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Abstract

Our understanding of the dynamics of phytoplankton communities has been limited by the space and timescales
associated with traditional monitoring approaches. To overcome some of these limitations, we have developed a
submersible flow cytometer (FlowCytobot) that is designed for extended autonomous monitoring of phytoplankton
abundance, cell size, and pigmentation. FlowCytobot was moored on the seafloor from late July to October 2001
at the Long-term Environmental Observatory study site off the coast of New Jersey, and water samples from 5 m
depth were pumped continuously through the instrument. Analysis of cells’ optical properties revealed distinct
populations of Synechococcus and cryptophytes, as well as an assemblage of other pico- and nanophytoplankton of
mixed taxonomy. For each of these groups, dramatic variations in cell concentration were observed within the
sampling period. Diel variations in cell scattering, which are indicative of changes in cell size, were consistent with
patterns of cell growth during the light period and cell division late in the day. We developed a size-structured
matrix population model that accommodates simultaneous growth and division and then used the model and size
distribution data from FlowCytobot to estimate daily specific growth rates for Synechococcus; these estimates are
independent of cell concentration and do not include mortality. The results show that a dramatic autumn decline in
the concentration of Synechococcus can be attributed to a decrease in the specific growth rate rather than to effects
of physical transport processes or trophic interactions.

The distributions of marine phytoplankton are highly var-
iable in space and time. Evidence for this fact has come from
a variety of sampling approaches, ranging from shipboard-
or mooring-based measurement of in vivo chlorophyll fluo-
rescence to satellite-based assessment of ocean color (e.g.,
Dickey 1991, 2001). Nevertheless, our knowledge of the fac-
tors regulating phytoplankton populations at and below the
mesoscale remains limited by inadequate sampling and our
inability to measure the species composition, size distribu-
tion, and growth rate of the phytoplankton community. Re-
cently developed automated flow cytometers (Dubelaar et al.
1999; Olson et al. 2003) and cell imaging systems (Sieracki
et al. 1998) are aimed at resolving some of these limitations.
With these instruments, we can continuously monitor the
phytoplankton at the individual cell level and document
changes in the taxonomic and size structure of the phyto-
plankton community at a wider range of scales than has been
possible with traditional techniques.
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Time-series measurements of individual phytoplankton
cells by conventional laboratory-based flow cytometry have
provided insights into the dynamics of natural phytoplankton
assemblages (Olson et al. 1990; Campbell et al. 1997; Jac-
quet et al. 1998; DuRand et al. 2001; Li and Dickie 2001).
Until now, however, cytometric approaches have been lim-
ited because they demand intensive sampling and laboratory
analyses. In the present article, we report the use of our
automated submersible flow cytometer (‘‘FlowCytobot’’) to
acquire a 2-month time series of phytoplankton properties
with hourly resolution at the Long-term Environmental Ob-
servatory (LEO-15) off New Jersey, during summer and au-
tumn 2001 (Olson et al. 2003). This site is physically com-
plex, with tidal influence, periods of wind-driven upwelling,
and variable surface and subsurface current patterns (Scho-
field et al. 2002). In general, the area is biologically pro-
ductive but susceptible to disturbances associated with hyp-
oxic zones that develop after strong upwelling events.
Despite the important role of primary production in the de-
velopment of the ecological response to these situations, rel-
atively little is known about the abundance and composition
of the phytoplankton near LEO-15 or about the combination
of biological and physical factors that regulate changes in
their biomass and growth rates.

Conventional laboratory-based flow cytometry has also
been used to assess the growth rates of particular phyto-
plankton groups. From only cell abundance measurements,
André et al. (1999) estimated growth and grazing rates for
three groups of picophytoplankton at a station in the Equa-
torial Pacific. This approach is unlikely to work well, how-
ever, in physically dynamic environments, where advection
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Fig. 1. FlowCytobot deployment, with schema of fluidics and
optics (insets).

and spatial patchiness in abundance are expected to be large.
Another approach, used by Vaulot et al. (1995) to estimate
growth rates of Prochlorococcus in the Equatorial Pacific,
combined flow cytometry with staining procedures designed
to elucidate DNA content. This approach was used in sub-
sequent studies (e.g., Binder et al. 1996; Jacquet et al. 1998;
Vaulot and Marie 1999), but, because of the complex and
laborious sample handling required for DNA measurements,
it is not practical at present for automated sampling.

An approach for estimating growth rates that avoids some
of the problems associated with spatial patchiness and sam-
ple handling is based on the interpretation of diel changes
in cell size as indicative of cell growth and division, which
are independent of small-scale variations in cell abundance.
For example, DuRand (1995) estimated growth rates for
pico- and ultraphytoplankton by assuming that increases in
mean cell diameter during the day reflect cell growth. In the
present article, we develop a more advanced version of this
approach that uses (1) automated submersible flow cytom-
etry to measure diel changes in cell size distribution, (2) the
full size distribution (rather than a single statistic such as
mean size), and (3) a matrix population model that accom-
modates simultaneous cell growth and division.

We used our approach to describe the temporal evolution
of abundance and growth rates of Synechococcus at the
LEO-15 site during summer–autumn 2001, as observed with
FlowCytobot. The time series reflects a combination of com-
plex, interacting processes that include changes in abun-
dance that appear to be directly associated with the advection
of water masses containing different biomass levels and oth-
er changes that appear to be driven by shifts in population-
level growth rates.

FlowCytobot at LEO-15

Design and deployment—We deployed FlowCytobot (Fig.
1) on the ocean bottom at LEO-15 (‘‘Node B,’’ 39827.419N,
74814.759W; Glenn et al. 2000), located 9 km off Tuckerton,
New Jersey, from late July to mid-October 2001. Flow-
Cytobot was connected by divers to a permanent underwater
node at LEO-15 (in 15 m of water), which provided power
from shore and allowed real-time data transmission to a
shore-based computer and user-initiated communication to
change instrument status. Samples from 5 m depth were an-
alyzed continuously, except for brief interruptions associated
with data transmission problems and with scheduled com-
munication events from the shore-based computer, which
was remotely operated via the Internet.

The FlowCytobot design and performance are described
in detail elsewhere (Olson et al. 2003). In brief, the instru-
ment is based on a 532-nm solid-state laser for excitation,
combined with photomultiplier detectors for light scattering
(forward and side) and fluorescence (575 and 680 nm). A
programmable distribution-valve system selects between am-
bient seawater and reservoirs that contain solutions for
cleaning or standard microsphere suspensions for calibration.
The laser beam can be steered by remote control to allow
alignment in situ, and sheath seawater (containing sodium
azide to control biofouling) is filtered and recirculated during

operation. The underwater system includes signal-processing
electronics (with pairs of linear amplifiers operating at dif-
ferent gains to improve the instrument’s dynamic range) and
a computer for sample control and data acquisition.

A variety of space- and time-resolved physical, optical,
and biological properties have been measured at the LEO-
15 site during focused studies, but sampling was limited dur-
ing our FlowCytobot deployment. A semicontinuous record
of bottom-water physical properties and shore-based mete-
orologic measurements is available. Bottom-water tempera-
ture, salinity, and pressure measurements were made at Node
B and also at Node A, which is located 1.5 km closer to
shore (39827.709N, 74815.739W, ;13 m water depth). Be-
cause there were periods of missing data in the Node B
records for July–October 2001, we also used data from Node
A, which filled the gaps, with substantial overlap for com-
parison. In addition to the underwater data, we also used
surface short-wave radiation (Eppley Precision pyranometer,
0.3–3 mm) and wind data measured from a meteorologic
tower at the Tuckerton Marine Station (39830.69N,
74819.459W, ;9 km from Node B) and sea-surface temper-
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ature (SST) data derived from Advanced Very High Reso-
lution Radiometer satellite imagery. These environmental
data are all available online (Glenn and Schofield 2002).

Data processing—For data processing and analysis, we
subdivided the record of light scattering and fluorescence
signals into 1-h intervals. The appropriate light scattering
and fluorescence signals for each cell were selected auto-
matically from the instrument’s two gain levels. For each
1-h interval, we then used a sequence of automated steps to
classify particles into one of several groups on the basis of
signal characteristics. All classification schemes used loga-
rithmically scaled signals. We initially separated Synecho-
coccus and cryptophyte phytoplankton from all other parti-
cles on the basis of their characteristic orange fluorescence
from the accessory pigment phycoerythrin (Olson et al.
1990). We used a fixed threshold (in this case, the detection
limit) for orange fluorescence. Consistently and objectively
separating cryptophytes from Synechococcus was quite dif-
ficult, because the cryptophytes were always much less
abundant and did not always form a distinct cluster. We used
an approach that was specific for our data but was general
enough to apply across the entire time series. The approach
was based on side scattering and orange fluorescence signals
and a combination of thresholds and a simple gradient-based
search to estimate the lower boundaries of the cryptophyte
cluster, the center of which was presumed to be located
above the center for Synechococcus. This procedure gener-
ated a two-dimensional histogram and searched the region
above specified scattering and fluorescence thresholds for the
first minimum in the density of observations across both
dimensions (i.e., a ‘‘valley’’ in the histogram). All signals
above this boundary were assumed to be cryptophytes. Sub-
sequently, we established the final upper boundaries of the
Synechococcus as a threshold Mahalanobis distance from the
remaining cluster centroid on chlorophyll fluorescence and
side scattering. This final step was necessary to eliminate a
few outlying signals with orange fluorescence that may cor-
respond to detrital particles or green-fluorescing hetero-
trophs.

A suspension of standard microspheres was pumped
through the flow cell approximately once per day. To identify
single microspheres (apart from doublets and other particles
in the microsphere suspension) in the data collected during
these periods, we first located the mode signal size on each
parameter independently and then included only particles
whose signal sizes were within 50% of each mode. To con-
trol for changes in FlowCytobot sensitivity, all signals from
phytoplankton were normalized to the mode signal size for
the microspheres analyzed nearest in time.

Phytoplankton concentrations (in cells ml21) were based
on the total number of cells measured and the volume of
seawater analyzed, with seawater volume estimated from the
pumping rate and time spent acquiring data during each hour
of sampling. The data acquisition time was determined by
subtracting time spent transferring data and performing other
activities, such as antifouling treatment and microsphere
analysis. Typical FlowCytobot sample rates during data ac-
quisition were 50–150 samples s21, with a maximum of
;350 s21.

We estimated the volume of each phytoplankton cell with
an empirical relationship between cell volume and side light
scattering determined for a variety of phytoplankton species.
Eleven monospecific cultures of phytoplankton (diameter,
;1–10 mm) were grown in the laboratory and analyzed with
a Coulter Multisizer and with FlowCytobot. A power-law
function explained 99% of the variance between cell volume
and side light scattering (Olson et al. 2003). All data analysis
was carried out using the MATLAB software package
(MathWorks).

Time series of environmental properties—During the pe-
riod of FlowCytobot deployment, environmental conditions
at the study site were highly variable. There were regular
oscillations in bottom pressure that were associated with tid-
al processes, whereas variability in bottom-water tempera-
ture and salinity appeared to occur at different scales and
was irregular (Fig. 2). The largest changes in bottom-water
temperature were accompanied by inverse changes in salin-
ity, so that periods of warmer, fresher water alternated with
periods of cold, saltier conditions. When bottom waters were
warmest (;21–238C), the temperatures were similar to SST
values, suggesting that the water column was mixed. Daily
integrated incident solar radiation varied according to cloud
cover, with a modest decrease in average values indicative
of the expected seasonal decline beginning in the last days
of September.

Time series of Synechococcus properties—With respect
to the phytoplankton, our analysis here is focused on the
time-series observations for Synechococcus, a ubiquitous
and abundant contributor to marine plankton communities
(Waterbury et al. 1979; Olson et al. 1990). Synechococcus
can be distinguished from other taxonomic groups in
FlowCytobot data. During the 2-month sampling period, we
observed substantial changes in the concentration of Syne-
chococcus (Fig. 2E). For example, cell concentrations were
as high as 5 3 105 cells ml21 during the first few days of
August 2001, and then, over ;10 days, they dropped to ,1
3 105 cells ml21. Even during this period of overall decline,
however, there were many large fluctuations in cell concen-
trations. These general features were also evident for other
cell types, although the details of the high-frequency varia-
tions were often different (Olson et al. 2003).

Unraveling the underlying causes of concentration chang-
es such as these for Synechococcus is complicated, because
of the interrelated physiological, ecological, and physical
processes that influence plankton concentration (e.g., Platt
and Denman 1975; Steele 1978). On the biological side, phy-
toplankton cell division is offset by mortality due to trophic
interactions such as grazing and viral lysis. If physical con-
ditions are stable, the phasing of many phytoplankton growth
processes to the daily light-dark cycle (Chisholm 1981; Pré-
zelin 1992) may allow cell division and grazing rates to be
estimated from diel cell concentration changes (André et al.
1999). Stability is the exception, however, especially in
coastal waters, where physical processes are often the dom-
inant source of variability in phytoplankton biomass (Platt
1972; Denman and Abbott 1994). As is evident in the water
property data (Fig. 2A–C), physical variability at our sam-
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Fig. 2. Time series of measured properties during FlowCytobot
deployment at the Long-term Environmental Observatory (LEO-15)
site off the New Jersey coast. (A) Water pressure, (B) temperature,
and (C) salinity were measured on the ocean bottom at LEO-15
Nodes ‘‘A’’ and ‘‘B,’’ which are separated by 1.5 km. Satellite-
derived sea-surface temperature (SST) is also shown in panel B.
(D) Daily short-wave solar radiation (MJ m22 d21) was measured
10 m above the sea surface. (E) Synechococcus concentrations (cells
ml21) were determined for water from 5 m below the surface. To
facilitate comparison with the Node B time series, the bottom pres-
sure at Node A is displayed with a 2.8-m offset. The legend in
panel C also applies to panels A and B.

Fig. 3. Synechococcus properties for a 1-week subset of the
time series shown in Fig. 2. Shaded bars indicate nighttime, and
solid lines are four-point running means. Regular diel variations are
not apparent in (A) cell concentration but are pronounced in (B)
mode cell volume.

pling site was intense, to the point that regular diel variations
in cell concentration were not evident (Fig. 3A), and prelim-
inary spectral analysis did not reveal a diel variance peak in
Synechococcus concentration.

In addition to cell concentration, FlowCytobot measure-
ments also provide information about phytoplankton prop-
erties such as cell size. Cell size, in particular, is influenced
by patterns of cell growth and division and, in contrast to
cell concentration, distinct diel patterns of variation were
evident in cell volume for the Synechococcus population.
The mode cell volume generally increased during the day
and decreased at night (Fig. 3B). Full size distributions for
the Synechococcus population exhibited changes in both
mode location and the shape of the distributions (Fig. 4). If
changes in population size distributions can be related quan-
titatively to cell growth and division, then this information
could be used to separate the effects of cell division from
other processes (such as grazing and advection) that drive
changes in cell concentration observed at a fixed location.

Determination of growth rates

Model development—For a phytoplankton population, the
relative increase in mean cell volume between dawn and
dusk represents a minimum estimate of the number of cell
divisions per day. This approach has been used for open-
ocean Synechococcus and other phytoplankton groups
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Fig. 4. Observed Synechococcus size distributions for several
1-h intervals on 31 July 2001. These examples, which have been
normalized to the same total number of cells, show typical diel
variations in mode and shape of the distributions.

Fig. 5. Schematic representation of (A) cell size transitions oc-
curring in one time step of the matrix population model for Syne-
chococcus and (B) for the single time step projection matrix de-
scribed by Eqs. 7–11. For clarity in panel A, transitions are
indicated only for the size class labeled vi. All other size classes
undergo the same transitions, with the exceptions that g 5 0 for
cells of size vmax and cells of size vmin do not change class when
they divide. The structure of the upper left corner of the matrix A
is shown in panel B. See text for details.

(DuRand 1995; Binder et al. 1996; Vaulot and Marie 1999).
The major limitation of this simple approach is that it as-
sumes that cell growth and division are segregated during
the daily cycle. Laboratory studies of Synechococcus, in par-
ticular, have demonstrated that growth and division can oc-
cur simultaneously in a population (Waterbury et al. 1986;
Binder and Chisholm 1995; Jacquet et al. 2001), so that the
simple approach underestimates growth rate. To overcome
this limitation, we used a matrix population model (Caswell
2001) that incorporates the full size distribution of the pop-
ulation and accommodates simultaneous growth and division
(Fig. 5).

We divided the population into m size classes and used
wi(t) for the fraction of cells at time t that have volume
between vi and vi11. The divisions between size classes start
at vmin and are logarithmically spaced such that

vi 5 vmin , for i 5 1, . . . , m(i21)Dv2 (1)

where Dn is a constant. For mathematical convenience, we
grouped the wi(t) into a column vector w(t). We projected
the size distribution from time t to time t 1 dt via matrix
multiplication

A(t)w(t)
w(t 1 dt) 5 (2)m m

a (t)w (t)O O i j j
i51 j51

where the elements of the matrix A (described in the next
section) are denoted aij. The denominator in Eq. 2 rescales
the projection by its sum to give proportions. Defining

(1/dt)21

B(t) [ A(t 1 idt)P
i50

5 A(t 1 1 2 dt) · · · A(t 1 dt)A(t) (3)

we projected from time t to time t 1 1 using

B(t)w(t)
w(t 1 1) 5 (4)m m

b (t)w (t)O O i j j
i51 j51

(Note that the reciprocal of dt must be an integer and that
the order of multiplication in Eq. 3 must be exactly as spec-
ified.) Finally, we calculated a daily specific growth rate, m,
via

m

m 5 ln u (5)O i
i51

where

23

u 5 B(t) w(0) (6)P[ ]t50

The elements aij(t) of the projection matrix A(t) give the
fraction of cells in size class j at time t that become cells in
size class i at time t 1 dt. They represent three transitions:
growth, reproduction, and stasis. In generating A(t), we as-
sumed intrinsic cell death to be negligible.
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The elements that account for cell growth occur along the
first subdiagonal of A(t) and are given by

a (t) 5 g(t)[1 2 d (t)], for i 5 1, . . . , m 2 1 (7)i,i11 i

where di(t) is the fraction of cells in size class i that divide
between t and t 1 dt and g(t) is the fraction of cells that
grow into the next size class, given that they do not divide.
Later, we will describe submodels that prescribe how di(t)
and g(t) depend on cell size and environmental conditions.

Reproduction occurs via cell division, which we assumed
produces two cells, each half the size of the original. If di-
vision in half would produce cells smaller than vmin, we as-
sumed that the daughter cells are both of size vmin. Repro-
duction is thus described by elements of A(t) along parts of
the first row

a1,i(t) 5 2di(t), for i 5 2, . . . , j 2 1 (8)

and superdiagonal j 2 1

ai112j,i(t) 5 2di(t), for i 5 j, . . . , m (9)

where

1
j 5 1 1 (10)

Dv

Note that Dv must be chosen so that j is an integer.
In one time step, a cell might not divide or grow fast

enough to reach the next size class. Such cells remain in the
same size class for that time step. We captured this possi-
bility (stasis) with elements along the main diagonal of A(t):

a (t)i,i

 [1 2 g(t)][1 2 d (t)] 1 2d (t), for i 5 1i i
5 [1 2 g(t)][1 2 d (t)], for 2 # i # m 2 1i

[1 2 d (t)], for i 5 m i

(11)

All elements of A(t) that were not assigned by Eqs. 7–11
were set to 0.

We assumed the maximum fraction of cells that can divide
each time step to be dmax and dmax to be independent of cell
size. Furthermore, we assumed that division does not occur
until td hours after dawn (with dawn set as t 5 0). After hour
td, we assumed that the odds of division for a cell in size
class i would increase as a power of cell volume (vi):

d (t) 0, for 0 # t , ti d5 (12)
b5d 2 d (t) (av ) , for t # t , 24max i i d

Rearranging Eq. 12 gives

 0, for 0 # t , tdd (t) 5 b (13)i (av ) i d , for t # t , 24 max db1 1 (av ) i

Equation 13 is a simple but flexible model for cell division
that incorporates the biologically reasonable assumptions
that the cell cycle takes a finite time to complete and that
big cells are more likely to divide than small cells.

Of the cells that do not divide at time t, a fraction g(t)
grow into the next largest size class. g(t) depends on the
incident radiation E(t) as

E(t)
g(t) 5 1 2 exp g (14)max5 6[ ]E*

gmax is the maximum fraction of cells that grow each time
step, and g(t) 5 gmax/2 when E(t) 5 E* ln(2).

This completes the specification of our population model.
To apply the model to a specific population, both the time
of dawn and the time unit must be fixed, and the parameters
dt, td, m, vmin, and Dv must be selected. For our application
to Synechococcus, we chose to measure time in hours and
took dawn to be 05:30 local time. We set Dv 5 0.125 and
chose dt 5 10 min, because, for this time step, cells are
unlikely to grow more than one size class. We chose vmin 5
225 mm3 and m 5 57, so that the model size classes encom-
passed our full measured Synechococcus size distributions.
td was set to 6 h on the basis of evidence in the literature
that suggested that natural Synechococcus populations typi-
cally exhibit little or no division during the morning (Wa-
terbury et al. 1986; DuRand and Olson 1996; Jacquet et al.
1998; Vaulot and Marie 1999; Sherry and Wood 2001).

Parameter estimation—To calculate the daily specific
growth rate, m, we estimated the parameters a, b, dmax, gmax,
and E*. We did this by fitting the model to hourly obser-
vations of the population size distribution, with the param-
eters assumed to be constant each day.

Let w(t) be the observed size distribution at hour t. For a
given set of parameters, our model makes a prediction
ŵ(t 1 1) of the size distribution at hour t 1 1 given our ob-
servation at hour t, following Eq. 4:

B(t)w(t)
ŵ(t 1 1) 5 (15)m m

b (t)w (t)O O i j j
i51 j51

With the series of observed [w(t)] and projected [ŵ(t)] size
distributions in hand, we chose the parameters dmax, a, b, gmax,
and E* to minimize the weighted sum of squared deviations

24 m

2 2s 5 x (t) (16)O O i
t51 i51

where

x(t) 5 N(t)[w(t) 2 ŵ(t)] (17)

We minimized s2, subject to the following constraints: 0 ,
dmax , 1, 0 , gmax , 1, a . 0, b . 0, and 10 , E* , 500,
with E* measured in W m22. The weights, N(t), are the total
number of cells measured between t 2 1 and t; they reflect
our relative confidence in the accuracy of each observed size
distribution. The result of the minimization is a best-fitting,
hourly projection matrix for each hour t [called B̃(t)] and an
estimated growth rate (computed using Eqs. 5 and 6) form̃
the day (Fig. 6).

We estimated confidence intervals for the specific growth
rates by fitting the matrix population model to 1,000 boot-
strapped data sets for each day. The bootstrapped data were
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Fig. 6. (A) Measured and (B and C) modeled size distributions for Synechococcus in surface waters of the New Jersey shelf on 31 July
2001. Size distributions are shown for each hour of the day, with the color bar indicating relative cell concentration in logarithmically
spaced size classes. The 1-h model projections in panel B were compared with the observed distributions in panel A to determine the best-
fit model parameters for each day. As detailed in the text, (D) two parameters describe the light dependence of the fraction of cells
progressing from one size class to the next; (E) three other parameters describe how the fraction of cells that divide depends on cell volume.
(F) Calculated hourly division rates peak for several hours around dusk. Even when the model (fitted using 1-h projections) was used to
project the initial size distribution forward over the entire day (C), the results were similar to the observations (A).

generated by randomly sampling with replacement from the
list of measured cell volumes for each hour until the sample
contained the same number of observations as in the real
data. We found approximate 95% confidence intervals by
omitting the top and bottom 2.5% of the growth-rate solu-
tions.

The series of best-fitting parameters for each day of the
FlowCytobot time series generated a series of g and di

curves (Fig. 7). Most of the parameter values fell in rela-
tively narrow ranges away from the constraints. There were
two exceptions. First, a was usually ,1.5 mm23 (83% of
days), but there were a few high values (.200 mm23); on
those days, dmax was near 0, so di remained small for all size
classes. Second, the best-fitting values of E* were often the
minimum or maximum value allowed by the constraints. Re-
laxing the constraints had a small effect on the estimated
growth rates but decreased the convergence rate of our min-
imization algorithm. The variability in E* may have been
due to the fact that changes in E* reflect more than just

physiological variations in the growth response. Because we
used incident solar radiation as a model input, changes in
E* also reflect changes in the subsurface light fields that
cells actually experience. These light fields depend not only
on incident radiation but also on attenuation in the water
column and on vertical mixing. As a result, day-to-day
changes in E* are difficult to interpret.

Generally, there is little basis for evaluating our model
parameter values against experimental work. We point out,
however, that the hourly division rates that we estimated
from the model and the measured size distributions consis-
tently exhibited peak values during the hours around dusk
(Fig. 7C), which agrees with observations of natural Syne-
chococcus populations (Waterbury et al. 1986; Jacquet et al.
1998; Sherry and Wood 2001).

Time series of growth rates—By applying our model and
parameter estimation approach to each day of FlowCytobot
cell size data, we derived estimates of Synechococcus-spe-
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Fig. 7. (A) Growth fraction, g, as a function of incident radiation and (B) division fraction, d,
as a function of cell volume for each day of the FlowCytobot time series as derived from the best-
fitting model parameters (see text for details). Parameters fell in the following ranges: 0.06 , gmax

, 0.26, 10 , E* , 500 W m22, 0.003 , dmax , 0.992, 1.2 3 1023 , a , 3.5 3 104 mm23, and
0.66 , b , 3.09. (C) Hourly cell division rates normalized to the mean value for each day show
that the model results predict peak values around dusk.

Fig. 8. Time series of Synechococcus population properties in
surface waters of the New Jersey shelf. (A) Cell concentrations with
1-h resolution were determined directly from FlowCytobot mea-
surements. (B) Daily specific growth rates of Synechococcus were
determined from measured cell size distributions and a linear matrix
model for cell growth and division over the diel cycle. Growth rates
were estimated for 41 d that had sufficient cell size data. Error bars
represent estimated 95% confidence intervals. (C) Apparent cell-
specific loss rates were estimated by the difference between the
specific growth rates and the observed daily rates of population
increase, calculated directly from the concentrations in panel A.
Grazing by microzooplankton would contribute to positive loss
rates, whereas physical processes, including water mass mixing and
advection, could result in positive or negative loss rates.

cific growth rate for each day of the time series (Fig. 8).
Because the model was based only on changes in the shape
of the cell size distribution over intervals from one dawn to
the next, these specific growth rates are independent of ob-
served changes in cell concentration. As was expected, the
model-derived growth rates were correlated over the time
series, with the observed dusk-to-dawn changes in mode cell
light scattering for the Synechococcus population (r2 5 0.52,
not shown). Growth rates faster than one division per day
(i.e., m . 0.69 d21) were often observed during August.
These high rates are consistent with reports for natural pop-
ulations of Synechococcus from other studies (Waterbury et
al. 1986; Carpenter and Campbell 1988; Jacquet et al. 1998).
The most dramatic feature of the time series was a sharp
drop in growth rate during the second week in September.
Overall, growth rates were between 0.17 and 1.13 d21 over
the 2-month time series and often varied by as much as
twofold from one day to the next. The bootstrap results
showed that this variability cannot be explained by sampling
variability alone (Fig. 8B).

From the specific growth rates and the observed changes
in cell concentration, we also calculated net population loss
rates. These loss rates were determined as the difference be-
tween the specific growth rate and the exponential rate of
change in observed cell concentration from one dawn to the
next. The rate of change in cell concentration reflects cell
division plus other processes that influence cell concentra-
tion observed at a single location; thus, our loss rate esti-
mates represent the net effect of these other processes. These
processes include grazing, sinking, mixing, and advection,
and their net effect can be either an increase or decrease in
cell concentration. Loss rates were highly variable but were
almost always positive (i.e., a net sink for cell concentration)
and were usually .0.5 d21.

Discussion

The observed concentration variations in any natural pop-
ulation can be ascribed to the net effect of reproduction,
biological or ecological losses such as intrinsic mortality and
predation, and immigration plus emigration. In a time series
such as the one we have documented for a unicellular pi-
coplanktonic organism, increases can occur due to cell di-
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vision, and losses from ecological interactions such as graz-
ing by microzooplankton or viral infection are probably
important; in addition, the mixing and advection of water
masses with different cell abundances can result in increases
or decreases in the concentration observed at a single loca-
tion. Because our size distribution model allowed us to de-
termine the cell-specific growth rate of the cells, independent
of observed changes in cell concentration, we were able to
separate the effects of cell division from these other pro-
cesses.

For time-series observations in the Equatorial Pacific, An-
dré et al. (1999) used a cell cycle–based model to determine
daily growth and grazing rates from cell concentrations. For
that environment, which is less physically dynamic than the
LEO-15 area, diel changes in cell concentration were evi-
dent, making this approach practical. High temporal and spa-
tial patchiness in cell concentration, which are expected for
continental shelf environments, obscured regular diel varia-
tions in cell concentration in our data (Fig. 3A); a similar
result was reported by Jacquet et al. (1998) for coastal Med-
iterranean waters. Despite these findings, our results suggest
that diel variations in cell size, a property that depends
strongly on cell physiology, are preserved across concentra-
tion patches. These kinds of characteristic diel variations in
cell light scattering and size have been documented in a
variety of open ocean (Olson et al. 1990; DuRand and Olson
1996; Vaulot and Marie 1999) and coastal (Jacquet et al.
1998) phytoplankton groups. As a consequence, estimating
growth rates from size distributions is likely to have broad
applicability, given the ability to measure high-resolution
time series with instruments such as FlowCytobot.

From our data and model results, we have inferred that
physical processes caused the observed Synechococcus pop-
ulation decline during early August 2001 on the New Jersey
shelf (Fig. 7A). There is no evidence that the decline was
associated with a decrease in the specific growth rate before
or during this period (Fig. 7B). As a consequence, the cell-
specific loss rate must have increased (Fig. 7C). Although
we cannot unambiguously distinguish between biological
losses, such as grazing, and losses due to the physical trans-
port of cells, other evidence suggests that physical processes
played an important role in the observed population decline.
Bottom-water temperatures at LEO-15 experienced an ;88C
drop during this period (Fig. 2B), which was most likely due
to the upwelling of deeper, colder shelf waters forced by the
predominantly southwesterly winds. Wind-driven upwelling
is common in this area and has been reported elsewhere to
bring in water masses with higher chlorophyll concentrations
and particle loads (Glenn et al. 2000; Schofield et al. 2002).
In 2001, however, a series of upwelling events similar to the
one we observed during August occurred earlier during the
summer, and these earlier events were accompanied by lower
turbidity at LEO-15 (O. Schofield pers. comm.), which is
consistent with our observation of low phytoplankton con-
centration. Later in August, another apparent upwelling
event occurred, but, in this case, cell concentrations did not
decrease as sharply, nor did they remain low during the en-
tire period of low bottom temperature (Fig. 2). These results
underscore the complexity of predicting consequences of
events like upwelling on plankton distributions and empha-

size the need for combined physical and biological time-
series observations.

The largest change that we observed in the Synechococcus
concentration occurred during mid-September (Fig. 8A). In
contrast to the population decline in early August, this dra-
matic decline appears to have had a physiological cause.
During the September decline, cell-specific loss rates did not
increase, but specific growth rates decreased. Specific
growth rates were high at the end of August and the begin-
ning of September, with cells consistently dividing more
than once per day (Fig. 8B). Then, over 4 d beginning on 7
September, growth rates dropped from .0.9 to ,0.2 d21.
Growth rates stayed well below one doubling per day (i.e.,
m , 0.69 d21) for the remainder of September, whereas cell
concentrations fell from .4 3 105 to ,8 3 103 ml21 and
never recovered (Fig. 8A). Although we do not know what
caused the initial decrease in the Synechococcus growth rate,
the persistently low rates observed after 15 September could
have been caused by a combination of reduced temperature
and reduced light available for photosynthesis. As was ex-
pected for the season, SST and incident irradiance were low-
er (by ;28C and ;20%, respectively) during the last half
compared with the first half of September. The phytoplank-
ton were probably exposed to even lower light because of
deep mixing; after 15 September, bottom-water temperatures
were very close to SST values, which suggests that the entire
water column was well mixed. The idea that Synechococcus
growth rates remained low because of low light exposure is
also supported by the observation that cellular chlorophyll
levels (inferred from cell fluorescence measurements by
FlowCytobot) increased during September (they were 60%
higher after 15 September), a response that is typical for
phytoplankton acclimating to lower light conditions (Fal-
kowski 1980).

The fundamental response of a plankton population to en-
vironmental change is expressed in its specific growth rate,
but growth rates cannot be determined from traditional mea-
surements of pigment biomass or even cell abundance in the
dynamic coastal ocean. In these systems, we expect biolog-
ical and physical variability to be linked across various space
and timescales. For instance, upwelling may introduce water
with low cell concentrations but with nutrients that ulti-
mately stimulate biological processes. In addition, changes
in cell growth rates, such as those that occurred during Sep-
tember, occur because organisms are responding to their
physical environment—in this case, lower light caused by
vertical mixing. Particularly because of these complexities,
it is exciting to have the ability to begin separating imme-
diate physical and biological effects on populations. Popu-
lation modeling that uses data from automated submersible
instrumentation for individual cell analysis now enables us
to estimate growth rates and thus to distinguish physiologi-
cally driven change in phytoplankton abundance from more
incidental fluctuations. With a single 2-month time series,
we were able to contrast a major population change driven
by coastal ocean physics with a similar change driven by
biological variability. Our example focused on a single tax-
onomic group of phytoplankton, but the approach can be
generalized to any population of cells that can be discrimi-
nated from others in an assemblage, perhaps with the aid of
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taxon-specific molecular probes (Amann et al. 1990; Cook-
sey 1998). With future work to obtain multiyear records as
part of interdisciplinary coastal ocean monitoring systems
(Malone and Cole 2000), we expect this kind of investiga-
tion to help answer longstanding questions about the initia-
tion and fate of phytoplankton blooms and the regulation of
diversity in plankton.
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