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ABSTRACT 
 
New sensor and analysis systems are making it possible to characterize taxonomic composition of 
plankton communities with unprecedented temporal resolution.  For example, we have developed a 
series of automated, submersible instruments for single cell analysis.  The latest in this series, Imaging 
FlowCytobot, uses a combination of flow cytometric and video technology to capture images of 
organisms and to measure chlorophyll fluorescence associated with each image.  Extended unattended 
deployments are possible because Imaging FlowCytobot operation is automated, including anti-fouling 
measures and periodic standard analysis.  Several-month trial deployments in Woods Hole Harbor 
have yielded millions of 1-µm resolution images of cells and chains in the size range ~10-200 µm.  
Ecological interpretation of these data requires automated image identification and enumeration.  For 
this purpose, we have developed image processing and feature extraction methods, combined with a 
Support Vector Machine for classification into taxonomic categories.  After training, a preliminary 22-
category classifier provides 88% overall accuracy for an independent test set, with individual category 
accuracies ranging from 70% to 99%.  We demonstrate application of this classifier to a nearly 
uninterrupted two-month time series of images acquired in Woods Hole Harbor.  Our approach, which 
provides taxonomically resolved estimates of phytoplankton abundance every two hours, permits 
access to scales of variability from tidal to seasonal and longer.   
 
INTRODUCTION 
 
Many aspects of how natural phytoplankton communities are regulated remain poorly understood, in 
large part because traditional organism-level sampling strategies are not amenable to high frequency, 
long duration application.  Methods such as conventional microscopic analysis are prohibitively labor 
intensive and time consuming, while newer and more rapid approaches, such as bulk optical 
measurements (e.g., chlorophyll fluorescence or light absorption), provide little or no information 
about taxonomic composition.  The lack of appropriate sensor and analysis technologies and the 
challenges faced even to reach many ocean environments has meant that much of marine ecology is 
observation limited.   
 
Working to overcome aspects of this limitation, we have developed a series of automated submersible 
flow cytometers capable of rapid, unattended analysis of individual plankton cells (and other particles) 
for long periods of time.  The first such instrument, FlowCytobot, has proven capable of multi-month 
deployments (Olson et al. 2003) that provide new insights (e.g., Sosik et al. 2003).  FlowCytobot, now 
in its fourth year of long-term deployment at the Martha’s Vineyard Coastal Observatory1, is optimized 
for analysis of pico- and small nanoplankton (~1-10 µm).  Here we describe a new instrument and 
analysis system, Imaging FlowCytobot, designed to sample phytoplankton (and microzooplankton) in 

                                                 
1 http://www.whoi.edu/mvco 



Sosik, H.M. and R.J. Olson. 2006. New technologies to acquire time series of phytoplankton community structure: 
submersible image-in-flow cytometry and automated taxonomic classification. Proceedings of Ocean Optics XVIII, 15 pp. 
 

 2 

the size range 10-100 µm.  This is a critical development because phytoplankton in this size range, 
which include many diatoms and dinoflagellates, can be especially important in blooms events and as 
sources of new production.   
 
IMAGING FLOWCYTOBOT DESCRIPTION 
 
Imaging FlowCytobot uses a combination of flow cytometric and video technology to both capture 
images of organisms for identification and measure chlorophyll fluorescence and light scattering 
associated with each image.  The submersible and autonomous aspects were patterned after successes 
with the original FlowCytobot (Olson et al. 2003), while the addition of cell imaging capability and a 
design with higher sample volumes are critical for the application to microplankton.   
 
Imaging FlowCytobot (Fig. 1) utilizes a customized quartz flow cell (800 x 180 µm channel), with 
hydrodynamic focusing of a seawater sample stream in a sheath flow of filtered seawater to carry cells 
in single file through a red (635 nm) diode laser beam.  The fluidics (Fig. 2A) and sampling system are 
similar to that of FlowCytobot except that, to prevent large particles from settling in the sample 
injection syringe, the syringe is mounted vertically rather than horizontally, and the flow through the 
flow cell is downward rather than upward.  Each cell passing through the laser beam scatters laser 
light, and chlorophyll-containing cells emit red (680 nm) fluorescence, which are both collected by a 
10X objective focused on the flow cell (Fig. 2B).  Scattering signals that exceed a preset threshold 
trigger a xenon flashlamp strobe to emit a 1-µsec flash of light, which illuminates the flow cell after 
passing through a green bandpass filter (514 nm) and a condenser.  A dichroic mirror behind the 
objective sends the green light to a high-resolution monochrome CCD camera (1380x1034 pixels) and 
a frame grabber board (Matrox Meteor II CL) captures the image.  The red light from laser scattering 
(635 nm) and fluorescence (680 nm) excited by the laser are reflected to a second dichroic, which 
directs each wavelength to a separate photomultiplier module, whose signals are then integrated and 
digitized.  The optical path is folded with mirrors on either side of the flow cell to conserve space.  All 
control and data acquisition functions are carried out by a PC-104plus computer (700 MHz), with 
custom software for automated operation.  Optics and electronics are contained in a pressure housing 
(12” diameter x 30” long, flushed with dry nitrogen to prevent condensation) (Fig. 1C).  Images are 
processed in real time to locate and store only the region of interest within each frame and timing 
control ensures that the image and associated fluorescence and light scattering signals are correlated 
for each particle that triggers the system (Fig. 3).   
 
Custom electronic circuitry was fabricated for triggering the flashlamp and camera, as well as for 
integrating the optical signals and determining optical signal duration.  All other functions are carried 
out with commercially available PC-104plus boards (frame grabber, analog-to-digital conversion, and 
logic pulse generation for controls).  Power is input at 36V DC (~100 W) and the instrument is 
designed for 2-way Ethernet-based communication during deployment.   
 
As is routine in the original FlowCytobot, a programmable syringe pump/distribution valve system 
(Fig. 2A) allows us to inject antifouling and cleaning agents, as well as internal standards such as 
fluorescent microspheres that enable us to monitor instrument performance during extended operation.  
Experience to date suggests that a 1-2 day interval for automated antifouling measures (which take 
only a few minutes to execute) is sufficient to prevent bio-fouling from affecting deployment duration.    
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IMAGE ANALYSIS AND CLASSIFICATION 
 
Imaging FlowCytobot can generate more than 10,000 high quality plankton (and/or detritus) images 
every hour, and it can do so every day for months.  This precludes manual inspection for cell 
identification as a feasible tool for many applications.  For this reason, we have developed automated 
procedures to classify a variety of image types, with emphasis on morphologically distinct taxonomic 
groupings and on accurate estimation of group abundance.  The method involves five main steps: 1) 
image processing and feature (characteristics or properties) extraction, 2) feature selection to identify 
an optimal subset of characteristics for multi-category discrimination, 3) design, training, and testing of 
a machine learning algorithm for classification (on the basis of selected features as input), 4) statistical 
analyses to estimate category-specific misclassification probabilities for accurate abundance estimates 
and for quantification of uncertainties in abundance estimates following the approach of Solow et al. 
(2001), and 5) application of the resulting feature extraction, classifier algorithm, and statistical 
correction sequence to sets of unknown images.   
 
Our present approach incorporates 22 explicit image categories (or classes, in the machine learning 
vernacular), plus one more for “other” or unidentifiable images (typically 5-15% of the total).  Most 
categories are phytoplankton taxa at genus level (see Fig. 4 for complete list), but a few are more 
generic (“ciliates”, a category of heterotrophic nanoplankton, and “detritus”, a mixture of non-cellular 
material and debris).  To complete steps 2) and 3) above, we compiled a set of 6600 images (300 per 
category) that we visually inspected and manually identified; these images were randomly split into 
“training” and “test” sets, each containing 150 images from each category.  For step 4), we further 
inspected every image acquired during selected periods of natural sample analysis (~10,000 image 
subset of the time series described below) for manual identification, and subsequent determination of 
the matrix of inter-category misclassification probabilities under real sampling conditions.   
 
There have been a variety of previous efforts dealing with related image classification problems in 
marine ecology, notably several lines of development towards identifying zooplankton images to taxa, 
in some cases as fine as to species (e.g., Davis et al. 1996; Tang et al. 1998; Grosjean et al. 2004; Hu 
and Davis 2006).  As well, there is a lot of relevant work on other image processing and classification 
applications, such as face recognition and fingerprint recognition.  Our approach builds upon some 
previous work in these areas, while addressing the particular combination of image characteristics and 
identification markers relevant for Imaging FlowCytobot measurements of nano- and micro-
phytoplankton.   
 
All imaging processing and feature extraction was done with the MATLAB (Mathworks, Inc.) 
software package, including the standard MATLAB image processing toolbox.  We use standard 
MATLAB morphological processing and property functions to determine some features (e.g., length, 
area) of regions of interest (i.e., cells) in an image, but we have also used functions described in 
Gonzalez et al. (2004) and implemented in the accompanying “Digitial Image Processing for 
MATLAB” (DIPUM) toolbox.  These include invariant moments, texture properties, and use of 
Fourier descriptors to get simplified region boundaries.  Additional features we calculate include 1) co-
occurrence matrix statistics (standard MATLAB toolbox) following the success of Hu and Davis 
(2005) with this technique for zooplankton images; 2) digital diffraction pattern sampling (custom 
MATLAB code), previously shown to be effective for fingerprint and other recognition problems 
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(Berfanger and George 1999); and 3) a few custom shape, symmetry, and other measures such as the 
number of line segment ends on the region perimeter (indicative of the presence of spines for instance).  
The resulting feature set has 210 independent quantities associated with each image.  All features are 
transformed to have mean = 0 and standard deviation = 1 (based on distributions from the training set) 
before use in classification.   
 
Many of the features we calculate require information about the boundary of the region of interest 
within an image, so preliminary image processing is critical for edge detection and boundary 
segmentation.  We found that conventional edge detection algorithms are inadequate for reliable 
automated boundary determination over the range of image characteristics and plankton morphologies 
that we encounter with Imaging FlowCytobot.  For this reason, we turned to a computationally 
intensive but effective approach based on phase congruency (Kovesi 1999) and implemented in 
MATLAB by Kovesi (2005).   
 
Because inclusion of redundant or uninformative features can compromise the overall classifier 
performance, feature selection algorithms can be useful to choose the best features for presentation to a 
machine learning algorithm.  We have used the “Greedy Feature Flip Algorithm” (G-flip), a greedy 
search approach for maximizing a margin-based evaluation function, as described by Gilad-Bachrach 
et al. (2004b) and available in a MATLAB implementation (Gilad-Bachrach et al. 2004a).  With our 
current 22-category problem applied to the manually identified training set (150 image from each 
category), G-flip selection reduces our feature set from the original 210 elements down to 133.   
 
For our multi-category classification problem, we use a Support Vector Machine (SVM) with a radial 
basis function kernel and 10-fold cross-validation (with the training set) for model (parameter) 
selection.  After model selection, we train the SVM (fixed with the best model parameters) using the 
entire training set and, and then test overall performance with the independent test set of images.  The 
algorithms we use have been implemented with a MATLAB interface as the LIBSVM package (Chang 
and Lin 2001).  LIBSVM uses a one-against-one approach to the multi-category problem, as justified 
by (Hsu and Lin 2002), and includes an extension of the SVM framework to provide probability 
estimates for each classification, according to Wu et al. (2004).  Application of our selected feature set 
and this SVM framework provides excellent results for many genera of phytoplankton (> 90% correct 
identifications on the test set), and overall classification accuracy across all 22 categories in the test set 
is 88% (Fig. 4).   
 
As the final step towards abundance estimates in each category, we used manual analysis of all images 
in randomly selected field samples, combined with the above automated classifier, to produce a (23-
by-23 element; 22 categories plus “other”) matrix of classification probabilities, where the diagonal 
elements represent the probability of detection for each category and the off diagonal elements are 
misclassification probabilities for each possible combination of categories.  We then used this 
information to correct abundance estimates for expected misclassification errors and to calculate 
approximate standard errors for the abundance estimates, according to Solow et al. (2001).  In applying 
this approach, we take advantage of the probability estimates available from the LIBSVM 
classification results and utilize only initial classifications with relatively high certainty (p > 0.75); this 
leads to lower values of detection probability for some categories, but gives better overall performance 
(lower residuals relative to manual results) for corrected abundance estimates.  For the manually 
identified field samples, this procedure results in ~80% of the classifier-based abundance estimates 
falling within 2 standard errors of the manual results and no significant biases between the manual and 
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classifier -based results (e.g., Fig. 5).  The few cases with poorer performance are concentrated in one 
phytoplankton genera (Chaetoceros, which is challenging due to its morphological diversity) and in 
several relatively non-specific categories: “detritus”, “nanoflagellates”, and “other < 20 µm”.   
 
TIME SERIES RESULTS 
 
We carried out trial deployments of Imaging FlowCytobot at the Wood Hole Oceanographic Institution 
dock during February-April of 2005.  Here we present results from analyses of more than 1.5 million 
images collected over an 8-week period.  Imaging FlowCytbot was connected to power and data 
communication systems analogous to those at the Martha’s Vineyard Coastal Observatory, and all 
control and data acquisition was fully automated.  Images were processed and classified as described 
above and cell concentrations were determined with 2-hour resolution.   
 
Historical observations in waters near Woods Hole point to late winter-early spring as a period of 
transition in the phytoplankton community.  Blooms of large-celled species and chain-forming diatoms 
are more commonly found in fall and winter than at other times of year (e.g., Lillick 1937; Riley 1947; 
Glibert et al. 1985).  Our Imaging FlowCytobot observations capture this transition in unprecedented 
detail.  In late February, the most abundant nano- and microphytoplankton (besides the mixed class of 
~10-20 µm rounded cells that cannot be taxonomically discriminated from our images) were chain-
forming diatom species, especially Chaetoceros spp., Dactyliosolen spp., and Guinardia spp., which 
were present at approximately 20 chains ml-1, 15 chains ml-1, and 10 chains ml-1, respectively (other 
taxa were at levels of 3 cells ml-1 or less).  By mid-March , the previously abundant diatom genera had 
declined by ~1-3 orders of magnitude, to near undetectable levels.  The full 2-hour resolution time 
series emphasize the power of these observations for exploring ecological phenomena, such as species 
succession (Fig. 6).  The dominant diatoms all declined over the 2-month sampling period, but they 
responded with very different temporal trajectories.  For example, Dactyliosolen spp. and Guinardia 
spp. started at similar concentrations, but Dactyliosolen spp. declined roughly exponentially over the 
entire period, while Guinardia spp. persisted until a more rapid decline in early April (Fig. 6).  The full 
time series are also rich with even higher frequency detail, such as fluctuations associated with the 
complexity of water masses and tidal currents in Woods Hole Harbor (e.g., Fig. 7).   
 
FUTURE PROSPECTS 
 
The prototype Imaging FlowCytobot instrument has proven reliable and effective for characterizing 
phytoplankton community structure with high taxonomic and temporal resolution.  At the same time as 
we proceed with field deployments of the prototype for ecological studies, we anticipate continued 
efforts to improve and expand the capabilities of this instrument series.  Fruitful avenues for research 
and development may include hardware and algorithm advances to facilitate rapid onboard image 
classification, efforts to reduce size and power constraints, and other design modifications to enable 
deployment on a wider range of oceanographic platforms and under a wider range of environmental 
conditions.   
 
We have recently begun deployments of the existing Imaging FlowCytobot at the Martha’s Vineyard 
Coastal Observatory, located in 15 m of water on the New England continental shelf near Woods Hole.  
This study site is where we have operated the original FlowCytobot (for pico- and small nanoplankton 
observations) for several years.  With these two instruments, FlowCytobot and Imaging FlowCytobot, 
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now side-by-side, we can make high temporal resolution observations of the entire phytoplankton 
community, ranging from picoplankton to chain-forming diatoms, and do so for extended periods 
(months to years).  We expect these kinds of observations will provide new insights into ecological 
processes and responses to environmental perturbations.  Expansion of these capabilities in the context 
of a new generation of ocean observatory infrastructure, such as proposed through the NSF ORION2 
program, is a very exciting prospect.   
 
ACKNOWLEDGMENTS 
 
This research was supported by grants from NSF (Biocomplexity IDEA program and Ocean 
Technology and Interdisciplinary Coordination program) and by funds from the Woods Hole 
Oceanographic Institution (Ocean Life Institute, Coastal Ocean Institute, and Access to the Sea Fund).  
We are indebted to Alexi Shalapynok for expert assistance in the lab and field; to Melissa Patrician for 
hours of manual image classification; to Cabell Davis, Qiao Hu, Kacey Li, Mike Neubert, and Andy 
Solow for insights into image processing, machine learning, and statistical problems; and to the 
Martha’s Vineyard Coastal Observatory operations team, especially Janet Fredericks, for logistical 
support.   
 
REFERENCES  

 
Berfanger, D. M., and N. George. 1999. All-digital ring-wedge detector applied to fingerprint 

recognition. Appl. Opt. 38: 357-369. 
Chang, C.-C., and C.-J. Lin. 2001. LIBSVM -- A library for Support Vector Machines. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm. 
Davis, C. S., S. M. Gallager, M. Marra, and W. K. Stewart. 1996. Rapid visualization of plankton 

abundance and taxonomic composition using the Video Plankton Recorder. Deep-Sea Res. 
II 43: 1947-1970. 

Gilad-Bachrach, R., A. Navot, and N. Tishby. 2004a. Large margin principals for feature selection. 
http://www.cs.huji.ac.il/labs/learning/code/feature_selection/. 

---. 2004b. Margin based feature selection - theory and algorithms. ACM International Conference 
Proceeding Series,  Proceedings of the twenty-first international conference on Machine 
learning 69: 337-343. 

Glibert, P. M., M. R. Dennett, and J. C. Goldman. 1985. Inorganic carbon uptake by phytoplankton 
in Vineyard Sound, Massachusetts.  II.  Comparative primary productivity and nutritional 
status of winter and summer assemblages. J. Exp. Mar. Biol. Ecol. 86: 101-118. 

Gonzalez, R. C., R. E. Woods, and S. L. Eddins. 2004. Digital Image Processing Using MATLAB. 
Prentice Hall. Upper Saddle River, NJ. 

Grosjean, P., M. Picheral, C. Warembourg, and G. Gorsky. 2004. Enumeration, measurement, and 
identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES 
Journal of Marine Sciences 61: 518-525. 

Hsu, C.-W., and C.-J. Lin. 2002. A comparison of methods for multi-class support vector machines. 
IEEE Transactions on Neural Networks 13: 415-425. 

Hu, Q., and C. Davis. 2005. Automatic plankton image recognition with co-occurrence matrices and 
Support Vector Machine. Mar. Ecol. Prog. Ser. 295: 21-31. 

                                                 
2 http://www.orionprogram.org/ 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.huji.ac.il/labs/learning/code/feature_selection/


Sosik, H.M. and R.J. Olson. 2006. New technologies to acquire time series of phytoplankton community structure: 
submersible image-in-flow cytometry and automated taxonomic classification. Proceedings of Ocean Optics XVIII, 15 pp. 
 

 7 

---. 2006. Accurate automatic quantification of taxa-specific plankton abundance using dual 
classification with correction. Mar. Ecol. Prog. Ser. 306: 51-61. 

Kovesi, P. 1999. Image features from phase congruency. Videre: A Journal of Computer Vision 
Research, MIT Press 1: 1-26. 

Kovesi, P. D. 2005. MATLAB and Octave functions for computer vision and image processing.  
School of Computer Science & Software Engineering, The University of Western Australia. 
http://www.csse.uwa.edu.au/~pk/research/matlabfns/>. 

Lillick, L. C. 1937. Seasonal studies of the phytoplankton off Woods Hole, Massachusetts. Biol. 
Bull. mar.biol. Lab.,Woods Hole 73: 488-503. 

Olson, R. J., A. A. Shalapyonok, and H. M. Sosik. 2003. An automated submersible flow cytometer 
for pico- and nanophytoplankton: FlowCytobot. Deep-Sea Res. I 50: 301-315. 

Riley, G. A. 1947. Seasonal fluctuations of the phytoplankton population in New England Coastal 
Waters. J. Mar. Res. 6: 114-125. 

Solow, A., C. Davis, and Q. Hu. 2001. Estimating the taxonomic composition of a sample when 
individuals are classified with error. Mar. Ecol. Prog. Ser. 216: 309-311. 

Sosik, H. M., R. J. Olson, M. G. Neubert, A. A. Shalapyonok, and A. R. Solow. 2003. Growth rates 
of coastal phytoplankton from time-series measurements with a submersible flow cytometer. 
Limnol. Oceanogr. 48: 1756-1765. 

Tang, X. and others. 1998. Automatic plankton image recognition. Artificial intelligence review 12: 
177-199. 

Wu, T.-F., C.-J. Lin, and R. C. Weng. 2004. Probability estimates for multi-class classification by 
pairwise coupling. Journal of Machine Learning Research 5: 975-1005. 

 

http://www.csse.uwa.edu.au/~pk/research/matlabfns/%3e


Sosik, H.M. and R.J. Olson. 2006. New technologies to acquire time series of phytoplankton community structure: 
submersible image-in-flow cytometry and automated taxonomic classification. Proceedings of Ocean Optics XVIII, 15 pp. 
 

 8 

 

 
 
Figure 1.  Three views of Imaging FlowCytobot.  Removed from underwater housing: A) front view 

of fluidics components and B) side view with optical breadboard in center, fluidics components 
mounted on left and electronics on right.  C) In its pressure housing ready for deployment.  Flow 

cell (not visible) is located between the condenser and objective lenses (view A).  Three plastic 
standoffs (one of which is easily visible running vertically near the center in view A) prevent contact 

of the components and housing during installation.  



Sosik, H.M. and R.J. Olson. 2006. New technologies to acquire time series of phytoplankton community structure: 
submersible image-in-flow cytometry and automated taxonomic classification. Proceedings of Ocean Optics XVIII, 15 pp. 
 

 9 

 
 
 

A

 

B 

 

 
Figure 2. Schema of A) fluidics system and B) optical layout for Imaging FlowCytobot (not to 
scale).  [Panel A shows the fluid path for sample seawater coming from outside the instrument 

pressure housing, proceeding through the programmable syringe valve to the sample syringe, and 
then back through the valve to the flow cell and ultimately to the filter cartridge for sheath 

recycling.  Panel B shows the optical paths of the red laser and xenon flashlamp on the 2 excitation 
sides of the flow cell and the signal pick up paths (light scattering, chlorophyll fluorescence, and 

camera image) on the side opposite the strobe path (and 90 degrees from the laser path).] 
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Figure 3.  Flow cytometric measurements of individual cell side scattering and chlorophyll 
fluorescence, and selected images of phytoplankton cells in seawater from the WHOI dock (Dec. 

2004), analyzed by Imaging FlowCytobot (triggered by chlorophyll fluorescence).  Each dot in the 
fluorescence-scattering signature has an associated image, only a few of which are shown here.  All 

images are displayed at the same scale; the smallest cells are ~5 µm.  Different regions in the 
fluorescence-scattering signature contain different species, but population boundaries are indistinct.  

Clockwise from lower left: mixed “small cells”, Euglena sp., Chaetoceros spp., Ditylum sp., 
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Dactyliosolen sp., Rhizosolenia spp.  
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Figure 4. Automated classification results for 22 categories in the independent test set of images 
(i.e., images not used for classifier development).  Values shown here represent the percentage of 
images manually placed in each category that were also placed there by the automated classifier.  
The class labeled “DactFragCeratul” represents a mixture of the morphologically similar species 

Dactyliosolen fragilissimus and Ceratulina spp.; “ciliate”, “dino”, “nanoflagellate”, and 
“pennate” represent mixed species of ciliates (heterotrophs), dinoflagellates > ~20 µm, other small 
flagellated cells, and pennate diatoms, respectively; “detritus” is non-cellular material of various 

shapes and sizes and “other < 20 µm” are small cells that cannot be taxonomically identified from 
the images; all other labels are genus names.  Percent correct classification ranges from 70-99% for 

the different categories, with an average of 88%.   
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Figure 5. Comparison between classifier-based counts (after correction for classification 
probabilities) and manual counts (from visual inspection of images) for selected categories chosen 

to span the range of relative abundance and classification uncertainties evident across all 22 
categories and across the range of natural sample conditions encounterd during the period of the 

Feb-Apr 2005 time series shown below in Fig. 6.  All points are shown with error bars indicating +/- 
1 standard error for the classifier estimates.  Red points indicate samples used in the generation of 
the classification probability matrix, while blue points are completely independent samples, each 
selected randomly from within week-long intervals of the full time series.  All examples show no 
overall bias between manual and classifier results.  Standard errors for some taxa as small as the 

plot symbols, while in a few cases they are a substantial fraction of the estimated value.  This latter 
circumstance arises when there are very low counts present in samples (e.g., Ditylum) or when 

individual images are difficult to classify with high accuracy (e.g., Skeletonema).  
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Figure 6.  Time series of diatom chain abundances observed during a two-month (mid-February to 
mid-April) deployment of Imaging FlowCytobot in Woods Hole Harbor during 2005.  Automated 
image classification was used to separate contributions of morphologically distinct genera; shown 

here are Chaetoceros spp., Dactyliosolen spp., and Guinardia spp.  While all three taxa declined to 
nearly undetectable levels by mid-April, they exhibited different temporal patterns, with 

Dactyliosolen disappearing earliest and Guinardia persisting longest and then declining most 
abruptly (in the first two weeks of April).   

 

 
Figure 7.  Expanded view of a single week (end of February) of the time series in Fig. 6, 

emphasizing the ability of Imaging FlowCytobot observations to capture variability related to water 
mass changes with semi-diurnal tidal flows in Woods Hole Harbor.  Relative standard errors for the 

abundance estimates (shown only once per day for clarity) are small compared to the variations 

Dactyliosolen 

Guinardia 

Chaetoceros 
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evident at tidal frequencies.  As in Fig. 6, green, blue, and red lines correspond to abundances of 
Chaetoceros spp., Dactyliosolen spp., and Guinardia spp., respectively.   
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