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A B S T R A C T   

Waves running up and down the beach (‘swash’) at the landward edge of the ocean can cause changes to the 
beach topology, can erode dunes, and can result in inland flooding. Despite the importance of swash, field ob
servations are difficult to obtain in the thin, bubbly, and potentially sediment laden fluid layers. Here, swash 
excursions along an Atlantic Ocean beach are estimated with a new framework, V-BeachNet, that uses a fully 
convolutional network to distinguish between sand and the moving edge of the wave in rapid sequences of 
images. V-BeachNet is trained with 16 randomly selected and manually segmented images of the swash zone, and 
is used to estimate swash excursions along 200 m of the shoreline by automatically segmenting four 1-h se
quences of images that span a range of incident wave conditions. Data from a scanning lidar system are used to 
validate the swash estimates along a cross-shore transect within the camera field of view. V-BeachNet estimates 
of swash spectra, significant wave heights, and wave-driven setup (increases in the mean water level) agree with 
those estimated from the lidar data.   

1. Introduction 

Waves running up and down the beach (‘swash’) can lead to beach 
erosion and wave overtopping (Dodd, 1998; Ruggiero et al., 2001), and 
when combined with tides and storm surge, can result in coastal flooding 
and damage to structures (Xie et al., 2019; den Bieman et al., 2020). 
Obtaining in situ observations of swash in the field is difficult owing to 
the thin, moving, turbulent fluid layers (Suhayda, 1974; Guza and 
Thornton, 1985; Raubenheimer et al., 1995). Thus, remote sensing ap
proaches often have been used (Holman et al., 1993; Ruggiero et al., 
2001; Jensen et al., 2003; Stockdon et al., 2006, 2014; Holman and 
Stanley, 2007; Vousdoukas et al., 2009; Drummond et al., 2015; Yang 
et al., 2022). However, despite the advantages of remote sensing tech
niques in obtaining high-quality data over a large area, analysis remains 
a challenging and laborious task. Methods to identify swash motions in 
remotely sensed data include manual discretization and edge detection, 
and motion detection algorithms (Stockdon et al., 2006, 2014; Vous
doukas et al., 2009; Yang et al., 2022). 

Some of the limitations associated with traditional analysis of 
remotely sensed data can be overcome with deep learning techniques, 
such as Fully Convolutional Networks (FCNs) (Long et al., 2015). FCNs 

allow for the processing of entire images of differing sizes in a single 
forward pass, making them more effective than traditional classification 
techniques such as Support Vector Machines (SVMs) (Cortes and Vapnik, 
1995), Random Forests (Breiman, 2001), and CNNs (Krizhevsky et al., 
2012; LeCun et al., 2015) for tasks requiring detailed spatial analysis. 
This efficiency and flexibility make FCNs particularly suited for 
high-resolution, pixel-level image segmentation and classification in 
remote sensing. FCNs, however, are memory intensive because they 
maintain detailed feature maps at a range of scales throughout the 
network to capture both the fine details and the broader context of the 
images. The Adaptive Feature Bank (Liang et al., 2020a, 2023), a 
matching-based framework for semi-supervised video object segmen
tation, not only dynamically absorbs new features and discards obsolete 
ones for efficient and flexible video object segmentation, but also out
performs other state-of-the-art methods in terms of accuracy, efficiency, 
and memory usage on several benchmark datasets, all while allowing for 
real-time processing of large datasets. Recently, emerging models like 
the Segment Anything Model (SAM) (Kirillov et al., 2023) are revolu
tionizing the field of image processing, offering impressive performance 
on segmentation of new images in a user-friendly environment. 

Recent applications of deep learning techniques have contributed 
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significantly to the understanding of hydrodynamic phenomena, 
including flood inundation and the spatial distribution of hazards (Jafari 
et al., 2021; Bentivoglio et al., 2022), dynamics in wave flumes (den 
Bieman et al., 2020), and beach state classifications (Ellenson et al., 
2020). Here, a novel deep learning framework, V-BeachNet, is devel
oped to estimate swash excursions on beaches, using observations from 
an Atlantic Ocean beach on the Outer Banks of North Carolina. Utilizing 
a Fully Convolutional Network (FCN) model, V-BeachNet extracts swash 
motion from raw video imagery with pixel-level accuracy, providing the 
ability to estimate swash excursions along the shoreline throughout the 
camera field of view. By enabling the application of this framework to 
both archived and real-time video footage, the workflow serves as a 
useful guide for future studies on quantifying swash using computer 
vision algorithms. The results not only serve as a valuable validation 
dataset for phase-resolving numerical modeling (Salatin et al., 2021) but 
also deepen understanding of alongshore variability of swash motion. 

The structure of this paper is outlined as follows. Section 2 provides 
details on the methodology, including the study location, data collec
tion, and image processing. A high-level explanation of the FCN model is 
also provided in this section. In Section 3, the results are presented, 
including video segmentation using FCNs, a comparison of swash mea
surements between lidar and FCN at a cross-shore transect, and an 
assessment of the alongshore variation of swash extracted by the V- 
BeachNet. Discussion on the sources of error in comparison with the 
lidar measurement also is provided. Section 4 concludes with remarks 
on this study and recommendations for future research. 

2. Methods 

2.1. Workflow 

Although each step in the process of obtaining runup from raw video 
imagery is explained in subsequent sections, an overview is given here 
(Fig. 1). Raw data (blue box in Fig. 1) is processed (green boxes) to 
obtain horizontal and vertical swash motions. Processed data are vali
dated against ground truth data (red box). Validated data are statisti
cally analyzed to get alongshore wave runup (yellow box). 

Input data include raw video imagery and topography measure
ments. Raw video imagery is rectified to facilitate accurate extraction of 
swash motion. Here, image rectification is conducted assuming a flat 
plane at elevation z = 0 m. However, topography data can be used to 
correct distortions caused by assuming a flat plane. The contrast and 
brightness of rectified images also are improved through image 
enhancement. Final video images are then semantically segmented by V- 
BeachNet to obtain horizontal swash motion. 

Horizontal swash motion is mapped to the topography to obtain the 
vertical swash motion. Both the horizontal and vertical swash motion 
data are compared with ground truth data, which are available for a 
single cross-shore transect. In the event of any discrepancies between 
these datasets, it is necessary to identify and resolve any sources of error 
that may have arisen during the topography survey and image rectifi
cation processes (Hughes et al., 2006). 

The conventional 2% exceedance of wave runup (R2%) in a random 
swash time series at any cross-shore transect along the shoreline can be 
obtained by performing statistical analysis on the validated vertical 
swash time series. This analysis results in a reliable and robust estima
tion of wave runup along the entire shoreline. 

2.2. Study location and data collection 

Observations were obtained along a relatively straight beach on the 
Outer Banks of North Carolina at the US Army Corps of Engineers Field 
Research Facility (FRF) in Duck in fall 2021. The facility includes an 
array of pressure sensors in ~9-m water depth that provides estimates of 
the frequency-directional spectrum of the incident wave field and a tide 
gage located on a pier in ~6 m depth (NOAA water level station 
8651370). 

A lidar system was deployed from late August to November 2021 on 
a small tower-like platform located about 30 m onshore of the mid-tide 
water line and overlooking the beach. The lidar system emitted a laser 
beam that scanned along a cross-shore transect near alongshore distance 
Y = 620 m at 5 Hz for 40 min every hour, followed by a 360-degree 
rotating scan to estimate the surrounding topography. Here, the cross- 
shore scans are used to detect the edge of the swash as it runs up and 
down the beach, and to provide an estimate of the underlying topog
raphy. A 0.03 m minimum water depth is used to detect the edge of the 
swash (O’Dea et al., 2019; Collins et al., 2023). Combining lidar esti
mates of the horizontal swash with the elevation of the beach provides 
estimates of the vertical swash elevations. 

Sequences of images were obtained from two cameras mounted on a 
40-m tall tower located about 60 m onshore of the mid-tide water line 
near cross-shore and alongshore position X = 35, Y = 585 m. The 
cameras were sampled at 2 Hz and had overlapping fields of view. Im
ages were corrected for camera curvature and geo-rectified using ground 
control points, The rectification procedure assigns real-world horizontal 
cross- (X) and alongshore (Y) coordinates to the images, assuming a 
constant vertical elevation. Rectified images covered 100 m in the cross- 
shore (X) and 200 m in the alongshore (Y) direction. Images were 
interpolated to a 0.1 by 0.1 m grid. However, the spatial resolution of the 
raw images decreases with distance from the cameras, which were 
located near the bottom-left corner of the rectified images. Moreover, 
the assumption of a flat plane introduces errors in the estimates of swash 
excursions, as discussed below. 

Fig. 1. V-BeachNet workflow illustrating the necessary steps to obtain along
shore wave runup data from raw video imagery. 
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Here, four 1-h video recordings were selected to represent a range of 
wave and water level conditions. The offshore (~9-m water depth) 
significant wave heights ranged from 1.0 to 2.5 m, the mean spectral 
periods ranged from 5.5 to 7.5 s, and wave directions ranged from 34- 
deg from north of shore normal to 4-deg south of shore normal 
(Table 1 and Fig. 2), with a range of spectral shapes (Fig. 3). The first 
case occurred during a storm on a rising tide, whereas the other cases are 
during milder wave conditions with falling tides (Fig. 2a–d). 

Topography (and bathymetry) were estimated using several tech
niques. The hourly 3D lidar scans provide estimates of the topography 
above the water level, and for the falling tides during Cases 2, 3, and 4, 
the 3D surveys immediately following the image sequences provided 
reasonable coverage of the swash zone. During Case 1, water covered the 
beach over most of the field of view owing to the rising tide and storm 
setup, and a prior lidar survey at a lower water level was used to obtain 
more coverage of the dry beach (Table 1). 

The 3D lidar-scan estimates of the topography were extended both 
cross- (into the water) and alongshore with hydrographic surveys along 
cross-shore transects spaced 46 m in the alongshore performed by the 
FRF with an amphibious vehicle. The two surveys were merged and 
interpolated to a 0.1 m by 0.1 m grid (Fig. 4). 

In addition, the lidar cross-shore scans at Y = 620 m can be used to 
estimate the underlying topography by assuming that the lowest 
elevation values over a period are sand (reflections from water would be 
higher) (Collins et al., 2023) (Fig. 5). Although errors may arise owing to 
changing sand levels over the 40-min scan period, the topography esti
mated from the scans is collected simultaneously with the swash mea
surements along the same transect and extends across the entire swash 

zone. In contrast, depending on the rate of the falling tide, the dry beach 
covered by the 3D lidar may not encompass the entire swash zone, and 
the vehicle surveys are interpolated to Y = 620 m. Thus, the sand levels 
estimated from the scans may be more accurate than the larger-scale 
topography surveys. Case 1 exhibits the largest difference (~0.2 m at 
MWL) between the two survey estimates (Fig. 5a), which is attributed 
primarily to the 5-h gap between the lidar frame-scan survey and the 
lidar line-scan survey and will introduce errors when converting hori
zontal to vertical swash excursions. Cases 2 and 4 also have differences 
as large as 0.2 m (Fig. 5b–d), but these differences are below MWL, and 
thus errors in runup will not be as large as those in Case 1. For Case 3, the 
two estimates of topography are similar (Fig. 5c). 

2.3. Image processing and fully convolutional networks 

In this system, we employed several enhancement techniques to 
improve the quality of the images by increasing their contrast and 
brightness. To suppress the noise signal from the static background such 
as the dry beach, wave foam, and debris, and to highlight the dynamic 
characteristics of the scene, such as the swash edge and wave motion, 
the stationary background of each video frame is eliminated by 
computing the difference between each frame and the average of the 
frames over the previous 15 s (a time exposure). This technique shifts the 
visual emphasis from the immobile and unchanging parts of the scene to 
the moving and evolving components. Consequently, it enhances the 
overall quality of the output images, resulting in images for which the 
swash edge is easier to detect (Fig. 6). 

V-BeachNet. To estimate swash motion, the video frames are fed to a 
new FCN model named V-BeachNet (Fig. 7) that has architecture 
following V-FloodNet (Liang et al., 2023), which was designed to detect 
water and flood in videos in urban areas (Liang et al., 2020b). Unlike 
V-FloodNet, which mainly focuses on still water in urban flooding, here 
it is necessary to process the moving waves running up and down the 

Table 1 
Wave Parameters and Mean Water Level for four case studies.  

Case Video Footage 
Timestamps a 

lidar Survey 
Time a 

Vehicle 
Survey Date 

Tmean Hm0 MWLb θmean
c 

1 2021-10-10, 12:00 2021-10-09, 
17:00 

7.5 s 2.7 
m 

0.6 m − 4◦

2021-10-13 
2 2021-10-13, 21:00 2021-10-13, 

21:00 
7.9 s 1.0 

m 
0.5 m 11◦

2021-10-13 
3 2021-10-17, 13:00 2021-10-17, 

13:00 
5.9 s 1.3 

m 
0.3 m 33◦

2021-10-16 
4 2021-10-17, 14:00 2021-10-17, 

14:00 
5.8 s 1.3 

m 
0.1 m 34◦

2021-10-16  

a UTC. 
b NOAA, NAVD88. 
c Relative to shore normal. 

Fig. 2. Offshore (~9-m water depth) a) significant wave height, b) mean spectral period, c) mean wave direction, and d) (~6-m water depth) mean water level 
versus time. The four case studies are indicated by the black circles (the symbols for the 2 cases on October 17 overlap). 

Fig. 3. Power spectral density of the incident wave field (1-h time series in ~9- 
m water depth) versus frequency for Case 1 (solid blue curve), Case 2 (dashed 
blue curve), Case 3 (solid black curve), and case 4 (dashed black curve). 
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beach in the swash zone. Moving waves evolve rapidly, and thus 
differentiating and identifying the swash edge from the sand using 
V-FloodNet is difficult and often unsuccessful. To address this issue, the 
V-BeachNet model was trained using rectified grayscale images of the 

FRF beach to optimize its parameters for estimating swash. Image 
rectification not only reduces distortions to enhance model predictions, 
but also aligns images and bathymetry surveys within a consistent co
ordinate system that is essential for the runup estimation. Additionally, 

Fig. 4. Color contours (scale on the right, contour curves every 0.3 m) of topography and bathymetry elevations (relative to NAVD88, similar to mean sea level) 
within the camera fields of view as a function of cross- and alongshore coordinates for a) Case 1, b) Case 2, c) Case 3, and d) Case 4. 

Fig. 5. Elevation along the cross-shore transect Y = 620 m estimated with cross-shore lidar scans (gray curves), the 3D lidar scans (black curves), and interpolated 
from vehicle surveys (dashed black curve, extending the lidar scans farther offshore) versus cross-shore coordinate for a) Case 1, b) Case 2, c) Case 3, and d) Case 4. 
MWL for each case is indicated with blue lines. 

Fig. 6. a) A rectified image before processing, b) a time exposure image for the preceding 15 s, and c) processed image. Moving runup bores are highlighted with 
white color on the processed image. 
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grayscale images, possessing a single channel, not only significantly 
reduce computational costs compared with three-channel RGB images, 
but also excel in tasks where texture and shape segmentation is priori
tized over color. The main idea and high-level explanation of V-Beach
Net is below, with more technical design details about flood video 
segmentation in two closely related previous studies (Liang et al., 2020a, 
2023). 

V-BeachNet employs the EfficientNet-B4 encoding architecture (Tan 
and Le, 2019) and the LinkNet decoding architecture (Chaurasia and 
Culurciello, 2017) as part of its video segmentation module. The 
encoding process extracts feature maps from the input video images 
using convolutional blocks. These feature maps encompass details about 
shapes, edges, textures, and patterns, learned by the neural networks. 
These maps are then transformed into pairs of “key” and “value” 

embeddings. The key incorporates the essential characteristics of the 
feature map, enabling comparison of similarity between the feature 
maps of the query frame and the feature bank (that managed features of 
objects/regions observed in the previous frames of the video), while the 
value conserves the semantic information used to estimate the object 
mask. The decoding stage in V-BeachNet, leveraging the LinkNet 
decoding architecture, focuses on reconstructing the segmented images 
from the feature maps generated by the EfficientNet-B4 encoding 
process. 

Two encoders are integrated into the segmentation module. One is 
utilized to encode the current frame (query frame) for segmentation. The 
other is employed to encode the previous frame (reference frame) and its 
corresponding mask for each object. Object-level feature maps of the 
reference frame are utilized to update the feature bank for each object. 

Fig. 7. Video segmentation module overview. Adaptive Feature Bank (AFB) updates the feature bank with information from the previous frame and mask. The 
segmentation module generates an initial segmentation. The Uncertain-Region Refinement (URR) technique further refines the segmentation. 

Fig. 8. Raw video frames (upper panels) and segmentation of processed video frames (lower panels) for a) Case 1, b) Case 2, c) Case 3, and d) Case 4.  
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The key to the query frame is then matched with the most similar key in 
the feature bank for each object, and the corresponding value from the 
feature bank is retrieved. This retrieved value is concatenated with the 
query value to obtain the semantic information for each object. Subse
quently, the decoder uses this semantic information to estimate the 
initial object mask by upscaling the feature maps through skip connec
tions (He et al., 2016; Chaurasia and Culurciello, 2017) which connect 
the corresponding layers of the encoder and decoder. 

V-BeachNet has two additional parts that are made specifically for 
handling long videos and utilizing information about the coherence of 
time and space in consecutive frames (Liang et al., 2020a). As mentioned 
before, features from the encoded reference frames are added to the 
feature bank at each time step. In long videos, the feature bank can 
become quite large, causing the segmentation task to slow down. To 
address this issue, the Adaptive Feature Bank (AFB) dynamically adjusts 
the learned features from reference frames and removes outdated fea
tures. This ensures that changes in the appearance of objects over time 
can be accurately tracked with optimal performance. The Uncertain 
Region Refinement (URR) module focuses on improving the segmenta
tion of each frame after the initial segmentation, which is crucial for 
estimating runup accurately at the pixel level. 

For training purposes, images were rectified and enhanced, then 
labeled with the LabelMe public open-source tool (Wada, 2016). 
V-BeachNet underwent training using sets of 4, 8, 16, and 32 manually 
segmented images, which were randomly selected from a dataset con
sisting of 28,800 video frames obtained during four 1-h periods 
(Table 1). Given the labor-intensive nature of manually labeling shore
line images, it is beneficial to train the model using a smaller dataset. 
While training time saw a 50% increase when the dataset size was 
doubled, the cross-entropy loss (Liang et al., 2020a) showed no signifi
cant improvement, recording values of 0.16, 0.12, 0.11, and 0.11 for the 
datasets of 4, 8, 16, and 32 images, respectively. Consequently, the 
model trained with 16 images was selected for subsequent analysis. The 
trained segmentation module efficiently extracts swash excursions along 
the entire alongshore extent of the beach (Fig. 8). It segments two frames 

per second, enabling the real-time processing of 4 h of video imagery 
and highlighting its high computational efficiency. 

3. Results 

Estimates of the edge of the swash from the FCN model are in good 
agreement with those from the lidar (compare solid red with black 
curves near the swash edge in Fig. 9). The maxima and minima of the 
horizontal lidar-estimated swash are somewhat more onshore than the 
estimates from the FCN model (Fig. 9). Offshore-moving wave rundown 
is more transparent (less contrast), and thus harder to detect in images 
than the foamier onshore-propagating wave runup. Difficulty in 
detecting visual features with lower contrast is inherent to computer 
vision techniques and may be a source of error that results in lower wave 
setup and 2% runup exceedance estimated by the FCN model. 

When converted to vertical swash, the lidar and FCN estimates align 
with each other (Fig. 10), although lidar-estimated swash is higher than 
FCN swash, consistent with differences in estimates of the horizontal 
locations (Fig. 9). The FCN estimates of rundown often are lower than 
the corresponding lidar estimates, especially in Cases 1 (Figs. 10a) and 2 
(Fig. 10b). For Cases 3 and 4, rundown levels are similar in both methods 
(Fig. 10c and d). Taking LiDAR measurements as the standard for ac
curacy, the root mean square errors (RMSE) for the FCN model pre
dictions in Cases 1 to 4 are 0.33, 0.27, 0.15, and 0.14 m, respectively. 
The differences in runup can be owing to errors in image rectification 
that assumed a flat surface, which would increase with increasing 
elevation above the flat plane (at z = 0). Most swash motions were above 
the flat plane, and thus rectification errors increase with swash excur
sion and beach slope. Consequently, the FCN model predictions show 
greater RMSE values for Case 1 and Case 2, which had larger swash 
motions, relative to Case 3 and Case 4. There also could be errors 
inherent to optical methods. To address these issues, future research 
could explore the use of color imagery, which might enhance the ability 

Fig. 9. Video imagery at Y = 620 m as a function of cross-shore coordinate and 
time, with the swash edge detected by the FCN model (solid red curves) and by 
lidar (solid black curves) for a) Case 1, b) Case 2, c) Case 3, and d) Case 4. 

Fig. 10. Estimates of swash elevation from the FCN model (solid red curves) 
and lidar (solid black curves) versus time along the cross-shore transect at Y- 
620 m for a) Case 1, b) Case 2, c) Case 3, and d) Case 4. The RMSE values for the 
FCN model predictions for Cases 1 to 4 are: 0.33 m, 0.27 m, 0.15 m, and 0.14 m, 
respectively. 
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to distinguish between swash, foam, debris, and the beach backdrop, 
potentially reducing errors related to optical methods and improving 
bathymetry estimates. Moreover, the lidar scans occasionally encoun
tered debris, remnant foam, or stagnant water, causing swash edge es
timates to become temporarily fixed at the upper edge of the swash, 
leading to artificially increased swash elevations. Another potential 
source of error is noise in bathymetry estimates, including uncertainties 
introduced during lidar scanning due to fluctuating sand levels affecting 
the detection of the minimum water depth for swash edge 
determination. 

Differences between V-BeachNet and lidar vertical swash estimates 
are small when differences in horizontal swash estimates are small, and 
differences in estimated vertical and horizontal swash excursions are 
well described by the beach slope (compare slope of best fit lines in 
Fig. 11 with the beach slope given in the caption), suggesting differences 

in vertical swash are primarily owing to differences in estimating hori
zontal swash (e.g., not owing to inaccurate bathymetry). Furthermore, 
the FCN-estimated horizontal swash typically is offshore of the lidar 
estimate, consistent with errors owing to using a flat plane rectification 
(Fig. 11). The probability density functions of the difference data points 
for horizontal and vertical swash (horizontal and vertical red curves, 
respectively in Fig. 11) have maxima near 0, suggesting that although 
there are a few significant errors, the majority of the runup error points 
fall within an acceptable range. 

Spectra of vertical swash time series estimated by the FCN Model are 
in good agreement with the spectra estimated from the lidar (Fig. 12). 
Although the lidar can estimate swash, it is limited to a single cross- 
shore transect. In contrast, the FCN model can estimate swash along 
the shoreline within the field of view of the cameras, and combined with 
the measurements of bathymetry can provide estimates of the along
shore variability of the vertical swash motion. 

Swash spectral density demonstrates variation of swash motion 
along the 200 m stretch of the coastline (Fig. 13). In the infragravity 
band (frequency f < 0.05 Hz), Case 1 (Fig. 13a) has a strong variation 
with lower energy in the middle of the domain (roughly 620 < Y < 690 

Fig. 11. Difference in vertical versus horizontal swash estimated by FCN and 
lidar for a) Case 1, foreshore slope βf = -0.08, b) Case 2, βf = -0.07, c) Case 3, βf 
= -0.04, and d) Case 4, βf = -0.04. The solid curve is the linear least squares fit 
and its slope is denoted by m in all panels. The red curves on each panel 
represent the probability density function for the horizontal swash (horizontal 
curves) and vertical swash (vertical curves) difference data points. 

Fig. 12. Power spectral density of vertical swash estimated with FCN (red curves) and lidar (black curves) versus frequency at Y = 620 m for a) Case 1, b) Case 2, c) 
Case 3, and d) Case 4. 

Fig. 13. Vertical swash spectral density (color contours, separate color bar for 
each row on the right) as a function of alongshore coordinate versus frequency 
for a) Case 1, b) Case 2, c) Case 3, and d) Case 4. 
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m). Case 2 (Fig. 13b) has higher energy at the north end of the region (Y 
> 680 m). Cases 3 and 4 also have minima in the infragravity swash 
energy at about Y = 690 and Y = 680 m, respectively (Fig. 13c and d). 
Similar to prior studies (Guedes et al., 2012), the causes of these 
alongshore variations of infragravity swash energy are uncertain. 
Alongshore variations in incident wave energy are believed to be small, 
but the energy patterns at least partly could be related to variable swash 
zone beach slopes (Fig. 3) or to variable infragravity generation and 
dissipation over the surfzone bathymetry (Holland and Puleo, 2001; 
Fiedler et al., 2015; Senechal et al., 2018). 

There is good agreement between lidar and FCN measurements of 
wave-induced changes to the mean water level (setup), significant swash 
height (4 times the standard deviation of the vertical swash excursion), 
and the 2% exceedance value of runup at Y = 620, especially for Cases 1 
and 4 (Fig. 14, compare symbols with same color curves). Setup often is 
nearly constant along the beach, except at the boundaries where it in
creases up to about 0.5 m (black curves in Fig. 14). The 2% runup ex
ceedance also is nearly alongshore uniform (dash-dotted red curve in 
Fig. 14a), except near Y = 600 m, where it decreases. The significant 
swash height varies along the shore, with lower values in the middle of 
the domain (dashed blue curve in Fig. 14). This alongshore variation is 
strongest for Case 1 (1.2 < swash height <2.0 m), possibly owing to a 
larger alongshore variation in the swash zone beach slope or a magni
fication of the effects of the surfzone bathymetry (refraction, dissipation, 
and wave-current interactions) related to the larger offshore wave 
heights and incident directions (Fig. 2). Significant wave height, setup, 
and 2% exceedance wave runup are relatively uniform alongshore for 
Case 2 (Fig. 14b), as is the bathymetry (Fig. 4b). The FCN estimated 
significant swash height agrees well with the lidar estimate in Case 2 
(compare the blue diamond with the blue dashed curve in Fig. 14b). 
However, FCN underestimates setup and the 2% exceedance runup 
(Fig. 14b). All three parameters are relatively uniform alongshore for 
Cases 3 and 4 (Fig. 14c and d). The alongshore pattern of the 2% ex
ceedance runup is similar to the wave setup pattern, which increases to 
the north, possibly owing to wave focusing in this region, reduced wave 
dissipation where the sandbar is absent, or a steeper swash zone beach 
slope (Fig. 4). 

4. Conclusions 

The paper presents a new method to estimate swash excursion 
automatically from shoreline video frames using a deep learning 

framework with unique computer vision algorithms. The framework 
includes the processing of raw frames as inputs to the FCN model, the 
integration of bathymetric surveys to derive field-scale vertical swash, 
setup, and 2% runup exceedance values along a few 100 m of the sandy 
beach, and the analysis and identification of error sources in the 
extraction of swash motion from video imagery. 

As a core part of this deep-learning framework, V-BeachNet, a FCN 
model that leverages advanced features such as Adaptive Feature Bank 
(AFB) and Uncertain-Region Refinement (URR), estimates swash ex
cursions along the shoreline. The FCN model was trained with 16 
randomly selected and manually segmented images of the swash zone, 
and then used to estimate swash excursions for four 1-h sets of 2 Hz 
images. FCN estimates of swash excursions can be degraded by errors 
introduced in video image rectification caused by the assumption of a 
flat surface, and by the difficulty of detecting rundown. However, 
despite potential errors, spectra of swash excursions, significant swash 
heights, wave setup, and the 2% exceedance values of runup estimated 
by the FCN model agree reasonably well with those estimated by a 
scanning lidar. Although the results are promising, improved image 
rectification and better synchronized topographic and bathymetric data 
would enhance the accuracy of wave runup extracted by the V- 
BeachNet. 

V-BeachNet offers the capability to analyze archived, as well as real- 
time video footage, enabling the quantification of alongshore variation 
of swash motion on beaches that extend over hundreds of meters. By 
utilizing this deep-learning framework, the swash or runup data 
extracted from the videos can be paired with phase-resolving numerical 
modeling, providing a powerful tool for the study of swash zone 
dynamics. 
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