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Abstract Monitoring programs for harmful algal blooms
(HABs) typically rely on time-consuming manual methods
for identification and enumeration of phytoplankton, which
make it difficult to obtain results with sufficient temporal
resolution for early warning. Continuous automated imaging-
in-flow by the Imaging FlowCytobot (IFCB) deployed at Port
Aransas, TX has provided early warnings of six HAB events.
Here we describe the progress in automating this early warning
system for blooms of Karenia brevis. In 2009, manual inspec-
tion of IFCB images in mid-August 2009 provided early
warning for a Karenia bloom that developed in mid-
September. Images from 2009 were used to develop an auto-
mated classifier that was employed in 2011. Successful imple-
mentation of automated file downloading, processing and
image classification allowed results to be available within 4 h
after collection and to be sent to state agency representatives by
email for early warning of HABs. No human illness (neuro-
toxic shellfish poisoning) has resulted from these events. In

contrast to the common assumption that Karenia blooms are
near monospecific, post-bloom analysis of the time series
revealed that Karenia cells comprised at most 60–75 % of
the total microplankton.
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Introduction

Over the last several decades, the frequency of harmful algal
blooms (HABs) has increased worldwide (Anderson 2009,
Hallegraeff 1993). HAB events caused by explosive growth
and/or accumulation of toxic phytoplankton threaten human
health, tourism, fisheries and ecosystem function. Early
warning is an essential step in mitigating the effects of
HABs, so rapid and species-specific methods are needed
to identify and quantify HAB cells. To meet this challenge,
a number of new technologies for detection and identifica-
tion have been developed (Anderson et al. 2012, Paul et al.
2007, Sellner et al. 2003). Constraints that can limit these
approaches include the need for continuous monitoring to
detect events that can appear suddenly, the ability to identify
novel species (if previously unknown at that location), and
the flexibility to identify multiple species.

The Imaging FlowCytobot (IFCB) is one solution for HAB
monitoring in coastal areas (Sosik and Olson 2007, Sosik et al.
2011). IFCB is capable of unattended long-duration deploy-
ments and produces high-quality images that allow many
phytoplankton cells to be identified at the genus or even
species level. Using a combination of flow cytometric and
video technology, IFCB captures high resolution images of
individual phytoplankton (∼10–150 μm) and measures the
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chlorophyll fluorescence associated with each image. All
images are archived, so data can be re-examined to identify
novel species or co-occurring species.

IFCB has been employed successfully in the Gulf of
Mexico, where a novel and unexpected occurrence of
Dinophysis ovum in 2008 produced the first shellfish closure
in the US due to okadaic acid (diarrhetic shellfish poisoning;
Campbell et al. 2010). Early warning from IFCB prompted
targeted sampling for conventional microscopy and toxin
assays. Subsequently, state agencies were alerted and re-
gional waters were closed to oyster harvesting. IFCB pro-
vided time series data for D. ovum abundance at the ship
channel in Port Aransas, TX throughout the 4-month bloom.
In view of the large amounts of data collected during con-
tinuous monitoring (>300 million images each year), an
automated image classification is essential to provide iden-
tification and determination of cell abundances. Verification
with independent samples manually examined by conven-
tional microscopy has demonstrated that the accuracy of
IFCB is comparable to that of human experts (Sosik and
Olson 2007; Campbell et al. 2010). Successful early detec-
tion of D. ovum was repeated in 2010, 2011, and 2012.

Here, we report on the development of the IFCB approach
for early warning ofKarenia brevis, the major HAB species of
concern in the Gulf of Mexico. Closure of shellfish harvesting
ismandatedwhen abundance ofK. brevis reaches 5 cells mL−1

(Comprehensive Shellfish Control Code 1987). Unlike other
states with recurring HABs, Texas has no regular monitoring
program in place. Coverage is uneven and often depends on
volunteers. Furthermore, a continuous and automated moni-
toring program with the IFCB serves to guide field sampling
for shellfish toxicity testing and the more labor intensive
manual microscopy.

In 2009, early warning of a Karenia bloom from manual
inspection of IFCB images prompted state agencies to delay
the opening of oyster season, which successfully prevented
human illness. Here, we describe use of an automated clas-
sifier trained with images from the 2009 bloom to evaluate a
subsequent bloom in 2011 (no bloom was detected in 2010).
Successful implementation of automated file downloading,
processing and image classification allowed results to be
available within 4 h after collection. An automated notifica-
tion system, in which classification results are sent to state
agency representatives by email, extended the usefulness of
IFCB for early warning of HABs.

Materials and methods

Imaging FlowCytobot

The IFCB combines flow cytometry with video technology
and can be used to study a wide variety of plankton cell

types, ranging from <10 μm flagellates to large diatom
chains (Olson and Sosik 2007, Sosik and Olson 2007,
Sosik et al. 2011). The instrument utilizes a red diode laser;
as each particle passes through the laser beam, light is
scattered and chlorophyll-containing phytoplankton emit
fluorescence. The fluorescence signal triggers a 1-μs expo-
sure from a flash lamp and capture of a video frame from a
CCD camera. High-quality images (∼1 μm resolution) are
recorded and permit detection of characteristic features such
as flagella, spines, cilia, and internal cell structures, so that
most taxa can be identified at least to genus level.

Deployment

The IFCBwas deployed in the pier laboratory at the University
of Texas Marine Science Institute (UTMSI) in Port Aransas,
Texas (27.84° N, 97.07° W) beginning in September 2007
(Campbell et al. 2010) (Figure S1). The instrument collected
and analyzed 5-mL samples every 20 min and internally stored
red fluorescent standard particles (9 μm, XPR-1653, Duke
Scientific Corp., Palo Alto, CA, USA) were run after every
50th seawater sample. Data files were transferred from UTMSI
back to the Campbell Laboratory via the Internet for analysis
and archival and images were classified within 1 day of acqui-
sition in 2009 and within 4 h in 2011.

Automated classification

The automated classification approach required the use of a
variety of image processing and feature extraction techniques
together with a support vector machine (machine learning
algorithm) that had been trained with example images from
each category (Sosik and Olson 2007). Because the focus was
accurate enumeration of Karenia, a series of “one-versus-all”
support vector machines was employed, as described previ-
ously forD. ovum (Campbell et al. 2010). Training set images
were taken from samples selected at random intervals from the
2007–2009 time series; because Karenia was not detected or
present at very high abundance at other times during this
interval, most of the Karenia images used for training were
from the 2009 bloom. The “one-versus-all” approach allowed
different subsets of image features to be used for each classifier
and each subset was optimized to discriminate the
corresponding category from all other categories combined.
For this case, 12 categories (Karenia, Acantharia,
Brachidinium, Chattonella, Cymatosira, centric diatom, cili-
ates, detritus, small dinoflagellates, Ebria, Prorocentrum min-
imum, and Thalassiosira) were used (Fig. 1); these correspond
to classes that exhibited a relatively high rate of misclassifica-
tion with Karenia if they were not explicitly included. Each
image from the time series was evaluated with the resulting
classifiers to determine the best match. Assignment to a cate-
gory was based on the highest probability of association (if an
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image was positively associated with more than one category),
with images that did not meet the positive decision threshold for
any of the classes disregarded from further class-specific anal-
ysis (i.e., labeled “unclassified”). Several categories included a
mix of genera (e.g., mixture of centric diatoms, mixture of
ciliates, mixture of small dinoflagellates) which were not sep-
arated in more detail by the current classification scheme fo-
cused on detection of Karenia. Final cell abundance estimates
for the time series were obtained after correction for the per-
centage of false positives and the percentage correctly identi-
fied, which were determined from classifier performance on an
independent set of manually identified images.

Manual classification and K. brevis bloom composition

Approximately 9000 5-mL samples were measured during the
5 month Karenia bloom period from August–December in

both 2009 and 2011. For each year, a subset (∼400 samples
selected at random from each day of the time series) was
manually inspected and all images were annotated. All
Karenia images were assigned to “Karenia” and all non-
Karenia images classified as “other.” For 2009, additional
samples (∼7,500) were manually inspected and corrected for
use in determining the threshold for automated notification.
These data were binned in 2-h intervals and manually cor-
rected files were compared with the cell counts obtained from
automated classification of the same samples. For the time
series plots, data were binned into daily intervals and used to
calculate corrected cell abundance (in cells mL−1).

Archived images from both the 2009 and 2011 bloom time
series were also examined to determine the relative contribu-
tion of Karenia to the total microplankton (by number) during
different phases of the bloom. Images from samples over the
course of the blooms (initial, peak, and termination phases)

Fig. 1 Representative IFCB images for the categories used in Karenia
classification and error correction a Karenia, b Ebria, c Brachidinium,
d–f ciliates (e.g., Tintinnids, Strombidiids, Strobilidiids), g detritus,

h small dinoflagellates, i Prorocentrum minimum, j Acantharia, k
Thalassiosira, l Chattonella, m Cymatosira, n centric diatoms
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Fig. 2 Comparison between
manual counts (visually
inspected and corrected) and
automated classifier counts
(after correction for estimated
% false positive and %
detection) with the 1:1 line
shown. a The 2009 Karenia
bloom at Port Aransas, TX;
r=0.995, b Expanded view
of 0–19 cells mL−1 range,
c The 2011 Karenia bloom
at Port Aransas, TX; r=0.995,
d Expanded view of
0–10 cells mL−1 range
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were manually inspected to classify all debris images as
“detritus,” and this category was subtracted from the total
events to obtain a “total microplankton” count for each file.
For this subset of the observations, the average percentage of
detritus was calculated for 2009 and 2011 (10.6 and 13.6 %,
respectively) and used to estimate “total microplankton”
counts over the time series during each of the two blooms
and the % Karenia at each bloom phase. Note that although
the number of detritus particles generally greatly exceeds the
number of phytoplankton (Olson and Sosik 2007), most are
not imaged by IFCB. Only detritus particles with sufficient
chlorophyll fluorescence will trigger imaging.

Results

Automated classification

The first K. brevis bloom observed by the IFCB at Port
Aransas, TX occurred in fall 2009. Manual inspection of
images from the time series allowed detection of Karenia
cells in early August and continued observation delivered
direct observations of the bloom as it developed. This 2009
event provided the IFCB images used to create a training set
from which a Karenia classifier could be developed.

The automated classifier produced for Karenia based on the
2009 bloomwas used to classify all images from both the 2009
and 2011 bloom (Fig. 2). Karenia abundance (in cells mL−1)
calculated from automated classification (after correction for
classification error) were strongly correlated with the results
from manual inspection (Fig. 2). In 2009, the correlation was
very strong (r=0.995) with automated classification producing
slightly overestimated counts (Fig. 2a). The same relationship
was noted when all ∼7,500 data points for 2009 were plotted
(data not shown). Much of the variability was evident at the
lower cell abundances (Fig. 2b). In 2011, the counts were also
highly correlated (r=0.995; Fig. 2c) and the automated

classification results underestimated Karenia abundance.
Again, most of the variability was observed at abundances
<10 cells mL−1 (Fig. 2d).

Monitoring for early warning

For successful early warning, a lower limit for automated
notification needed to be established so that Karenia occur-
rences were not missed, but at the same time the number of
false alarms was minimized. Based on a comparison of the
time series for both the automated classification and manually
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Fig. 3 Time series for daily binned files for the 2009 Karenia bloom
from automated classification and manual classification. The regulatory
threshold of 5 cells mL−1 and the 2 cellsmL−1 threshold selected for early
warning notification are also plotted

Fig. 4 Sample email message sent during the 2011 Karenia bloom.
Automated classification results and a graph of Karenia abundance
(not manually verified) for previous ∼10 h
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verified counts in 2009, a threshold of 2 cells mL−1 was
chosen. Although 266 “real” occurrences (when 2-h binned
manual counts were >2 cells mL−1) were observed on 57 days
during this 5 month period, for the purpose of evaluating early
warning only the pre-bloom period was considered. Pre-bloom
(Aug 1–Sept 20) was defined as the period before the daily
average Karenia abundance exceeded 5 cells mL−1 (Fig. 3).
During these 51 days, 9 “real” detections were reported (when
both 2-h binned manual and automated counts were >2 cells
mL−1), none were missed, but 93 false alarms (when manual
counts were <2 cells mL−1, but automated were >2 cells mL−1)
were noted. The number of false alarms was 17 % of the total
pre-bloom reports (554 2-hour binned automated counts). For
comparison, when a threshold of 1 cell mL−1 was used, the
number of “real” detections increased to 41, none were missed,
and the number of false alarms increased to 172 (31 %). In
contrast, if the threshold was increased to 3 cells mL−1, al-
though the number of false alarms decreased to 48 (9%), only 1
“real” detection was reported, and none were missed. Manual
counts suggested low, but variable abundance of Karenia cells
throughout the early warning period.

Automated notification

Using the threshold value of >2 cells mL−1, an automated
notification system was implemented to send an email mes-
sage that included a graph of the cell counts for the previous
8 to 10 h (Fig. 4). Image data were downloaded every 3 h
from UTMSI, features were automatically extracted and

presented to the automated classifier to estimate Karenia
abundance. If automated classification results indicated
abundance >2 cells mL−1, an email was generated and sent
to a distribution list that included the researchers and repre-
sentatives for the HAB program at Texas Parks and Wildlife
and the Texas State Department of Health Services (for
shellfish monitoring). During 2011, more than 130 automated
email notifications were sent.

Community structure

Although the number of Karenia was often a large percentage
of the total microplankton, blooms were never “monospecific.”
In 2009, at the early stage of the developing bloom, Karenia
contributed <1 % of the total phytoplankton abundance, but
3 weeks later during the peak of the bloom, the average daily
percentage ofKareniawas 34–48 %, though the range within a
single day could be quite variable (26–76 %; Fig. 5). During
mid-October, IFCB image data also revealed a bloom of
Asterionellopsis co-occurring with the bloom of Karenia. In
contrast, during 2011 there were no “initiation” phase samples
in the month prior to the bloom because peak Karenia abun-
dances >5 cells mL−1 appeared suddenly in mid-October. A
gap in data also coincided with this period (Fig. 6). These few
days were removed because the sample illumination was not
sufficient for correct feature extraction, so automated classifi-
cation was not possible. The first peak in 2011 showed a higher
proportion (30 %) of Karenia (Fig. 6) than the early bloom
samples in 2009 (Fig. 5). Samples examined from successive

0

20

40

60

80

100

%
K

ar
en

ia

9/21 9/22
0

20

40

60

80

100

10/10 10/11
0

20

40

60

80

100

10/15 10/16
0

20

40

60

80

100

10/29

Aug Sep Oct Nov Dec Jan
0

50

100

2009

K
ar

en
ia

 (
ce

lls
/m

L)

0

1000

2000

T
ot

al
 (

ce
lls

/m
L)

 −
 −

 −

Fig. 5 The 2009 time series at Port Aransas, TX. Top Karenia as a
percentage of the total microplankton over the bloom. Files were selected
at random on 9/21 (n=3); 9/22 (n=3); 10/10 (n=3); 10/11 (n=3); 10/15
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days showed that the highest percentages coincided with the
peaks in abundance (60–73 %; Fig. 6). Several diatom (e.g.,
Asterionellopsis, Chaetoceros, Ditylum) and dinoflagellate
(e.g., Ceratium, Prorocentrum) species were observed during
the 2011 bloom period. None of these co-occurring species
were observed at elevated concentrations, which is consistent
with the overall higher percentage of Karenia in 2011.

Discussion

Mitigation of the effects of HABs is most effective if sufficient
early warning is provided. To be successful, an early warning
method for HAB detection should be continuous, automated,
and taxon specific; the IFCB meets these criteria. It has provid-
ed a nearly continuous time series since its deployment in 2007
at Port Aransas, TX. The downloading and analysis of data has
been fully automated, and the IFCB has provided images for
identification and early warning for six HAB events. The 2008

D. ovum event was the first toxic bloom of this species ever
observed in Gulf of Mexico waters (Campbell et al. 2010).
Despite not being the objective of the monitoring program
(because blooms had never previously been reported), the flex-
ibility of the imaging approach and the ability to develop taxon-
specific classifiers demonstrated the advantage of the IFCB
approach. Following this initial discovery, images from IFCB
have provided successful early warning for three additional D.
ovum blooms in 2010, 2011, and 2012 (data not shown).

The success of the IFCB has now been repeated for
Karenia. In 2009, initial observations of low cell abundan-
ces were reported at least 1 month in advance of the cell
abundance reaching the legal limit (5 cells mL−1) requiring
shellfish closures. In both 2009 and 2011, Karenia blooms
were detected with sufficient lead time to close fisheries and
prevent human illness. The choice of 2 cells mL−1 appears to
be an appropriate threshold for early warning notification.
Balancing the number of false alarms vs. missing a “real”
occurrence, this threshold is a conservative approach. False
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alarms initiate manual verification of the images, which is
easily accomplished, and field sampling. In future implemen-
tations, we plan to enhance alert emails with web links to
images automatically identified as potential Karenia; this will
allow resource managers and other users to quickly discern
false alarms. Another advantage of the imaging approach by
the IFCB is that all of the larger phytoplankton cells are
recorded, not just Karenia, which provides valuable informa-
tion about the structure of the phytoplankton community dur-
ing different phases of a bloom. Fluctuations in Karenia
abundance in 2009 co-occurred with a bloom of the diatom
Asterionellopsis. These types of observations provide valuable
information for ecological studies of harmful algal species.

There are some limitations to the IFCB and automated
analysis approach. Training sets tailored to a local ecosystem
are required, but the flexibility of developing additional clas-
sifiers makes adjusting to incorporate novel species or new
occurrences possible. We also note that the IFCB image
details are not always sufficient to reliably distinguish be-
tween closely related species of Karenia, e.g. K. brevis,
Karenia mikimotoi,Karenia papilionacea. However, previous
observations suggest that fish-killing blooms are usually dom-
inated by K. brevis (Heil and Steidinger 2009). During both
the 2009 and 2011 blooms, the presence of K. brevis was
validated both by manual inspection of the IFCB images and
by light microscopy of field samples collected by the Texas
Parks & Wildlife Department (data not shown). In 2009,
samples were genotyped to confirm species identification as
K. brevis (Henrichs et al. 2013). Genus-level identifications
provided by IFCB will be valuable for early warning of K.
brevis because these warnings will trigger an early response
and validation with field samples. The training images are
very important to successful classification. Lack of 2011
Karenia cells in the training set may explain the underesti-
mated abundances in 2011 compared to 2009.

Limitations associated with automated image processing
are another consideration. Gaps in data (e.g., Fig. 6) can
occur if image data exists but the illumination conditions are
outside the range appropriate for the current image process-
ing and feature extraction algorithms. While our current
approach is robust to moderate variations in illumination,
it is not adequate for the full range of conditions in the time
series and we are developing refined image processing steps
to provide a more robust analysis procedure.

Conclusion

The IFCB deployed on the Texas coast at Port Aransas has
provided early warnings for six HAB events. Implementation
of automated processing and image classification, together
with an automated email notification system, has allowed state
agencies to be notified within 4 h after sample collection. In

2009 and 2011, this rapid notification permitted a timely
response and closure of oyster harvesting, which successfully
prevented any human illness due to neurotoxic shellfish poi-
soning. As continuous ocean observing systems are now
being built, new technologies for cell enumeration will be-
come more automated and address the traditional problem of
undersampling the ocean. Improved image processing, feature
extraction and classification methods for IFCB data means the
presence of HAB species can be detected much earlier than
routine, and less frequent, sampling could report, which will
lead to more accurate early warning notifications and contin-
ued prevention of human illness as a result of toxic shellfish.
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