Complexities of bloom dynamics in the toxic dinoflagellate *Alexandrium fundyense* revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

Michael L. Brosnahan a,*, Shahla Farzan b, Bruce A. Keafer a, Heidi M. Sosika a, Robert J. Olson a, Donald M. Anderson a

a Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

b Department of Entomology, University of California—Davis, Davis, CA 95616, USA

Abstract

Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of *Alexandrium fundyense* (syn. *A. tamarense* Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore *A. fundyense* bloom (Salt Pond, Eastham, MA, USA), and from a rare *A. fundyense* red tide that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (2C) *A. fundyense* cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of *A. fundyense* cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus *Amoebophrya*. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells’ nuclei were also frequently consumed by *Amoebophrya* trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an *A. fundyense* culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than *Amoebophrya* infection, though an interaction between infection and planozygote maturation may also have contributed. The modified IFCB is a valuable tool for exploring the conditions that promote sexual transitions by dinoflagellate blooms but care is needed when interpreting results from samples in which parasitism is prevalent.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The dinoflagellates are a morphologically and metabolically diverse protist group that includes several species that endanger human health through the production of neurotoxic and gastro-intestinal toxins. They are among the most abundant eukaryotic microbes globally and can dominate planktonic ecosystems as ‘red tides’, dense monospecific blooms that dramatically alter the color of the sea surface. Comprehensive knowledge of their ecology is needed to understand plankton dynamics and also to inform mitigation strategies against harmful species. About half are photosynthetic (autotrophic or mixotrophic) and they include planktonic and benthic species as well as coral and animal endosymbionts. Heterotrophic forms include free-swimming grazers, phagotrophs, and parasites. The majority are motile and many species migrate vertically in the water column (Hasle, 1950). Especially important to this study, the dinoflagellates share a number of unique nuclear characteristics and have among the largest genomes known: DNA mass per cell is comparable to the multinucleated ciliates and two to three orders of magnitude greater than other planktonic algae (Prescott, 1994; Hou and Lin, 2009).

Changes in DNA content within a dinoflagellate cell may be caused by any of several ecologically important processes: vegetative cell...
A. fundyense is a causative organism of paralytic shellfish poisoning (PSP). Consumption of shellfish that are contaminated with PSP toxins can cause paralysis or death, making PSP one of the most dangerous seafood-poisoning syndromes worldwide. Consequently, A. fundyense is the focus of ongoing studies in the Gulf of Maine (GOM) and within the Nauset Marsh system (NMS; Cape Cod, MA). Microplankton samples analyzed in this study were taken in conjunction with these efforts and with the foremost goal of characterizing their A. fundyense populations.

Both the initiation and termination of A. fundyense blooms depend on transitions between the vegetative and sexual phases of the cells' life cycle (Fig. 1; Anderson et al., 1983). Therefore the detection of sexual transitions is important for predicting bloom decline. Under certain conditions, A. fundyense vegetative cells cease division and transform into gametes that are morphologically similar to their vegetative progenitors. Gametes conjugate and form swimming diploid cells called planozygotes that remain in the plankton for about 1 week before transforming into diploid resting cysts (Anderson and Wall, 1978). A. fundyense exits the sexual cycle through meiotic division of a planomeiocyte, a swimming cell that emerges from the resting cyst stage (Pfister and Anderson, 1987). The resulting haploid vegetative cells then resume mitosis.

Our primary objective in this study was to facilitate the identification of A. fundyense life cycle stages in natural populations through the use of a modified Imaging FlowCytobot (IFCB). IFCB is a custom-built flow cytometer that records particle images in addition to measuring fluorescence and laser scattering (Olson and Sosik, 2007). An associated image-classification pipeline is used to identify both rare and abundant species so that the fluorescence and image metrics of individual species can be compared between samples (Sosik and Olson, 2007). We configured IFCB to measure DNA content via fluorescence of the membrane permeable dye Hoechst 33342 and also to detect fluorescence from species-specific oligonucleotide probes. Data collected with the modified IFCB were then used to assess whether the combination of images and DNA measurements could be used to determine the timing and extent of shifts from vegetative division to the formation of planozygotes.

We also used the instrument to investigate the effects of infections by the parasitic dinoflagellate Amoebophrya on host...
A. fundyense since these infections might obscure increases in DNA content associated with A. fundyense sexual transitions. Amoebophrya are intracellular parasites that chronically infect many dinoflagellate species and may be a dominant factor in the termination of inshore blooms (Taylor, 1968; Coats, 1999; Chambouvet et al., 2008). Free-living Amoebophrya are small, 3 to 5 μm in diameter, and infect their hosts as single cells. Once inside, the parasite undergoes several rounds of replication to become a large, multi-nucleated trophont that distends its host, filling much of the host cytoplasm or nucleus as it matures. Ultimately, the host cell bursts and tens to hundreds of new infective Amoebophrya cells emerge. We examined the effects of Amoebophrya infection on the DNA content and size of A. fundyense cells in culture and by inspecting A. fundyense that were infected by Amoebophrya in the field.

2. Materials and methods

2.1. IFCB modification and sample analysis

IFCB was developed to address the need for sustained, in situ observation of large nanoplankton and microplankton (cells 10 to > 100 μm in length). In its original design, it was enclosed in a watertight aluminum housing and was configured to analyze raw seawater withdrawn directly from the environment (Olson and Sosik, 2007). For this study, IFCB was used as a laboratory instrument instead. This allowed samples to be concentrated and stained prior to analysis and also made it possible to install new lasers that do not fit within the standard underwater housing. IFCB’s red diode laser was replaced with a UV one (CUBE 375-16C, 375 nm, 16 mW by Coherent, Inc.) that excites the DNA-specific dye Hoechst 33342. A second, green laser (COMPASS™ 215M-10, DPSS-CW, 532 nm, 10 mW by Coherent, Inc.) was installed for the excitation of Cy3, a cyanine fluorophore that was attached to A. fundyense species-specific and Amoebophrya genus-specific oligonucleotide probes. Other changes to the optical system included the replacement of dichroic filters to allow the passage of blue light (Hoechst fluorescence, 400–500 nm wavelength) to the trigger photomultiplier tube (PMT; Hamamatsu HC120–05) and yellow-orange light (Cy3 fluorescence, > 550 nm wavelengths) to the second PMT. Both lasers were focused through a single pair of cylindrical lenses to produce horizontally elongated, elliptical beam spots across the sample channel. Because the lenses were not color corrected, the two beams had different focal points relative to the fluidic system’s sample core. This difference was diminished by adjusting the collimation of each beam independently with separate beam expanders. The beams were also separated in space so that cells first passed through the UV beam and then the green beam (Figs. 2 and 3).

A fast digitizer/data acquisition card (model AD2100-14, Chase Scientific Company) was added to the IFCB computing stack. The digitizer card enabled the recording of complete traces of PMT responses at 6 MHz for each cell that passed through the laser beams. Integrals of the trace data were computed after acquisition to quantify the fluorescence from both stained nuclei (UV beam) and Cy3-conjugated oligonucleotide probes (green beam; Fig. 3). Trace data from the blue light detector also provided measurements of peak height, which were used to ensure that integrated signal values were not saturated. Coefficients of variation (CV) for the fluorescence distributions were estimated by measuring the full width at half maximum height and dividing by 2.36 (Shapiro, 2003).

All plankton and culture samples were concentrated by retention of cells on 20 μm Nitex. Plankton samples from Salt Pond were collected with 5-L Niskin bottles, then pre-screened with 100 μm mesh to remove large plankton and detritus that could clog the IFCB’s fluidics system. Plankton samples from the western Gulf of Maine red tide were collected with a bucket and measured into a 2-L bottle without a pre-sieving step. In both cases, fixation and pigment extraction were as described by Anderson et al. (2005). This procedure included the addition of unbuffered formalin (5% v/v), which is known to diminish Hoechst fluorescence over time (Cetta and Anderson, 1990). We attempted to minimize the effect of prolonged formalin fixation by keeping concentrated samples on ice in the field. After transport to the lab, samples were resuspended in 14 mL of methanol that had been chilled to ~20 °C. The samples were stored up to 4 months at ~20 °C before staining with oligonucleotide probes and Hoechst 33342 immediately prior to analysis.

Two Cy3-conjugated oligonucleotide probes were applied in separate experiments: the A. fundyense-specific NA1 ribosomal probe (5′-AGTGCACACCTGCCCACTC-3′, Anderson et al., 1999) and a genus-specific Amoebophrya ribosomal probe (5′-CTGCCGTGAA-CACCTTAA-3′, provided by Mario Sengco). Hybridization was completed as described by Anderson et al. (1999), and samples were re-suspended in 5 × SET/Hoechst solution (750 mM NaCl, 5 mM EDTA, 100 mM Tris–HCl, 5 μg mL−1 Hoechst 33342, pH 7.8). Stained samples were stored at 4 °C for no longer than six hours then stirred in an ice bath with a magnetic stir bar for up to 30 min prior to analysis.

The IFCB’s maximum acquisition rate is ~12 Hz and is limited by the time needed to acquire an image for each trigger event. As a consequence, if cells pass through the laser beams too frequently, many are not recorded. This may be problematic if the target species comprises only a small fraction of the microplankton assemblage or when sample volumes are limited. Two strategies were used to maximize the proportion of A. fundyense cells detected. First, a high trigger threshold was applied in order to maximize detection of particles with intense Hoechst fluorescence (dinoflagellates and ciliates with exceptionally high DNA content and also blue fluorescent detritus). Second, the analysis rate was kept below 5 Hz by dilution of the sample with 5 × SET/Hoechst 33342 solution. The application of a high trigger threshold precluded the use of beads as internal standards of Hoechst fluorescence because their brightness was below the threshold necessary for efficient sample analysis. Instead, UV-excited AlignFlow Plus beads (A-7305, Invitrogen) were analyzed before and after each sample at a higher electronic gain setting. Data were not used if the mean fluorescence of the AlignFlow Plus beads differed by more than 10% before and after a sample was run. The overall mean of the AlignFlow Plus beads’ fluorescence was then used to normalize measurements of Hoechst fluorescence from the A. fundyense data. In a similar fashion, stability of the green laser was assessed once a day with phycoerythrin Calibrite beads (BD Biosciences). The CV values from both the AlignFlow Plus and Calibrite beads ranged from 5% to 10% throughout the 2-week period when samples were analyzed.

Images were classified with a support vector machine (SVM) based image-processing pipeline that was developed for analysis of IFCB data (Sosik and Olson, 2007). Six species/image categories were defined: A. fundyense singlet, A. fundyense doublet, Dinophy- sis acuminata, Goniyaulax sp., Protoperidinium sp., and a tintinnid class. The performance of the SVM classifier varies substantially depending on the relative uniqueness of its categories. Errors were corrected by manually reviewing all SVM-based image classifications and reassigning them as necessary. Data from cell clumps were not categorized, nor were other ciliate and dinoflagellate cell types that were found in only one or two water samples. After image classification of field samples, A. fundyense classifications were confirmed by reviewing Cy3 fluorescence from the A. fundyense-specific oligonucleotide probe.
Image features assessed during classification included a wide range of particle metrics such as size, shading and orientation, but only diameter measurements were included in our post-classification analysis. Single *A. fundyense* cells were approximated as spheres to calculate their volume, which was of interest because it was expected to co-vary with DNA content during cell division and because previous studies had identified larger *A. fundyense* as planozygotes (Anderson et al., 1983; Anderson and Lindquist, 1985).

Data from IFCB were not used to estimate *A. fundyense* concentration. Our experience has been that flow-cytometer based *A. fundyense* counts are unreliable for fixed samples (probably due to sinking of the fixed cells). Therefore, *A. fundyense* abundance estimates were taken from data collected in conjunction with the same field studies but published elsewhere (NMS: Crespo et al., 2011; western GOM red tide: McGillicuddy et al., this issue).

2.2. Salt Pond sampling

Samples for IFCB analysis were taken in conjunction with weekly surveys of the NMS bloom from March to June, 2009 (Fig. 4). Here, a brief overview of the NMS and the 2009 survey effort is provided (see Crespo et al. (2011) for a more detailed description).
Western Gulf of Maine (WGOM) map. Stations sampled from the WGOM red tide are denoted by circles leading from Portsmouth Harbor to the Northeastern Regional Association of Coastal and Ocean Observing Systems (NERACOOS) Buoy B (diamond, also NERACOOS Buoys A and E). A subsample from station 1 (filled circle) was analyzed with the modified IFCB and with a FACSCalibur instrument. Inset. Nauset Marsh system (NMS) map. Thirty-one stations throughout the NMS were monitored weekly from late March to June, 2009, but only samples from Salt Pond (filled circle) were analyzed for this study.

The NMS is a network of shallow channels that link three brackish ponds to a central marsh area that, in turn, is connected to the Atlantic Ocean via Nauset inlet (Fig. 4 inset). The mean depth within the NMS is approximately 1.25 m but its three ponds (the northwestern, southwestern, and southeastern extremities of the system) are deeper (up to 10 m). *Alexandrium fundyense* cells are selectively retained in the NMS ponds in spite of strong tidal flushing. Their retention is caused by an interaction between the system’s bathymetry and the swimming behavior of the *A. fundyense* cells (Anderson and Stolzenbach, 1985). As a result, the population in Salt Pond (the northwestern extremity of the NMS) is isolated from the southern populations and experiences independent development and termination bloom phases (Crespo et al., 2011). We took advantage of this isolation to identify samples collected during the bloom’s development, peak and termination phases (May 11th, 18th, and 26th respectively; see Fig. 5). Samples for IFCB analysis were collected as previously described at a station over the deepest area of the pond (Fig. 5). Samples for IFCB and with a FACSCalibur instrument. A subsample from station 1 (filled circle) was analyzed for this study.

All of the NMS surveys were conducted at high tide and during daylight so that our boats could navigate through areas of the central marsh that were drained during low tide. The IFCB samples from the 11th and 26th of May (development and termination phases) were taken in the mid-afternoon. Samples from May 18th (the bloom’s peak) were taken approximately three hours after sunrise.

2.3. Western Gulf of Maine red tide sampling

An *A. fundyense* red tide (hereafter termed the “WGOM red tide”) was discovered serendipitously during a mooring deployment July 10, 2009 aboard the R/V Gulf Challenger (University of New Hampshire, Portsmouth, NH). Six surface samples were collected within discolored water along a transit line from the NERACOOS B buoy to the mouth of Portsmouth Harbor (Fig. 4). Cell concentrates were refrigerated on board after sieving and formalin fixation. Once in port, the samples were transferred to ice for transport to Woods Hole, MA where they were resuspended in methanol less than 12 h after formalin fixation.

The monospecificity of *A. fundyense* in the GOM samples allowed us to analyze their DNA content with a commercial flow cytometer (FACSCalibur, BD Biosciences) in parallel with our IFCB analysis. A subsample from transect station 1 (where the *A. fundyense* cell concentration was highest) was stained with propidium iodide and treated with RNAse A as described by Taroncher-Oldenburg et al. (1997). The results from the two flow cytometers were compared through analysis of a clonal *A. fundyense* culture sample that had significant numbers of both G1 and G2+M phase cells (and therefore 1C and 2C modes in its DNA content distribution; McGillicuddy et al., this issue).

2.4. Amoebophrya spp. studies

To study the effect of *Amoebophrya* infection on the DNA content and cell size of host *A. fundyense* cells, an *Amoebophrya* sp. isolate was propagated in cultures of the *A. fundyense* clone SP-E10-03 (cultures isolated in 2004 and 2001 respectively, both from Salt Pond). The SP-E10-03 culture was grown in f/2 media without silicate (Guillard and Ryther, 1962) and infected with suspensions of actively parasitized host cells. Prior to formalin fixation, infected host cells are readily identified by their green fluorescence under blue illumination. *Amoebophrya* trophont autofluorescence was used to monitor the progression of parasite...
infections. Transfers to new host cultures were completed when more than half of host cells were visibly infected (typically every 4–6 days), but no other effort was made to control the parasite-to-host ratio. An infected sample was fixed for IFCB analysis when large numbers of the host A. fundyense had begun to lyse in the culture.

The measurement of DNA content required extraction of all intracellular pigments with ice-cold methanol so that infected cells could be identified through staining with the Amoebophrya genus-specific ribosomal probe. Previously it was shown that the Amoebophrya genus-specific probe was effective for identifying infected A. fundyense cells except during the initial phase of infection (M. Sengco, personal communication). We ignored this limitation because mature infections could be identified unequivocally and it was these older infections that were expected to have the greatest effect on host DNA content and cell size. Culture samples were stained for analysis on the modified IFCB as described for field samples except that infected cells were identified by the fluorescence of the Amoebophrya-specific ribosomal probe.

Amoebophrya infection rates in the field were assessed by staining subsamples from methanol suspensions simultaneously with the Cy3 conjugated A. fundyense-specific probe and a fluorescein isothiocyanate (FITC) conjugated version of the Amoebophrya-specific probe. The dual labeled samples were then inspected by epifluorescence microscopy. Both infected and uninfected A. fundyense fluoresced yellow-orange under green illumination from the A. fundyense-specific Cy3 probe, but only infected cells fluoresced green under blue illumination due to staining by the Amoebophrya probe. The proportion infected was determined by the Cy3 fluorescence to the probe-stained Amoebophrya. This procedure was especially well suited for classifying and identifying infected cells, but caution with precision was needed.

3. Results and discussion

3.1. Image classification and A. fundyense-specific probe staining

Particle detection and machine-based image classification for A. fundyense were completed essentially as described for the original IFCB (Olson and Sosik, 2007; Sosik and Olson, 2007). The most significant difference was the manner in which machine-based image classification errors were controlled. The performance of the SVM-based image classifier was mixed, with misclassification rates ranging from 1.8% to 19% for A. fundyense, but these errors were corrected during manual review of the classifier’s output. The modifications to the IFCB enabled us to refine our A. fundyense classifications by using data from cells that were positively stained by the species-specific ribosomal probe (83–96% of post-review classifications). While these precautions were not necessary for all samples (e.g., the WGOM red tide and cultures in which the majority of particles were A. fundyense), several of the Salt Pond samples were dominated by unclassified particles (debris and cell clumps) and included several other species (e.g., D. acuminata and a Gonyaulax sp.) that were similar either in size, appearance or fluorescent appearance to the probe-stained A. fundyense. Therefore, the modified IFCB was especially well suited for analyzing samples from Salt Pond.

Staining with the Cy3-conjugated A. fundyense-specific rRNA probe effectively differentiated A. fundyense from most similarly sized, round cells in the Salt Pond samples, but the interpretation of the probe fluorescence measurements was not always simple. Besides A. fundyense, the most common round-celled dinoflagellate species in Salt Pond were Gonyaulax sp. and Protoperidinium sp. The Protoperidinium sp. are often produced higher yellow-orange fluorescence signals than probe-stained A. fundyense (Fig. 6). Inspection of unstained Protoperidinium cells under several wavelengths of illumination confirmed that their fluorescence was...
broad spectrum. This autofluorescence did not affect IFCB analysis because (1) most of the Protoperidinium cells were distinguishable during manual inspection of the images and (2) the abundance of Protoperidinium was low relative to A. fundyense in all of the samples analyzed. However, in future studies it may be necessary to select more effective probe fluorophore and/or IFCB color filters, especially if Protoperidinium spp. or other broadly autofluorescent cells are abundant. Future improvements to the system’s image classifier may also reduce the time needed to manually correct A. fundyense and Protoperidinium assignments.

In contrast to Protoperidinium, Gonyaulax sp. cells produced much lower yellow-orange fluorescence signals, similar to those of unstained A. tamarense cells (Fig. 6), so their discrimination was relatively straightforward via probe detection. Scripsiella trochoidea and A. ostenfeldii, dinoflagellates that resemble and frequently co-occur with A. fundyense, were not present in any of the field samples tested, but previous work has shown that the A. fundyense-specific NA1 probe has excellent specificity in samples that also contain these species (Anderson et al., 2005). Therefore, we expect taxonomic probe staining during IFCB analysis to be especially useful when cells morphologically similar to A. fundyense are abundant. For this approach to be used, however, a laboratory-based IFCB is needed, as it is not yet possible to apply ribosomal probes during in situ deployments.

While probe fluorescence was valuable for identifying A. fundyense cells, image classification was at least as important in

Please cite this article as: Brosnahan, M.L., et al., Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense, Deep-Sea Res. II (2013), http://dx.doi.org/10.1016/j.dsr2.2013.05.034
this study. Both tintinnids and *D. acuminata* produced probe-like fluorescence that substantially overlapped that of *A. fundyense* cells, but in both cases cells were readily distinguished from *A. fundyense* using images (Fig. 6). In the case of *D. acuminata*, the overlap in yellow-orange fluorescence was due to poor methanol extraction of pigments from its kleptoplasts, and similar to *Protoperidinium*, the *D. acuminata* cells produced larger fluorescence signals than most of the probe-stained *A. fundyense* cells. Separation of *D. acuminata* and *A. fundyense* without images might have been achievable with a different conjugate to the *A. fundyense* probe. However, using only the Cy3 probe fluorescence (without images), the two dinoflagellates would have been difficult to distinguish from each other, or from similarly fluorescent debris that was sometimes more abundant than either species.

The combination of images and fluorescence measurements may also provide means for studying species interactions such as grazing. In the case of the tintinnids, a small proportion of the population had similar yellow–orange fluorescence to stained *A. fundyense* cells, and this fluorescence may actually have resulted from staining of *A. fundyense* that had been consumed as prey. The color of tintinnid fluorescence was similar to the Cy3 *A. fundyense* probe when observed under an epifluorescence microscope. The mean intensity of this fluorescence was also twice as high during the peak and termination phases of the bloom, suggesting a shift towards consumption of *A. fundyense* cells. Recent work by Haley et al. (2011) has shown that *A. tamarensis* rDNA remains detectable in copepod concentrates several hours after ingestion. Similar characterization of the persistence of *A. fundyense* rRNA after ingestion by tintinnids may enable estimation of *A. fundyense* loss rates to these and other microzooplankton species using the modified IFCB.

3.2. Measurement of *A. fundyense* DNA content

DNA measurements from *A. fundyense* cells were classified using the unit ℃ where 1C is the DNA content of an *A. fundyense* cell immediately after division, i.e., having one haploid complement of unreplicated chromosomes. Thus, gametes and G1 phase vegetative cells are 1C, and G2-M phase vegetative cells and planozygotes (at least newly formed ones) are 2C (Fig. 1). We confirmed the modified IFCB could distinguish 1C and 2C *A. fundyense* by comparing the Hoechst fluorescence of *A. fundyense* singlets and doublets from the same culture. The mode Hoechst fluorescence of doublets was twice that of singlets, as expected since doublets consist of two singlet cells attached anterior to posterior (Fig. 7). There was also little overlap between the singlet and doublet populations’ DNA distributions which had coefficients of variation of ~23% and ~16%, respectively.

Mixtures of 1C and 2C cells were present in several field samples based on the bimodal distributions of *A. fundyense* Hoechst fluorescence (Figs. 7–9). However, the intensity of fluorescence from field samples was diminished relative to cultures (Fig. 7). This result is similar to earlier work that showed Hoechst fluorescence to be inversely related to formalin concentration and fixation time (Cetta and Anderson, 1990). Though the fixation time was always less than 10 min for our cultures, for field samples it was sometimes several hours and was not well controlled between days. Therefore, we attribute the reduction in Hoechst fluorescence to formalin fixation, which was used because it is the standard protocol in our field program. We could not apply a correction for the fixation effect because we lack reliable estimates of fixation times in the field. Instead, DNA measurements from field samples were interpreted by assuming that (1) bimodal populations represented 1C and 2C cells, (2) the fluorescence of samples taken from the same depth profile was diminished to a similar extent, and (3) the Hoechst fluorescence of field samples was always diminished relative to cultures. DNA modes in field samples were classified by applying these assumptions in a hierarchical fashion.

3.3. Changes in *A. fundyense* DNA content over the course of the Salt Pond bloom

The progression of *A. fundyense* blooms is associated with a transition from vegetative reproduction (mitotic cell division) during the early development phase toward the production of gametes, planozygotes, and cysts (sexual recombination) as the bloom matures and declines. Both of these processes – cell division and sexual recombination – are associated with life cycle stages that have 2C DNA content (dividing vegetative [G2+M] cells and planozygotes respectively; Fig. 1). The 2C DNA content ‘division stage’ cells are only abundant during early morning hours because *A. fundyense* divisions are controlled by the diel light–dark cycle (Rubin, 1981; Taroncher-Oldenburg et al., 1999). In contrast, planozygotes – the 2C DNA content ‘sexual stage’ – mature over the course of about a week (Anderson and Lindquist, 1985) and are present at all times of day. Therefore, we expected to observe a sexual transition during the course of the Salt Pond bloom through an increase in the relative proportion of 2C cells over time, especially at times of day when mitotic divisions would not typically occur.

Another potential marker of sex for dinoflagellates is the presence of 4C cells, zygotes that have undergone premeiotic replication (PR). Such cells provide an unambiguous marker of sexual recombination in the dinoflagellate *Proorocentrum micans* because only its planozygote stage has 4C DNA content (Bhadt et al., 1988). The same may be true of *A. fundyense* but the timing of PR has not yet been established — *A. fundyense* may complete PR as planozygotes or during one of its later zygotic stages (resting cyst or planamoecocyte). Modification of the IFCB has provided a means to characterize the DNA content distribution of *A. fundyense*’s zygotic stages, but interpretation of the data can be complex, especially when examining natural populations.

In assessing the ability of IFCB to characterize the sexual transition of the Salt Pond *A. fundyense* bloom, we first established the bloom’s phase – development or decline – during each of our weekly NMS surveys. As a well-isolated population, the Salt Pond bloom was an ideal subject because its phases could be assessed directly from cell abundance estimates and without consideration...
of advective fluxes to and from the pond. *A. fundyense* cells were detected in Salt Pond during our first survey conducted on March 24th. From that time, the bloom grew in a sustained logarithmic phase through its peak on May 18th, then declined precipitously after May 26th (Crespo et al., 2011; Fig. 5). Samples collected on May 11th, 18th, and 26th were chosen for IFCB analysis because *A. fundyense* abundance was relatively high at all depths and because these dates captured the bloom’s transition from development to decline.

Samples taken on May 11th were expected to be dominated by vegetative cells because *A. fundyense* abundance grew with an approximate doubling time of 2 days in the weeks immediately before and after that date (Fig. 5). Since samples were collected during mid-afternoon (when division does not typically occur), the DNA distribution of *A. fundyense* was expected to be heavily skewed toward 1C (G1 phase vegetative cells). Indeed, most cells were 1C except at the near-surface, where 2C were dominant but where cell concentrations were also several-fold lower than at mid-depth (Figs. 5 and 8). This near-surface 2C subpopulation must have been comprised of either planozygotes or G2 phase vegetative cells (which can divide to produce either gametes or new G1 phase vegetative cells; Fig. 1). In either case, the near-surface localization of 2C cells indicates a difference in their behavior that is likely important for sexual transitions.

The air–sea interface is a reliable barrier where either gametes or G2 phase vegetative cells could aggregate. The case for G2 phase cells is especially intriguing because this cell type lies at the intersection of *A. fundyense*’s division and sexual cycles. The likelihood that a G2 cell will form gametes (as opposed to new vegetative cells) may be enhanced by interactions with other cells or surface associated physical cues (Brosnahan et al., 2010; Figueroa et al., 2011), so that aggregation of G2 cells at the surface could be linked to gametogenesis. Alternatively, if the 2C cells near the surface were planozygotes, they may have been newly formed by the fusion of 1C gametes. In either case, the near-surface 2C subpopulation represented only a small fraction of the bloom as a whole. The bulk of the population (integrated through the full depth of the pond) appeared to be vegetative and in the G1 phase.
of the cell cycle, consistent with the rapid accumulation of cells that continued through May 11th and up to the next sampling date (May 18th).

The highest cell concentrations observed during the 2009 bloom in Salt Pond occurred May 18th. In this case the survey was completed shortly after daybreak when large numbers of vegetative cells were likely to be in their G2+M cell cycle phase (2C DNA content, Fig. 1). IFCB analysis showed that the May 18th profile contained mixtures of 1C and 2C *A. fundyense* at all depths but the ratio of 2C to 1C was always greater than one and increased slightly from the near-surface (∼3:1) to the near-bottom (∼5:1; Fig. 9). Because *A. fundyense* divisions are phased to occur near the time-of-day of the May 18th survey, the ratio of 2C to 1C could be used to estimate *A. fundyense*’s specific growth rate, μ, by the f_{max} method (Chisholm, 1981). The calculation relies on the assumptions (1) that all dividing *A. fundyense* were 2C when sampled (i.e., that phasing of division was complete), and (2) that planozygote abundance was not significant. This approach provides estimated doubling times of 1.14–1.24 days, substantially higher than the net accumulation rate leading up to the sampling date.

Though the doubling time estimate should predict faster growth than the net accumulation rate (since the former does not account for grazing or other losses), *A. fundyense* cultures only achieve doubling times less than 2 days under optimal conditions, typically at temperatures several degrees higher than what was experienced by the Salt Pond bloom (see Watras et al. (1982) and Stock et al. (2005) and references therein). Therefore, the high estimate of μ – near the upper limit of the *A. fundyense* growth envelope – constitutes one line of evidence indicating a relatively high proportion of planozygotes on May 18th since subtraction of planozygotes from the 2C pool would reduce the μ estimate. A second line of evidence is the high proportion of large, high DNA content *A. fundyense* found in the samples collected 1 week later (May 26th; Fig. 10) since both traits – large cell size and high DNA content – are markers of mature planozygotes.

From May 18th to May 26th, *A. fundyense* abundance in Salt Pond fell several-fold and cells were nearly undetectable by June.

Fig. 9. Density scatter plots (A–C) and collages of representative images (D–F) of *A. fundyense* collected near the peak of the Salt Pond bloom (May 18th) at the near-surface (A and D), mid-depth (B and E), and near-bottom (C and F). White crosses on the density scatter plots represent the mode DNA content and cell volume of a reference culture of G1 phase vegetative cells (see Section 3.2).
1st (Fig. 5). DNA content modes in the May 26th samples were poorly resolved, particularly in the near-bottom sample where maximum Hoechst fluorescence and cell volumes far exceeded what was observed in samples from earlier surveys (compare Fig. 10 with Figs. 8 and 9). Because mode populations were not well defined, cell DNA content was classified through comparison to a reference culture of G1 phase vegetative cells (1C DNA content); cells were classified as 2C and greater if their Hoechst fluorescence was higher than the reference mode. Large, 2C and greater cells were a significant proportion of the *A. fundyense* population at mid-depth and near the bottom (approximate proportions of 30% and 70%, respectively), but near the surface (where the cell concentration was ∼20-fold lower) most cells were 1C and had ‘normal’ volumes, comparable to vegetative cells collected during the development and peak phases of the bloom (Figs. 5 and 8–10).

The DNA distribution of the large, near-bottom cells was diffuse with two weakly defined modes that were roughly two and three times the 1C culture reference, but their presence also coincided with an exceptionally high rate of infection by *Amoebophrya* (Figs. 5 and 10C). On the basis of their Hoechst fluorescence alone, large cells clustered around the highest mode in DNA content and volume might be classified as 4C cells, i.e., planozygotes that had completed PR. Upon examination by microscopy, however, we found that most of the large Salt Pond cells’ nuclei had been consumed by parasites, complicating the interpretation of DNA fluorescence measurements. As discussed in Section 3.4, an infected *A. fundyense* culture of vegetative cells exhibited neither large size nor high DNA-associated fluorescence, so we attribute the increased size of the large Salt Pond cells to planozygote maturation rather than *Amoebophrya* infection.

3.4. Distinguishing the effects of sex and parasitism in *A. fundyense*

The co-occurrence of high rates of parasitism and the large *A. fundyense* cell size during the decline of the Salt Pond bloom challenged an assumption made in past studies that only planozygote maturation causes large cell size. The linkage between large size and planozygote maturation was also challenged by the absence of large cells in the WGOM red tide where most cells

Fig. 10. Density scatter plots (A–C) and collages of representative images (D–F) of *A. fundyense* collected during the termination phase of the Salt Pond bloom (May 26th) at the near-surface (A and D), mid-depth (B and E), and near-bottom (C and F). White crosses on the density scatter plots represent the mode DNA content and cell volume of a reference culture of G1 phase vegetative cells (see Section 3.2).
are presumed to have been planozygotes and where no evidence of parasitism was observed.

The conclusion that most cells in the WGOM red tide sample were planozygotes is informed by our DNA staining analysis. Samples from the WGOM red tide were collected at the late afternoon, a time when most vegetative cells would have been in the G1 phase of the cell cycle, but 1C cells were not observed. Instead, the vast majority of _A. fundyense_ were 2C (Fig. 11C; McGillicuddy _et al._, _this issue_), indicating that the cells were most likely planozygotes. Two subsequent surveys showed that the high _A. fundyense_ concentrations dissipated within 10 days of their discovery (McGillicuddy _et al._, _this issue_), and that a large deposition of cysts occurred beneath and downstream from the area where red water was observed (Anderson _et al._, _this issue_). There was also no evidence of _Amoebophrya_ infection in the WGOM red tide. These observations and the absence of abundant grazers in the red tide samples led us to conclude that the termination of the GOM bloom was primarily due to sexual encystment, rather than to a combination of factors (e.g., encystment combined with grazing and parasite infection) as was observed in Salt Pond.

The size of the WGOM red tide 2C cells was similar to G2 phase vegetative cells observed in culture and during the development phase of the Salt Pond bloom (~2 × 10^6 μm^3; compare Figs. 8, 9 with Fig. 11C), much smaller than the planozygotes observed during the Salt Pond bloom’s decline (Fig. 10). The larger _A. fundyense_ from the decline of the Salt Pond bloom were also unique among the samples we analyzed in that they had extraordinarily high DNA-associated fluorescence and a high rate of parasite infection (Figs. 5 and 10C).

Together, these observations suggest that large size and/or high DNA-associated fluorescence could have been caused by the parasites rather than planozygote development.

We addressed the question of whether _Amoebophrya_ infection could have caused large size and high Hoechst fluorescence by examining an infected _A. fundyense_ culture with the modified IFCB. Samples from the culture were stained with an _Amoebophrya_ -specific probe rather than the _A. fundyense_ probe used for our analysis of field samples, and only the most heavily infected cells were identified by probe fluorescence. The mean Hoechst fluorescence of these heavily infected _A. fundyense_ was only slightly higher than that of uninfected cells, and their mean cell volume was more similar to 1C vegetative cells than to the large, heavily infected cells from Salt Pond (Figs. 10 and 11). Thus, we conclude that infection by _Amoebophrya_ is not sufficient by itself to cause the large cell size or high DNA content observed during the Salt Pond bloom’s decline, and that the largest Salt Pond cells were most likely matured planozygotes.

With regard to high DNA content, the possibility remains that the combination of _Amoebophrya_ infection and planozygote development caused the high DNA-associated fluorescence; our culture infection test did not include planozygotes. It may also be that the higher infection rate of these large planozygotes occurred because infection stimulates the formation of planozygotes. Such an effect is suggested from recent work by Chambouvet _et al._ (2011) who showed that _S. troichodea_ increases its rate of encystment when exposed to _Amoebophrya_.

Our finding that _Amoebophrya_ infection did not cause large cell size in culture does not reconcile the substantial difference in planozygote size in the May 26th Salt Pond samples and the WGOM red tide. The differences between these populations may instead reflect differences in their histories leading up to our sampling times or genetic differences — _A. fundyense_ in the GOM may simply form smaller planozygotes than those within the NMS. Several studies have shown significant differences among strains isolated from the coastal GOM bloom and the Salt Pond and NMS populations, including differences in their germination behavior (Anderson and Keffer, 1987), toxin profiles (Anderson _et al._, 1994), and microsatellite loci (Richlen _et al._, 2012). It is also possible that planozygotes in the red tide samples grew larger as they matured after our initial (and only) observation.

4. Conclusions

Here we present results from an IFCB that was modified to improve its ability to make quantitative fluorescence measurements.
In an initial application of the modified IFCB, the instrument was used to investigate the population dynamics of *A. fundyense* through DNA staining and a species-specific ribosomal probe. The combination of imaging, single-cell DNA measurements and detection of a species-specific ribosomal probe enabled the characterization of two naturally occurring *A. fundyense* blooms. Data from the IFCB have revealed unexpected patterns in the occurrence of 2C cells and the large-scale conversion of *A. fundyense* to its diploid form during bloom termination in both inshore and offshore environments. The latter finding emphasizes the importance of sexual encystment for this organism’s life cycle.

This type of analysis does raise some outstanding challenges. Further method development, especially of sample fixation procedures, is likely to improve the reliability of comparisons between samples collected at different times and locations. Our observations were also complicated by the large proportion of *A. fundyense* that were infected by the parasite *Amoebophrya* during the termination of the Salt Pond bloom. More observations are needed to resolve the impacts of parasites on *A. fundyense* DNA content and planozygote maturation and to explore other interactions between species in natural assemblages. Finally, our content and planozygote maturation and to explore other inter-

Acknowledgments

We are grateful to B. Crespo, K. Norton, and many other members of the Anderson lab for their contributions to the NMS surveys, to D. Kulis and M. Sengco (US EPA) for their guidance in the rearing of *Amoebophrya*, to the crews of the RV Gulf Challenger and the R/V Tioga for their work during the WGM red tide and event response, to D. McGillicuddy and D. Ralston for helpful discussions, and to two anonymous reviewers for valuable input. This work was supported by NSF grants OCE-0430724 and OCE-0911031 and NIEHS grants 1P50-ES0172401 and 1P01-ES021923 to D.M.A. through the Woods Hole Center for Oceans and Human Health, National Park Service Cooperative Agreement H238015504 with D.M.A., by an EPA STAR graduate fellowship (No. FP-91688601) to M.L.B., and by grants from NSF (OCE-0525700 and OCE-1130140), ONR (N00014-08-11044), NOAA (NOSA4191149 and NA09NOS4782010), NASA (NNX11AF07G), and the Gordon and Betty Moore Foundation (934 and 2649) to R.J.O. and H.M.S. This is ECOHAB contribution 733.

References

