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A B S T R A C T

Wave-orbital velocities are estimated with particle image velocimetry (PIV) applied to rapid sequences of images 
of the surfzone surface obtained with a low-cost camera mounted on an amphibious tripod. Time series and 
spectra of the remotely sensed cross-shore wave-orbital velocities are converted to the depth of colocated 
acoustic Doppler velocimeters (ADVs), using linear finite depth theory. These converted velocities are similar to 
the velocities measured in situ (mean nRMSE for time series = 16% and for spectra = 10%). Small discrepancies 
between depth-attenuated surface and in situ currents may be owing to errors in the surface velocity measure
ments, uncertainties in the water depth, the vertical elevation of the ADVs, and the neglect of nonlinear effects 
when using linear finite depth theory. These results show the potential to obtain spatially dense estimates of 
wave velocities using optical near-field remote methods during field campaigns and continuous monitoring 
operations.

1. Introduction

Wave-orbital velocities are important for a range of nearshore pro
cesses, including generating shear stress on the seafloor (Madsen and 
Grant, 1976) that suspends sediment into the water column and moves 
sediment along the bed, thus causing bathymetric evolution (Fredsoe 
and Deigaard, 1992; Nielsen, 1992; van Rijn, 1993), and driving 
shoreward mass flux (Svendsen, 1984). Orbital velocities also can 
impact infrastructure (Hughes, 2004) and drive wave-energy converters 
(Wang, 2015; Lopes de Almeida et al., 2020). Although wave-orbital 
velocities can be measured with in situ current meters accurately 
(0.5–1.0%, Nortek; Lohrmann et al., 1994; Voulgaris and Trowbridge, 
1998), it can be difficult to deploy and maintain sensors in the surfzone 
where waves are breaking (Thornton and Guza, 1986). To complement 
field data, numerical models of surfzone processes have been developed, 
many of which are limited by either phase averaging, depth averaging, 
computational capabilities, or some combination thereof. As a result of 
these simplifications, the typical errors for modeled orbital velocities 
relative to field observations are generally 10–20% (Grasmeijer and 
Ruessink, 2003; Torres-Freyermuth et al., 2007; Nam et al., 2020).

To address the limitations of in situ measurements and models, 
remote sensing methods have been developed to enable observations of 
mean flows in the surfzone (Holland et al., 2001; Chickadel et al., 2003; 

Puleo et al., 2003; Perkovic et al., 2009; Holman and Haller, 2013; 
Wilson et al., 2014; Dérian and Almar, 2017; Anderson et al., 2021; 
Rodríguez-Padilla et al., 2021; Dooley et al., 2024; references therein, 
and many others), providing greater spatial coverage than possible with 
in situ methods. However, there are disadvantages of remote methods. 
For example, optical remote observations measure velocity at the sur
face and require sufficient lighting and sea surface texture (e.g. bubbles, 
foam, ripples, Puleo et al., 2003; Piepmeier and Waters, 2004; de Vries 
et al., 2011). In the surfzone, surface flows may be different than 
mid-water column flows, especially in the cross-shore where there can 
be shoreward mass flux on the surface in the presence of breaking waves, 
and offshore-directed undertow in the mid-water column (Svendsen, 
1984; Stive and Wind, 1986). Further, although remote methods are 
non-intrusive, the surface velocity may be affected by wind stress 
(Rodríguez-Padilla et al., 2021). The wind direction is relatively con
stant compared with the periodic orbital velocities, and thus wind shear 
on the surface can increase surface velocity when in the same direction 
and decrease the surface velocity when in the opposite direction (Xie, 
2017). Other issues with remote methods are the computational costs of 
image processing methods such as particle image velocimetry (PIV, 
Baker et al., 2023; McIlvenny et al., 2023), for example, and error that 
can be introduced with rectifying image pixels into physical coordinates 
(Baker et al., 2023; Dooley et al., 2024).
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Here, remote sensing of surfzone currents is extended to the esti
mation of cross-shore wave-orbital velocities. To estimate wave-orbital 
velocities remotely, velocity at the surface is measured by tracking 
breaking-wave-induced foam in sequences of images of the sea surface 
and corrected for depth attenuation using linear finite depth theory. 
Time series and power spectra of the depth-corrected surface velocities 
are compared with mid-water column velocities measured with in situ 
current meters. The accuracy of the estimated velocity is evaluated in 
different environmental conditions (e.g., water depth, wave height, and 
wind speed).

2. Materials and methods

2.1. Data collection

Observations were obtained in May 2015 in the surfzone of a rela
tively long, straight beach at the US Army Corp of Engineers Field 
Research Facility (FRF) in Duck, North Carolina. Four acoustic Doppler 
velocimeters (ADVs) were deployed along a cross-shore transect span
ning the surfzone from ~2- to 4-m water depth (Fig. 1). The in situ ADVs 
were offshore, on top, and onshore of a ~0.75 m high sandbar (cross- 
shore position 225 m in Fig. 1). Each ADV had an accompanying colo
cated pressure sensor. All sensors were sampled at 2 Hz for the first 3072 
s of every hour, and observations underwent quality control to remove 
spurious data (Elgar et al., 2001, 2005). In addition, a mobile amphib
ious tripod (CRAB, Birkemeier and Mason, 1984) that held a GoPro 
video camera (Hero 4 in 1080p at 30 frames per second) about 10.6 m 
above the seafloor (Fig. 2) transited along the array, stopping at each of 
the 4 locations to record images of the sea surface above the ADVs. All 
videos that contained an ADV near the center of the field of view of the 
camera were selected for analysis (Table 1), resulting in four case 
studies, one at each of the four stations. Ranges of offshore (17-m water 
depth) significant wave heights, peak periods, and mean wave directions 
were 0.5–1.5 m (Fig. 3A), 5–6 s (Fig. 3B), and 70◦ north to 30◦ south of 
shore normal (Fig. 3C), respectively. Nearby measured water levels were 
between high and mid-ebb tide (Fig. 3D), and average wind speeds 
(measured on a neighboring pier in ~6 m water depth) were from 5 to 
10 m/s (Fig. 3E).

2.2. Image processing

The raw images (30 Hz sampling frequency) were corrected for 
distortion (Fig. 2B) caused by the wide-angle lens of the camera (Fig. 2A) 
using the open-source program Argus (Jackson et al., 2016) that em
ploys a fisheye distortion model (Urban et al., 2015; Scaramuzza et al., 
2006). To increase contrast and better define features on the water 
surface, images were preprocessed using a contrast limited adaptive 
histogram equalization (CLAHE) filter (Pizer et al., 1987) with a 64-pixel 
window size and global contrast stretching that varied depending on the 
lighting of the individual video. Particle image velocimetry (PIV, Raffel 
et al., 1988; Adrian, 1991; Perkovic et al., 2009; Dooley et al., 2024; and 
many others) with PIVlab in MATLAB (Thielicke and Stamhuis, 2014; 
Thielicke and Sonntag, 2021) was used to estimate velocities within a 
region of interest (ROI). The ROI was defined on the sea surface directly 
over the location of the ADV and pressure sensor as a rectangular region 
where PIV was performed, measuring 112 X 81 pixels in the cross- and 
alongshore directions, respectively (Fig. 2B). The ROI varied in size from 
4.95 (Video 3) to 6.78 m2 (Video 1, Table 1) depending on the distance 
from the camera on the CRAB to the water surface and to the ADV 
(Fig. 4). PIV was performed in three passes, starting with a 40- X 40-pixel 
interrogation area and a step size of 20 pixels in the first pass, followed 
by two passes using 16- X 16-pixel windows, each with a step size of 8 
pixels. The processing resulted in a 13 (cross-shore) by 9 (alongshore) 
array of surface velocity vectors [pixels/frame] at every time step.

To relate pixel length to meters, the distance from the camera to the 
PIV ROI was calculated for each video using the triangle similarity 
method (Megalingam et al., 2016) accounting for the vertical distance 
from the camera to the water surface (estimated using water depth 
measured by the pressure sensor colocated with the ADV), the horizontal 
distance from the CRAB to the ADV (surveyed), and the width of the 
CRAB walkway (0.4 m) (Fig. 4). With the pixel-to-meters calibration, the 
surface velocities measured with PIV (Us) were converted from pixels 
per frame to meters per second. Only the cross-shore component of the 
mid-water column velocity (U) and Us were considered owing to the 
shore-normal wave propagation direction within the camera field of 
view, because the alongshore spectral values were an order of magni
tude lower than those of the cross-shore wave orbital velocities and 
below the noise floor of the PIV estimates.

Fig. 1. Map of Eastern United States with an expanded view (red box) of the bathymetry (color scale on the right, 0.5 m contour curves) measured on May 19, 2015 
as a function of alongshore and cross-shore position at the study site. Locations of the FRF pier (white rectangle), the ADVs (ADV #1 red, ADV #2 blue, ADV #3 
magenta, ADV #4 black), and pier-end wind gage (cyan star) are overlaid on the bathymetry. The wave buoy used for incident wave conditions was in 17-m water 
depth located at X = 3715 and Y = 1433 m (not shown).
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The surface velocity vectors were processed to remove spurious 
values using an image contrast threshold that varied between videos 
(0.005–0.020) to eliminate vectors when the water surface was smooth 
with no trackable features or foam. In addition, vectors with a mean 
correlation coefficient of less than 0.6 were rejected. The remaining 
vectors in the ROI were spatially averaged over the entire area to 
calculate a single Us measurement for each time step and were down- 
sampled from 30 to 2 Hz to match the sampling frequency of the 
ADVs and pressure sensors. Time lags between the video and ADV clocks 
(41, 2, 5, and 11 s for cases 1–4 respectively) were corrected by maxi
mizing the velocity cross-correlation at zero lag. PIV measurement un
certainty was estimated using the mismatched pixel method 
(Sciacchitano et al., 2013) and converted to velocity. These un
certainties were averaged over each ROI and over the video duration, 
resulting in an average PIV uncertainty estimate for each case (0.21, 
0.20, 0.19, 0.29 m/s).

3. Results

First, the camera-derived surface velocity (Us) was compared with in 
situ velocity measurements (U) at the location of the ADV for four case 
studies (vertical shaded areas in Fig. 3). The surface currents Us will 
differ from the mid-water column U because the ADV is 0.8–2.6 m below 
the mean surface (Table 1). Time series of Us (red curves in Fig. 5) are 
similar to U (black curves in Fig. 5), although Us has higher onshore- 
directed peaks. The normalized (by the maximum range of U) root 
mean square error (nRMSE) between Us and U before any depth 
correction was applied was 28.36%, 25.34%, 10.08%, and 33.30% for 
the four cases, respectively (Fig. 5). The discrepancy between Us and U 
increases as the mean water depth of the ADV increases.

The time series of Us were converted to equivalent velocities at the 

depth of the ADV (Uc) using linear finite depth theory which accounts 
for velocity attenuation at depth, given by 

Uc =Us
cosh(kzc)

cosh(kzs)
(1) 

where Uc is the depth-converted velocity, Us is the surface velocity 
measured by PIV, zc is the height of the ADV above the seafloor (con
stant, zc=0.78 m), and zs is the time varying water depth. Here, k is the 
linear theory wavenumber associated with the peak period of the 
spectrum, and thus higher frequency motions are not attenuated suffi
ciently with depth, reducing correlations with midwater column ADVs. 
For example, the sharp onshore-directed peaks in the surface velocities 
are not attenuated sufficiently, leading to overprediction of mid-water 
column velocities during strong onshore flows (Fig. 6). Given the error 
introduced by using a single wavenumber in Equation (1), the depth- 
corrected Uc values are correlated (0.54 < r2 < 0.72) with the corre
sponding measured wave orbital velocities at depth, with a mean bias of 
0.13 m/s and mean normalized RMSE of 16.3% (Fig. 6).

The power spectral density (PSD) of the remotely sensed surface 
velocities were converted to spectra at the ADV depth also using linear 
finite depth theory, such that 

PUc (f)=PUs (f)
cosh2

(k(f)zc)

cosh2
(k(f)zs)

(2) 

where PUc (f) is the depth-converted PSD at frequency f for 0.05 < f <
0.50 Hz, PUs (f) is the PSD of the velocity at the surface, k(f) is the 
wavenumber at each frequency calculated using mean water depth over 
the entire case, zc is the height of the ADV above the seafloor (constant, 
zc=0.78 m), and zs is the mean water depth over the duration of the 
video. The PIV-estimated PSD at depth are similar to those estimated 

Fig. 2. (A) Raw view and (B) corrected-for-camera curvature views from the GoPro mounted on the CRAB with the PIV region of interest (red, panel B) colocated 
with the ADV from Case #1, recorded at 0 925 h EST on May 14, 2015.

Table 1 
Details of the four videos used in the analysis. ADVs were approximately 0.78m above the seafloor in all cases.

Case 
#

ADV 
#

Video Start Time 
(EST)

Video Duration 
[mm:ss]

Mean Water Depth at 
ADV [m]

Z Location of ADV [m] 
(NAVD88)

Cross-shore Location (X 
FRF) [m]

Hs 

[m]
Tp 

[s]
PIV ROI 
[m2]

1 1 14-May-2015 
09:25 a.m.

15:35 2.20 − 0.72 134 1.07 4.77 6.78

2 2 14-May-2015 
10:02 a.m.

08:33 3.18 − 2.72 180 1.07 4.77 6.45

3 3 15-May-2015 
11:01 a.m.

12:40 1.59 − 0.72 247 0.75 5.91 4.95

4 4 14-May-2015 
12:01 p.m.

03:05 3.60 − 2.72 295 1.47 4.96 6.50
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Fig. 3. Offshore (17m Datawell Waverider Buoy) (A) significant wave height, (B) peak period, (C) wave direction relative to true north (shore normal is 72◦, black 
dashed line, north is negative, south is positive), (D) tidal range measured with a NOAA gage on the pier in ~6 m depth, and (E) pier-end wind speed (left vertical 
axis) and direction from north (right vertical axis) versus time since 00:00 May 14, 2015 (May 14–15). The colors in (E) represent maximum (red) and minimum 
(green) instantaneous wind speed over the 10-min averaging window. The shaded vertical bars indicate time periods corresponding to the case studies discussed here, 
colored by the ADV number for each case (legend on the right).

Fig. 4. Schematic of the distances used for the PIV image spatial calibration. The “Camera to Water Surface” and “CRAB to ADV” distances were used to calculate the 
“Camera to ROI” hypotenuse. The “Camera to CRAB Walkway” was used in addition to the “CRAB Walkway Width” in both pixels and meters to find the camera focal 
length using the triangle similarity method.
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from the mid-water column observations (Fig. 7). The normalized (by 
the maximum range of PU(f)) RMSE between PUc (f) and PU(f) is less than 
9% for 3 of the 4 cases (Fig. 7A–C), and 19% for Case #4 (Fig. 7D). 
Modifying the mean total water depth zs in Equation (2) by ± 25% 
changes the RMSE by less than 5% (Fig. 7).

4. Discussion

The 10–20% RMSE between PUc (f) and PU(f) is similar to errors in 
methods used to estimate near-bed orbital velocities from wave pa
rameters to drive sediment transport models (Nam et al., 2020; Gras
meijer and Ruessink, 2003; Torres-Freyermuth et al., 2007; Kawamata 
and Kobayashi, 2023). Converting the surface velocity time series to 
mid-water column depth using only the wavenumber at the peak period 
was used to avoid errors associated with inverse Fourier transforms (e. 
g., phase shifts, Gibbs phenomenon). To quantify the effect of this 
simplification, Equation (2) was solved using only the wavenumber at 
the peak period of the surface velocities. The nRMSE between spectra of 
U and Uc increased by 9.5, 10.9, 1.1, and 11.3% for the four cases, 
respectively.

Other error sources that are applicable to both the time and fre
quency analyses include errors in PIV measurements, errors in water 
depth and ADV horizontal and vertical locations (e.g., causing errors in 
the rectification from pixels to physical coordinates), and ignoring 
nonlinear effects in the surfzone (Bonneton et al., 2018; Martins et al., 
2020, 2023). PIV measurement errors can be caused by oblique camera 

angle (Dooley et al., 2024) and reduced signal (foam) on the surface of 
wave troughs compared with wave crests. The latter is particularly 
evident in video 4 located at the most offshore location, which had the 
least breaking and consequently the least foam on the surface (Fig. 1). 
Video 4 also was recorded when the sun was directly overhead at 
midday (Table 1). The corresponding surface glare made the foam 
difficult to track, contributing to the largest error of the 4 videos 
(Fig. 5D, 6D and 7D). Many others have noted the decrease in PIV 
performance when there is insufficient surface texture (Puleo et al., 
2003; Piepmeier and Waters, 2004; de Vries et al., 2011; Dooley et al., 
2024). It is expected that poor surface texture and lighting, which varied 
across the four videos, are the primary contributions to PIV measure
ment uncertainty for the camera position and data considered here.

The bathymetry was measured by the mobile amphibious tripod, and 
the vertical locations of the ADVs were measured by SCUBA divers with 
hand-held tape measures. Both measurements are subject to error, 
which a sensitivity analysis showed could increase error in Uc by up to 
5% if water depth accuracy is off by 25% (Fig. 7). Additionally, neglect 
of nonlinearities in the depth correction (Bonneton et al., 2018; Martins 
et al., 2020, 2023) can lead to errors. For the order (1 m) distance be
tween the surface and the ADVs here, this error is relatively small.

The errors between PU(f) and PUc (f) were not correlated with sig
nificant wave height, peak wave period, wave direction, average wind 
speed or direction, or water depth. The wave direction at the ADVs and 
the measured wind were both constant during each of the four videos. 
Thus, the influence of wind is expected to remain constant across all 

Fig. 5. Samples of PIV surface (red curves) and ADV mid-water column (black curves) cross-shore orbital velocities versus time for (A) Case #1, (B) Case #2, (C) Case 
#3, and (D) Case #4, (Case details in Table 1). Positive values are onshore directed. Data gaps are due to unreliable PIV measurements (mean correlation <0.6). 
nRMSE is calculated for the entire time series, not only the 60 s section shown here.
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cases, despite not being able to quantify these effects without a full 
velocity profile. The methods presented here provide a new observation 
approach for measurement of surfzone velocities that may be useful for 
the study of nearshore hydrodynamic and sediment transport processes, 
model validation, and informing coastal design.

This study uses videos recorded from a camera mounted on a 
specialized surfzone-capable vehicle approximately 10 m above the 
water surface. It is possible to estimate surface velocities from shore- or 
drone-based cameras with sufficiently high resolution, even if the dis
tance to the water surface is greater than 10 m. Recent studies using PIV 
in the surfzone achieved ~0.8 m resolution in the horizontal from a 
drone-based camera approximately 40 m above the surface (Dooley 
et al., 2024). The horizontal resolution of the method depends on a 
combination of camera resolution, PIV integration window and step 
size, and spatial averaging windows. Regardless of the 
camera-to-surface distance, this method can estimate orbital velocities 
for all surface gravity wavelengths (greater than a few centimeters) that 
are larger than the PIV resolution used.

5. Conclusion

Images of the sea surface were obtained with a low-cost camera 

mounted on a mobile amphibious tripod at four locations spanning the 
surfzone in water depths from about 2 to 4 m. At each of the four lo
cations, the field of view of the camera was above a mid-water column 
current meter. Time series and spectra of instantaneous (2 Hz) wave- 
orbital velocities derived from the sea-surface images using PIV are 
similar (mean normalized RMSE of 16% and 10% for time and frequency 
analysis, respectively) to the velocities measured by in situ mid-water 
column current meters when the surface velocity measurements are 
converted to the equivalent velocity at the depth of the in situ current 
meters using linear finite depth theory.
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values are onshore directed. Error metrics are from the raw (not the binned) data of the entire time series.
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