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Abstract A physics‐informed deep conditional generative model driven with remotely sensed surface
currents is shown to estimate surfzone water depths (bathymetry). The model encodes measured flow data as
latent Gaussian parameters and decodes these distributions to estimate water depths over the domain,
progressively refining its predictions via a loss‐minimization strategy. The model performance is evaluated on
in‐distribution and out‐of‐distribution data sets collected in Duck, North Carolina, demonstrating promising
site‐specific results, especially given the limited training data set used here (6 bathymetries with a total of 8 flow
realizations). However, broader applicability requires transfer learning across a wider range of bathymetric
observations.

Plain Language Summary Irregularities in the seafloor near the shoreline (including curving
sandbars, channels, bumps, and holes) cause spatial variations in waves approaching the coast, which can result
in strong and variable flows parallel (alongshore currents) and perpendicular (rip currents) to the beach. Thus,
having a map of the seafloor is important to predict the wave‐driven flow patterns and the corresponding
transport of pollution, biota, sediment, and swimmers from the beach to deeper water. However, obtaining
accurate maps of the seafloor is difficult in areas with breaking waves (the surfzone). For safety, surveying with
vessels is limited to calm conditions. However, the bottom changes during both mild conditions and storms, and
thus the surveyed maps typically are accurate for only a few days. Here, surfzone flows estimated by tracking
breaking‐wave‐generated foam in video images are input to an artificial intelligence system that estimates the
underlying seafloor shape (bathymetry). Although the data set used for training is limited, the results suggest
that this approach may provide estimates of the surfzone bathymetry during a wide range of wave conditions.

1. Introduction
Surfzone morpho‐ and hydrodynamics are critical to storm impacts along the coast, as well as beach recovery
following storms (Sallenger, 2000; Sallenger et al., 2004, 2005, 2006, 2007). Alongshore undulations in surfzone
bathymetry affect wave energy reaching the shore via variable dissipation and focusing, modulate the strength and
position of strong offshore‐directed “rip” currents, and affect rates of shoreline recovery (Castelle et al., 2017;
MacMahan et al., 2006; Phillips, Brown, et al., 2017; Thornton et al., 2007). Storms often trigger changes in
alongshore beach morphological patterns (Lippmann & Holman, 1990; Ruessink et al., 2007; Wright &
Short, 1984), but the relative importance of hydrodynamic forcing, antecedent sandbar and shoreline configu-
ration, and feedbacks between morphology and surfzone circulation remain uncertain. Post‐storm shoreward
movement of sandbars may contribute to beach recovery, with onshore migration rates depending on alongshore
variability, sandbar shapes, and preceding wave conditions (Phillips, Harley, et al., 2017; Vidal‐Ruiz & de
Alegría‐Arzaburu, 2020). Understanding how the morphologic‐hydrodynamic system varies along the coast
during and following storms is essential for informing coastal management decisions (de Swart et al., 2021; Di
Leonardo & Ruggiero, 2015). Obtaining accurate bathymetry is recognized as one of the most significant lim-
itations in understanding nearshore processes, especially during storms (Salim & Wilson, 2021; Van Dongeren
et al., 2008).

Although sandbar behavior has been inferred from time‐averaged images of breaking wave foam, these tech-
niques do not produce depth profiles and are sensitive to changes in mean water levels (tides and surge) and wave
heights (Guedes et al., 2011; Lippmann & Holman, 1990; Plant & Holman, 1999; Ruessink et al., 2009; Van
Enckevort & Ruessink, 2001). Time‐averaged foam patterns provide qualitative evidence that the initial transition
of sandbars from linear to alongshore variable may occur rapidly as wave energy decreases, but that continued
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periods of low wave energy are needed for large‐scale 3‐dimensional bathymetric features to form (Lippmann &
Holman, 1990). The averaged foam patterns from which rapid evolution is inferred may not reflect the underlying
seafloor features (Van Enckevort & Ruessink, 2001), especially during storms when waves are breaking in a wide
range of depths.

Conventional survey methods using sensors mounted on manned or autonomous surface vessels (Dugan
et al., 2001; Francis & Traykovski, 2021; Ruggiero et al., 2005) or bottom crawlers (Birkemeier & Mason, 1984)
are expensive and are not possible during the large breaking waves and strong currents in storms. Airborne
LiDAR maps nearshore regional bathymetry, but may be inaccurate in shallow areas with significant wave
breaking (foam) or suspended sediments, and often does not resolve 100‐m scale features owing to incomplete
spatial coverage from limited water penetration and interpolation artifacts introduced when filling data gaps
(Janowski et al., 2022; Robertson et al., 2018). Bathymetry also has been estimated indirectly using surface wave
propagation measured with optical cameras (Holman et al., 2013), LiDAR (Blenkinsopp et al., 2012; Brodie
et al., 2015; Martins et al., 2025; Wilson & Berezhnoy, 2018), radar (Haller et al., 2014), and infrared (Dugan
et al., 1996). Algorithms such as cBathy (Brodie et al., 2018; Holman & Bergsma, 2021; Holman et al., 2013;
Honegger et al., 2019; Lange et al., 2023; O'Dea et al., 2025) have skill mapping sandbars during mild wave
conditions (wave heights of ∼1 m or less), but are less accurate for energetic waves during storms, when air‐ and
space‐based sensors, as well as oblique land‐based systems, can be hindered by atmospheric conditions. Clouds,
fog, heavy rain, or sea‐spray can obscure optical and IR imagery, and strong winds can prevent drones from
flying, making it especially difficult to collect data when energetic waves are most important (Lillesand
et al., 2015). Consequently, most investigations of nearshore processes depend on bathymetric surveys obtained
before and after storms, numerical simulations, or behavior inferred from averaged foam patterns.

Inverse and data assimilation techniques (Birrien et al., 2013; Lewis et al., 2006; Wilson et al., 2014; Wu
et al., 2023) and artificial intelligence methods (Adusumilli et al., 2024; Chen et al., 2023; Collins et al., 2020,
2021; Ellenson et al., 2020; Lowell & Calder, 2021; Salatin et al., 2024; Wang et al., 2022) have shown promise
for estimating nearshore processes given numerical model output and data from spatially sparse in situ sensors, or
time averaged images of breaking‐wave foam. Recent deep learning techniques, including fully convolutional
networks, have been used to estimate coastal inundation depths from community‐contributed images and videos
(Kabir et al., 2020; Liang et al., 2023; Muñoz et al., 2021), high coastal water levels (Palmer et al., 2024), swash
motion in rapid image sequences to enhance understanding of alongshore variability in wave runup on sandy
beaches (Salatin et al., 2024), and nearshore bathymetry by leveraging optical indicators of wave dynamics, such
as time‐averaged images and single‐frame image inputs (Collins et al., 2020).

Surface flow maps provided by remote sensing enable new techniques for estimating surfzone bathymetry.
Specifically, advances in particle image velocimetry (PIV) and the Optical Current Meter (OCM) techniques
(Chickadel et al., 2003; Holland et al., 2001; Puleo et al., 2003) enable surface flow estimates in the surf and
swash zones every few m on wave (1 s) and mean current (2 min) time scales (Dooley et al., 2025; McCormack
et al., 2025; Muscalus et al., 2025). The PIV and OCM techniques agree well with in situ observations for
breaking‐wave‐driven shallow alongshore flows in the surfzone (Chickadel et al., 2003; Dooley et al., 2025;
Wilson et al., 2014), which are roughly uniform with depth (Faria et al., 1998; Henderson et al., 2017), and resolve
flow patterns that may be missed by sparse in situ sensors.

However, the number of field observations may be insufficient for training an artificial intelligence model.
Moreover, field observations may be noisy owing to environmental conditions and constraints in data collection
methods (McCormack et al., 2025). Incorporating the governing equations of fluid dynamics into purely data‐
driven machine learning models has proven beneficial, leading to enhanced accuracy in solving partial differ-
ential equations under weak supervision. This approach, known as Physics‐Informed Neural Networks (PINNs;
Raissi et al., 2019), has demonstrated promising results in simpler benchmark problems. However, as solution
complexity increases, especially in the presence of multiscale phenomena, PINNs face challenges in trainability
and predictive accuracy, as demonstrated by numerical studies (Zhu et al., 2019). This difficulty arises from the
inherent limitations of neural networks in capturing fine‐scale variations within the training data (Wang
et al., 2021). Convolutional‐based architectures can address this issue by learning spatial hierarchies through
convolutional filters, enabling incorporation of both large‐ and fine‐scale variations in the data (LeCun
et al., 2010). Integrating physics‐based constraints into these models improves their ability to estimate complex
data patterns such as fluid dynamics (Geneva & Zabaras, 2020). These architectures can be merged with
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Variational Bayes methods (Kingma & Welling, 2013) to account for predictive uncertainty, an inherent char-
acteristic of field data, and to improve resilience in situations where data are scarce or noisy.

Here, spatially distributed surfzone water depths are estimated using remote‐sensing observations of surfzone
surface flow fields collected for a range of conditions (Section 2) via a data‐driven, physics‐informed deep
conditional generative model (Section 3). The model is trained to predict water depths from surface flows, and its
performance is evaluated under both in‐distribution (ID) and out‐of‐distribution (OOD) scenarios (Section 4). The
study concludes with a discussion of findings and future research directions (Section 5).

2. Field Observations
The data set comprises remotely sensed surface flow fields and corresponding water depths (computed as the
difference between static bathymetry and time‐varying offshore water levels) collected at the US Army Corps of
Engineers Field Research Facility (FRF) in Duck, NC (Figure 1), between 2013 and 2022. Measurements span
multiple surveys over seven distinct bathymetries (Table 1, B1–B7). For each bathymetry, several 30‐min‐
averaged surface flow‐water depth pairs are available, corresponding to different oceanographic conditions.

The model is trained using flow fields as input, with corresponding water depths as output, with true water depths
used to compute loss during training. In‐distribution (ID) evaluation involves testing the trained model on flow
fields from the same bathymetry as used in training, but using different surface flow and water depth pairs. This
allows assessment of how well the model generalizes across time‐varying ocean forcing, assuming stable ba-
thymetry. In contrast, out‐of‐distribution (OOD) evaluation tests the model on unseen bathymetry (Table 1, B7),
where neither surface flows nor associated water depths were included during training, enabling assessment of
generalization across both spatial and temporal variability. For Cases B1‐B6 (ID evaluation, Table 1), 25% of the

Figure 1. (a) Regional map of the southeastern United States and (b) expanded view of Albemarle and Pamlico Sounds and the adjacent barrier‐island coastline with a
red box surrounding the study site on the Outer Banks of North Carolina, and (c) the study site at the Field Research Facility in Duck, NC (north toward the top). The pier
is ∼500 m long, similar to the width of the island onshore of the pier.

Table 1
Experiment Cases for the Model

Case Bathymetry survey date Video record start time (ET) 30‐min flow‐depth pairs Train‐test split (%) |r|within

B1 2013‐10‐02 (B1‐1) 2013‐10‐01 11:00 12 25–75 0.94

(B1‐2) 2013‐10‐02 12:00 0.88

B2 2018‐09‐19 (B2) 2018‐09‐20 10:00 4 25–75 0.94

B3 2021‐08‐30 (B3) 2021‐08‐29 13:00 4 25–75 0.87

B4 2021‐09‐05 (B4‐1) 2021‐09‐04 09:00 8 25–75 0.91

(B4‐1) 2021‐09‐04 16:00 0.88

B5 2021‐09‐07 (B5) 2021‐09‐08 08:00 8 25–75 0.89

B6 2022‐10‐07 (B6) 2022‐10‐08 10:00 4 25–75 0.84

B7 2013‐10‐22 (B7) 2013‐10‐20 09:00 18 0–100 0.56
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available observed surface flow and water depth pairs were randomly selected for training, with the remainder of
surface flows reserved for testing. The 25/75 split (rather than the more typical 80/20) was chosen to test model
generalization under realistic data‐scarce conditions common at most coastal sites. For Case B7 (OOD evalua-
tion), the trained model is tested on all surface flow fields to infer the corresponding water depths.

Bathymetry from the dry beach to offshore of the surfzone was surveyed during mild conditions with surface
vehicles (Forte et al., 2026) that traversed along cross‐shore transects separated by 12–45 m in the alongshore.
Raw survey data points were spatially interpolated to a 3.2 m grid. The bathymetries ranged from relatively
alongshore uniform to complicated seafloors with crescentic sand bars, bumps, and holes (described below).

Surface flows are estimated within 24 hr of the bathymetry surveys by tracking breaking‐wave‐induced foam with
Particle Image Velocimetry (PIV; Raffel et al., 2018) in optical images collected with cameras mounted on a 40‐
m‐tall tower (Dooley et al., 2025; Muscalus et al., 2025). Over a wide range of conditions and locations within the
surfzone, correlations (R2) between∼10 and 60‐min mean remotely sensed and in situ estimates were R2= 0.8 for
alongshore currents and R2 = 0.5–0.7 for cross‐shore currents (correlations were reduced if there was undertow
below the surface) when there was sufficient foam to track, usually for significant wave heights greater than
∼0.5 m (Dooley et al., 2025; Muscalus et al., 2025). The nine recordings, which have durations ranging from 120
to 540 min (Table 1), are broken into 30‐min periods. The 40 resulting 30‐min‐averaged surface flow fields over
bathymetries B1 through B6 are used for ID training and testing, whereas the 18 30‐min‐averaged surface flow
fields over bathymetry B7 are used to evaluate model predictions on the OOD data set. Gaps in estimated flows
occur owing to insufficient foam or lighting conditions (Dooley et al., 2025).

For each case, the standard deviation of the flow field (Figure 2) at each grid point is calculated to quantify flow
variability, using flow values from all 30‐min flow fields within that case. A higher standard deviation indicates
greater variability in flow, resulting in a natural distribution shift between training and testing samples, which
helps prevent overfitting and enhances the model's generalization.

Figure 2. Standard deviation of the flow field (color scale on right) as a function of alongshore and cross‐shore coordinates
for the Cases (a) B1‐1, (b) B1‐2, (c) B2, (d) B3, (e) B4‐1, (f) B4‐2, (g) B5, and (h) B6.
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To investigate the similarities or differences among the flow fields, within‐case flow consistency was quantified
by computing mean pairwise correlations between individual 30‐min flow realizations for each case (Table 1,
|r|within). Within‐case flow correlations for Cases B1–B6 are high (|r|within > 0.84), confirming flow consistency
over the same bathymetry despite varying conditions. For between‐case comparisons, the 30‐min remotely sensed
estimates of currents for each case were averaged, producing case‐averaged flow fields. The correlations of these
case‐averaged flow fields with each other range from negative to positive (not shown). High correlation values
(|r|between ≥ 0.50, Cohen, 2013) suggest similar flow structures, and thus a model trained on one case may perform
well on others with similar patterns, but also could risk overfitting. Lower correlation (|r|between < 0.30,
Cohen, 2013) indicates distinct flow characteristics, which may challenge model performance on unseen data. For
many ID cases (B1–B6) the correlations are moderate (e.g., B2–B4 with B6) to high (e.g., B2 with B4). In
contrast, usually the correlations with OOD Case B7 are low, suggesting that a model trained on B1–B6 may
struggle to generalize to B7 in OOD evaluation. The high within‐case correlations combined with low between‐
case correlations confirms that the data set contains both sufficient consistency for training and sufficient di-
versity for meaningful testing.

3. Model Architecture
3.1. Multi‐Scale Feature Extraction Mechanism

The estimates of surface flows are on a 3.2 × 3.2 m spatial grid, with 76 cross‐and 126 alongshore grid points. The
model uses four‐dimensional input matrices of 2 × 2 × 76 × 126, which include 2 batches, 2 channels, and the
cross‐ and alongshore grid points including the cross‐ and alongshore surface flow estimates. These variables are
normalized using their extreme values for efficient training (LeCun et al., 2002), followed by data augmentation
techniques including flipping, rotation, and noise addition before feeding to the model as a training data set to
reduce model overfitting. The model has a single channel for predicted water depth.

The model uses Conditional Variational Autoencoder (CVAE; Sohn et al., 2015) architecture composed of an
encoder, a latent space, a global decoder, and a local decoder (Figure 3) in PyTorch (Paszke et al., 2019). The
encoder, which is responsible for extracting features (information and patterns) from the input data, uses ResNet‐
101 (He et al., 2016) as the backbone structure pretrained on the ImageNet data set (Deng et al., 2009). Passing
through the encoder layers, each input batch is transformed into feature maps of size 1 × 2048 × 7 × 7 that are
flattened to form vectors. Based on the Gaussian distributions of the vectors in pairs of connected layers, 64 means

Figure 3. Deep conditional generative model consisting of an encoder with ResNet‐101, fully connected networks and latent space, a global decoder, and a local decoder.
Skip connections are shown with black arrows.
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and log‐variances are computed through a differentiable process to form a lower‐dimensional “latent space”
representation that captures the essential characteristics of the input data. The latent space allows the model to
learn and generate meaningful data distributions. The sampled data is passed through a fully connected layer in
the global decoder, generating intermediate representations from which it constructs an output tensor through a
specific pipeline. Multiple skip connections are included at different stages to facilitate gradient propagation and
enhance model performance. The local decoder also constructs an output tensor, and the output tensors from the
local and global encoders are fused to form the output water depth estimate.

Despite the complex architecture and aggressive train/test split, model overfitting is mitigated by data
augmentation, strong regularization, and physics‐based loss constraints. The loss function incorporating regu-
larization and physics‐based constraints is detailed in the following section.

3.2. Loss Calculation

The deep conditional generative model is trained by minimizing a total loss function that includes the three
components: total variation loss (LTV), data loss (LDATA), and residual or physical loss (LRES). The total variation
loss, which smooths the model predictions by reducing differences between neighboring pixel values in the
predicted water depth, is defined as:

LTV = λ∑N
j=1∑

M
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

( ĥi,j+1 − ĥi,j)
2
+ ( ĥi+1,j − ĥi,j)

2
√

(1)

where λ is a scaling factor (here λ = 0.1), ĥ is the predicted water depth at each grid point, M and N represent the
total number of grid points with indices i and j in the cross‐ and alongshore directions, respectively.

The data loss, which determines the discrepancy between the predicted ( ĥ) and surveyed (h) water depth is
composed of both Huber and Kullback‐Leibler Divergence (KLD) loss terms:

LDATA =
1
L
∑

L
k=1Huber( ĥk,hk) + KLD (2)

where L represents the total number of point measurements with indices k from the grid space for the entire
domain. The Huber loss term balances the influence of both large and small errors, ensuring a robust and stable
loss function compared with Mean Squared Error (MSE) by transitioning to linear scaling for large residuals,
reducing sensitivity to outliers in field data, and is defined as:

Huber Loss( ĥk,hk) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
( ĥk − hk)

2 for
⃒
⃒ ĥk − hk

⃒
⃒≤ δ

δ.(
⃒
⃒ ĥk − hk

⃒
⃒ −

1
2
. δ) otherwise

(3)

where δ (here δ = 0.1) determines the transition point between the quadratic and linear regions of the Huber loss
function and balances the treatment of small and large errors. The KLD loss term measures the difference between
the learned latent distribution and the prior distribution to regularize the latent space so that it has a Gaussian
distribution. Without this regularization, the encoder could learn arbitrary representations that the decoder cannot
interpret reliably, leading to unstable predictions. Constraining to a Gaussian prior ensures consistent and
physically meaningful depth predictions:

KLD = − 0.5∑R
p=1 (1 + log(σ2

p) − μ2
p − σ2

p) (4)

where R indicates the total number of Gaussian distributions (here R = 64), p is the index for each Gaussian
distribution, σ2 denotes the variance, and μ2 represents the mean of these distributions.

The residual loss, which ensures that the predictions adhere to the physical laws governing the flow motion in the
domain, is based on simplified steady‐state shallow water equations:
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LRES =
1
T
∑

T
r=1Huber(RCr + RMXr + RMYr, 0) (5)

where T indicates the total number of individual grid points (selected either from within the domain or from its
boundaries), with indices r used for calculating the residual loss. The Huber loss is calculated for simplified
nonlinear shallow water mass (RC) and momentum balances in the cross‐ (RMX) and alongshore (RMY) di-
rections, given by:

RCr =
∂( ĥrUr)

∂x
+

∂( ĥrVr)

∂y
(6a)

RMXr =
∂( ĥrUrUr)

∂x
+

∂( ĥrUrVr)

∂y
+ gĥr

∂ ĥr

∂x
(6b)

RMYr =
∂( ĥrVrUr)

∂x
+

∂( ĥrVrVr)

∂y
+ gĥr

∂ ĥr

∂y
(6c)

where Ur and Vr are the cross‐ and alongshore components of the input surface flow field, g is the gravitational
acceleration, and ∂

∂x and ∂
∂y indicate spatial derivatives in the cross‐ and alongshore directions, respectively.

Spatial derivatives are computed using second‐order centered finite differences for interior grid points and
first‐order forward/backward differences at domain boundaries, with spatial steps Δx = Δy = 3.2 m deter-
mined by the flow field resolution. Grid points with missing data are excluded from the residual loss
calculation.

The physics‐based training requires that the residual terms (the left side of Equations 6a–6c) are minimized.
Temporal fluctuations in water depth within a grid cell are negligible over the 30‐min averaged flows, and thus
RCr should be small (non‐zero RCr may occur owing to noisy observations or vertical‐flow structure). Many
studies have shown a one‐dimensional‐horizontal balance (1DH) on alongshore uniform beaches with cross‐
shore wave‐driven setup and alongshore bottom stress balancing onshore and diagonal radiation stresses,
respectively (Longuet‐Higgins & Stewart, 1964, and many field, laboratory, and numerical studies). In
contrast, pressure gradients and advection affect alongshore variable flow patterns (Christensen et al., 2025;
Hansen et al., 2015; Putrevu et al., 1995), especially at relatively small length scales (<100 m, Wilson
et al., 2013). It has been suggested that the wide range of conditions for which the 1DH balances hold is at
least partly owing to this cancellation of the 2DH terms. For example, converging feeder currents resulting in
cross‐shore rips have been parameterized well assuming a balance between pressure gradients and advection
along a streamline (Moulton et al., 2017). Here, the “residual” momentum terms (Equation 6b and 6c) that
include advection and pressure gradients (neglected in the 1DH balances and that roughly balance on
alongshore variable beaches (Wilson et al., 2013)) are used to estimate the local coupling between non‐uniform
flows and bathymetric features.

Data loss (LDATA) contributes the largest portion of the total loss (Figure 4a). The residual loss (LRES) is the
second largest term, initially decreasing within the first 1000 epochs before stabilizing. Total variation loss is the
smallest component and converges within the first 500 epochs. Training was stopped at 5000 epochs when total
loss plateaued (black curve in Figure 4a).

The learning rate, which determines the step size for optimization updates, is adjusted using a cyclic scheduler
(Smith, 2017), where the base learning rate is set to 10− 7 and the maximum learning rate is 10− 4 (Figure 4b).
The learning rate oscillates between the base and maximum learning rates with an amplitude that is reduced by
half for each cycle. Compared with a step scheduler, this method results in a more explorative behavior in the
model, preventing it from getting trapped in local minima. Additionally, L2 regularization (weight
decay = 0.1) is applied to all trainable parameters via the AdamW optimizer (Loshchilov & Hutter, 2019) to
prevent overfitting.
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4. Results
Overall, model predictions (which are constrained to areas with observed flows, Figures 5a–5d and 6a–6d) in ID
evaluation agree qualitatively (Figures 5i–5l and 6i–6l) with the surveyed water depths (Figures 5e–5h and 6e–
6h), with the difference maps (Figures 5m–5p and 6m–6p) revealing spatial patterns of prediction errors. In Cases
B1‐1 and B1‐2 (first and second columns in Figure 5) both the relatively deep channels (shown inside boxes) are
reproduced by the model. In both Case B1‐1 and B1‐2, the locations of the channels near alongshore coordinates
Y = 700 (shown with dashed boxes) and 900 m (shown with dash‐dot boxes) are reproduced, but there are
differences in the details of the modeled water depths. For example, the modeled channel for B1‐1 near Y= 700 m
is deeper than observed (red contours in Figure 5m), and the modeled channel for B1‐2 near Y = 700 is shallower
than observed (blue contours in Figure 5n), possibly owing to differences in the circulation patterns over the same
bathymetry. In Case B2, the shallow area observed near X = 200 and Y = 750 m is reproduced by the model, if
somewhat deeper, whereas the bathymetry near X = 150 m is predicted to be somewhat deeper than observed
(compare the dashed circle in Figure 5k with the dashed circle in Figures 5g and 5o). In Case B3, the overall
pattern of the modeled bathymetry is similar to that observed (compare Figures 5l with 5h), although there are
quantitative differences (Figure 5p).

For Case B4‐1, weak flows at X = 150 and Y = 800 m (Figure 6a) resulted in a predicted channel that is not
observed (compare the dashed circle in Figure 6i with the dashed circle in Figures 6e and 6m). Conversely, in
Case B4‐2, similarly weak flows (Figure 6b) yield more skillful, though still slightly deeper than observed
predictions (compare the dashed circle in Figure 6j with the dashed circle in Figures 6f and 6n). In Case B5
flows are relatively strong and alongshore directed (Figure 6c), the predicted nearshore water depths and the
sandbar at X = 200 and Y > 750 m align well with the survey‐derived depths, but the model predicts a more
pronounced channel in the central portion than observed (compare the dashed circle in Figure 6k with the
dashed circle in Figures 6g and 6o). Furthermore, in the presence of strong alongshore currents (Figure 6c, note
that scale arrows in Figures 6c and 6d are twice those in Figures 5 and 6a, 6b) the remote sensing estimates of
surface currents underestimate the depth‐averaged offshore‐directed flows (Dooley et al., 2025), likely leading
to errors in modeled water depths when using continuity (Equation 6a) as part of the minimization process. The
modeled bathymetry in Case B6, also with strong alongshore currents, but with a more alongshore nonuniform
circulation pattern (Figure 6d), is consistent with the observed water depths (compare Figures 6l with 6h and
6p). The location and shape of the sandbar (X = 150 m) and the channel across it (150 < X < 250 m,
Y = 750 m, Figures 6h and 6l) are modeled well, although water depths in B6 are shallower than observed
(Figure 6p).

Cases B4‐1 and B4‐2 share the same bathymetry (B4), but differ in water depth and circulation due to tidal stage
variation. The currents for the OOD data set Case 7 include spatially varying circulation patterns, and a wide
range of both cross‐ and alongshore flow speeds (Figure 7a). The locations and approximate sizes of the two

Figure 4. (a) Total (black curve), data (red curve), residual (yellow curve), and total variation (purple curve) losses, and
(b) cyclic learning rate versus training epoch for 30‐min mean flows.
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cross‐shore channels (shown with dashed and dashed‐dotted rectangles) observed in surveys are reproduced by
the model, though with limited accuracy in channel width and depth (compare Figures 7c with 7b). However,
overall the predicted water depths are greater than the observed values (Figure 7d).

Figure 5. (a–d) Thirty‐minute averaged surface flow fields used as model input (every 5th vector shown), (e–h) observed
water depths (ground truth), (i–l) model‐predicted water depths, and (m–p) differences between observed and model‐
predicted water depths versus alongshore and cross‐shore coordinates for Cases B1‐1, B1‐2, B2, and B3 (columns 1–4).
Cases B1‐1 and B1‐2 share the same bathymetry (B1), but differ in water depth and circulation due to tidal stage variation.
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For each test case, prediction errors were quantified with RMSE and uncertainty estimated by sampling 100
posterior realizations (Table 2). The RMSE was computed by averaging the 100 posterior samples to obtain mean
predictions for each flow realization, calculating spatial errors against observed depths, and averaging squared

Figure 6. (a–d) Thirty‐minute averaged surface flow fields used as model input (every 5th vector shown), (e–h) observed
water depths (ground truth), (i–l) model‐predicted water depths, and (m–p) differences between observed and model‐
predicted water depths versus alongshore and cross‐shore coordinates for Cases B4‐1, B4‐2, B5, and B6 (columns 1–4).
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errors across all grid points and flow realizations within each case. Mean 90% confidence interval width is the
average span between 5th and 95th percentiles, where coverage is the percentage of observations within these
intervals, averaged across all grid points and flow realizations for each case. The RMSE for ID cases ranges from
0.18 to 0.66 m, with B1‐1, B1‐2, B2, B3, and B4‐2 achieving lower errors (RMSE = 0.18–0.23 m) and higher
coverage (81%–90%). The cases B4‐1, B5, and B6 show larger errors (RMSE = 0.38–0.50 m) and reduced
coverage (52%–70%). The OOD Case B7 has the highest error (RMSE = 0.66 m) and lowest coverage (30%).
Confidence limit widths remain constant (∼0.54–0.56 m) across cases. The reduced coverage for challenging cases
demonstrates that the model appropriately flags predictions with lower confidence and provides practical value for
coastal managers to identify regions requiring additional observations. However, interval widths do not expand
proportionally, and thus the model provides relative rather than absolute uncertainty. Coverage values serve as
reliability indicators, with coverage below 60% signaling that results may be unreliable. Achieving fully calibrated
forecasts where 90% intervals consistently contain 90% of observations requires additional development.

5. Discussion
5.1. Comparison With Existing Methods

The RMSE for the PINN approach used here ranged from 0.18 to 0.66 m (Table 3), comparable with the RMSE
obtained using different variants of the wave‐celerity approach of cBathy (Lange et al., 2023) (Table 3). For
example, different versions of cBathy have RMSE errors in the surfzone from 0.17 (cBathyCT) to 0.81 m
(standard cBathy; Table 3). cBathy errors increase with wave heights (Brodie et al., 2018), whereas energetic
waves produce strong foam signals allowing better PIV‐derived currents (Dooley et al., 2025; Muscalus
et al., 2025), and thus more robust estimates of bathymetry. The methods are complementary, with cBathy
working well in mild wave conditions when there may be insufficient foam to estimate currents accurately,
whereas the surface current estimates and the PINN approach works better in energetic conditions.

5.2. Limitations and Future Improvements

This preliminary study with a limited data set suggests that surfzone bathymetry might be estimated knowing
surface currents, which can be obtained remotely. However, to strengthen the influence of physical constraints

Figure 7. (a) Thirty‐minute averaged surface flow fields used as model input (every 5th vector shown), (b) observed water depths (ground truth), (c) model‐predicted
water depths, and (d) difference between observed and model‐predicted water depths, as functions of alongshore and cross‐shore coordinates for Case B7.

Table 2
Domain‐ and Case‐Averaged Errors and Uncertainty Metrics of Model Predictions

Case B1‐1 B1‐2 B2 B3 B4‐1 B4‐2 B5 B6 B7

RMSE (m) 0.23 0.21 0.21 0.22 0.50 0.18 0.38 0.42 0.66

Mean 90% CI Width (m) 0.54 0.54 0.55 0.56 0.56 0.56 0.56 0.55 0.54

Coverage (%) 81 86 87 88 52 90 70 61 30
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during model training, several factors should be considered. For instance, it remains uncertain whether the mass
conservation equation is satisfied by the estimated surface flows, which do not detect mid‐water column offshore‐
directed mean currents (undertow). Similarly, the shallow water equations are based on depth‐averaged flows.
Surfzone flows may be influenced by wave conditions and topography outside the study region, which means
more time could be required for the flows and bathymetry to reach equilibrium. As discussed above, the simplified
momentum equations (Equation 6) omit radiation stress gradients assuming they are balanced by setup and
bottom stress. Moreover, the data set lacks sufficient in situ observations to estimate the wave frequency‐
directional spectrum necessary to determine radiation stresses and to estimate setup. Although including
observed or modeled wave forcing likely would improve the estimates of bathymetry, the results demonstrate that
bathymetric recovery from surface flows alone is feasible.

5.3. Implications for Coastal Monitoring

Bathymetry estimation from surface currents could address a critical gap in nearshore observation systems. Flow‐
based methods require sufficient foam tracer, which is naturally abundant during energetic conditions when wave
celerity methods become less reliable due to pervasive breaking. With increasing availability of shore‐mounted
cameras for coastal monitoring, the flow‐based method could enable continuous and low‐cost bathymetric ob-
servations resulting in improved understanding of storm‐driven morphologic evolution and supporting coastal
management decisions.

6. Conclusions
A physics‐informed, data‐driven deep conditional generative model is shown to predict surfzone water depths
(bathymetry) at least qualitatively from remotely sensed surface flows, even with a strongly limited set of training
data (6 bathymetries with a total of 8 flow fields). The model leverages a composite loss function that integrates
data, physical, and total variation losses to enhance predictive accuracy. It is trained on 25% of in‐distribution (ID)
data sets and tested on the remaining 75%, as well as on out‐of‐distribution (OOD) data sets. Domain‐ and case‐
averaged Root Mean Square Errors (RMSE) ranged from 0.18 to 0.50 for ID cases and was 0.66 m for the OOD
cases.
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