger scales (Feddersen, 2014; Spydell, 2016; Spydell et al., 2007; Spydell & Feddersen, 2009), similar to a
two‐dimensional energy cascade. In the 2‐D cascade, energy transfers from higher‐frequency small‐scale
motions are balanced by dissipative processes at lower frequencies and larger scales (Boffetta & Ecke,
2012; Chertkov et al., 2007; Kraichnan, 1967; Paret & Tabeling, 1998; Tabeling, 2002).

The largest scale (lowest frequency) in a 2‐D turbulent energy cascade can be limited by dissipative processes
or by the spatial extent of the region (Boffetta & Ecke, 2012; Chertkov et al., 2007; Kraichnan, 1967; Paret &
Tabeling, 1998; Tabeling, 2002). If the motions are spatially limited by proximity to the shoreline, and if the
eddy spatial scales increase with decreasing frequency, the ELF peak frequency should increase shoreward.
Although the analysis is preliminary, the frequency of the spectral peak estimated from the 14 November
1997 SandyDuck data increases shoreward (compare the black with the blue curve in Figure 2), consistent
with the smaller distance to the shoreline, and suggesting that the f ~ 0.5‐mHz peak may be the low‐
frequency limit of the hypothesized 2‐D transfer of energy from breaking waves to lower frequency,
dissipative motions.
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