
1

OPTICAL CLASSIFICATION OF WATER TYPES BASED ON
REMOTELY-SENSED OCEAN COLOUR

Linda V. Martin Traykovski and Heidi M. Sosik
Department of Biology, MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

ABSTRACT

We are developing optical water type classification approaches based on
remotely-sensed water leaving radiance, with application to the study of spatial and
temporal dynamics of ecologically and biogeochemically important properties of the
upper ocean. In contrast to previous studies that have focused primarily on pigment
distributions, our goal is to extract as much information as possible from the full set of
spectral bands. Our initial work includes a regional study of optical properties in the
northwest Atlantic based on CZCS and SeaWiFS data, as well as the detection and
identification of phytoplankton blooms around the globe. With this preliminary study, we
have established a basis for the application of feature-based approaches for the optical
classification of water types. Future work will involve integrating in situ data into
classifier development, and exploring the utility of both model-based and feature-based
classification approaches.

INTRODUCTION AND BACKGROUND

Optical water type classification approaches based on remotely-sensed water
leaving radiance have great potential to contribute to the study of spatial and temporal
dynamics of ecologically and biogeochemically important properties in the upper ocean.
Remote sensing of ocean colour has significantly expanded our ability to study spatial
and temporal variability in phytoplankton abundance and distribution, but full
exploitation of ocean colour imagery requires both developments in modelling of upper
ocean optical properties (and their relationships with biological, physical, and chemical
properties) and more sophisticated data analysis techniques. Particularly in coastal
waters, both inherent and apparent optical properties are influenced by a wide array of
physical, biological and chemical processes. These processes can lead to large sources of
optical variability that may be independent of the abundance of phytoplankton pigments.
In addition to these pigments, constituents such as dissolved organic matter (DOM) of
both marine and terrigeneous origin, heterotrophic organisms, biological detritus, and
inorganic particulate material can affect both the magnitude and spectral quality of
reflected light. This complexity may interfere with accurate estimation of phytoplankton
distributions based on optical signatures; however, it also presents the potential for
deriving information about other water properties from space.

Because ocean colour signals vary in response to many processes, successful
identification of optically different types of water is necessary for accurate retrieval of
constituent concentrations. Satellite images of large geographic areas often reveal
mesoscale reflectance features that are associated with physical, biogeochemical and
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biological processes in the upper ocean. Satellite data have been exploited to help identify
the scales associated with these features; for example, Sathyendranath et al. (1991) used
AVHRR imagery combined with local bathymetry to define water types in a study of
productivity on Georges Bank. To date, efforts to identify mesoscale features or water
type boundaries from remotely-sensed ocean colour data have generally relied only on
pigment distributions or have involved relatively dramatic water type differences, such as
those that occur near river plumes. The potential for using more information than is
contained in pigment images and to discern more subtle differences in optical water types
has not been fully explored.

There have been efforts to use CZCS data for water type identification using
specialised algorithms designed to recognise the unique optical properties of a particular
type of phytoplankton. A successful method was developed to detect coccolithophore
blooms using CZCS remotely-sensed radiances based on a nonparametric parallelepiped
supervised algorithm (Brown and Yoder 1994a,b), which was able to distinguish
coccolithophore pixels from non-coccolithophore pixels. Subramaniam and Carpenter
(1994) developed a protocol to identify Trichodesmium blooms from CZCS imagery
based on high reflectivity from gas vacuoles and a phycoerythrin absorption feature at
550 nm, and were able to distinguish two Trichodesmium blooms from sediment whitings
and from some portions of coccolithophore blooms. Attempts have been made to detect
cyanobacterial blooms using a supervised classification technique (Zabicki 1995) using
the observed ratio of (total radiance at 750 nm)/(total radiance at 670 nm); although this
ratio was always lower for suspected cyanobacterial blooms than for sediment conditions,
it was not possible to distinguish coccolithophore blooms from Trichodesmium blooms
with this method. These taxon-specific algorithms can indicate the presence of near
mono-specific blooms in the analysis of particular ocean regions at times when blooms of
that type are thought to occur. The utility of these approaches may be limited, however,
in the identification and classification of a broad range of water types that may span
many scales of spatial and temporal variability. To fully exploit ocean colour data for the
study of phytoplankton dynamics, it is necessary to develop a more universal scheme to
optically classify many different types of phytoplankton blooms simultaneously by
automatically distinguishing them from each other.

A promising approach to identifying optical water types based on remotely-sensed
data is to develop a comprehensive framework within which different water types may be
automatically and simultaneously distinguished from each other. Subsequently, additional
information such as in situ observations can be used to categorise the water types in some
ecologically relevant manner. The development of an automatic classification scheme
essentially involves the inversion of observed data to retrieve a property of interest.
Inversion schemes can be of two general types, those based on a forward model of the
process, and those based only on intrinsic features in the data. Previous work on
phytoplankton bloom identification (e.g., Brown and Yoder 1994a,b, Subramaniam and
Carpenter 1994, Zabicki 1995) is a limited form of feature-based classification where a
decision rule is applied to determine whether data fall inside or outside a single class
boundary. Here we present a foundation for the development of a more comprehensive
approach to the optical classification of water type.



3

APPROACH, RESULTS, AND DISCUSSION

The work presented here is a preliminary analysis of CZCS and SeaWiFS data to
explore the feasibility of using feature-based classification techniques to identify and
delineate optical water types. The first portion of this work involved a regional study of
CZCS and SeaWiFS imagery of waters in the northwest Atlantic, including Georges
Bank and the Gulf of Maine. This regional analysis was carried out in the absence of in
situ data, with the goal of establishing whether there was a basis for separating, using
ocean colour data, various water types found in the restricted geographic region on and
around Georges Bank. The second part of our analysis focused on discrimination of
globally-occurring waters in which the dominant source of optical variability is the
presence of specific phytoplankton. This analysis was restricted to classification of ocean
regions for which ground-truth information was available. Reports based on in situ
observations of oceanic regions containing particular taxa of phytoplankton were
identified from the literature, and the corresponding CZCS data were obtained.

Regional Water Types on and around Georges Bank

Our analysis of water types in the northwest Atlantic focused on the Georges
Bank/Gulf of Maine area, but included water types farther to the south for context. For
this initial analysis we subjectively selected geographic locations based on general
knowledge of the hydrography and bathymetry, combined with examination of CZCS
imagery from 7 July 1980 and 13 June 1980, and an 8 October 1997 SeaWiFS image.

For the CZCS image from 7 July 1980 (Fig. 1), we considered five locations: Gulf
Stream waters (GS), Central Mid-Atlantic Bight waters (CMAB ), waters located just
south of Georges Bank (S of GB), waters on Georges Bank (GB), and Gulf of Maine
waters (GM ). Normalised water-leaving radiances (nLw, Gordon et al. 1988) in each
spectral band were extracted from the CZCS image for randomly selected pixels from
within each of these regions. For this initial work, we examined only two types of
features, the absolute nLw signals for three individual bands (443, 520, and 550 nm) and
ratios of these nLw signals. Our simple approach was to project the data for all the regions
into feature space and visually search for clusters using 3-dimensional graphics. In the
single-band feature space, the five northwest Atlantic locations projected into five distinct
clusters (Fig. 2A), suggesting that waters in these areas can be well-distinguished using a
few spectral bands of ocean colour data.

For a preliminary look at temporal variability in this region we examined another
clear CZCS image from one month earlier (13 June 1980, image not shown). The cloud-
free area did not extend as far south, so we confined our analysis to 3 locations: the North
Flank of Georges Bank (characterised on that day by striations in ocean colour that are
thought to be biologically relevant, but caused by physical processes; Yentsch et al.
1994), the South Flank of Georges Bank, and the Gulf of Maine. In the restricted region
on and around Georges Bank, 3 clusters emerge (Fig. 2B); these 3 water types are clearly
distinguishable, and are different from waters in the same locations a month later (Fig.
2A). Comparison of the mean pigment concentrations for these waters (Fig. 3)
emphasises that our approach takes advantage of more information inherent in ocean
colour data than is contained in a derived pigment image. Projection in 3-dimensional
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band ratio feature space (443/520, 520/550, 443/550; not shown) revealed that water
types with similar chlorophyll concentrations, such as the waters S. of Georges Bank and
in the Gulf of Maine, clustered together. Importantly, these same waters formed distinctly
separate clusters in the single-band feature space.
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Figure 1.  CZCS-derived normalized water-leaving radiances (mW/(sr·cm2·Pm)) in three spectral bands
nLw(443), nLw(520), nLw(550), and chlorophyll (mg/m3) for the northwest Atlantic, 7 July 1980.  Georges
Bank appears as a region of high pigment in the chlorophyll image.  Land and clouds appear black.  This
scene was processed by John Ryan at URI, using east coast atmospheric correction algorithms.  Jim Acker

at NASA/DAAC helped acquire the data.
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Figure 2.  A) Projection of CZCS data in a single-band feature space for northwest Atlantic waters on 7
July 1980, including waters on Georges Bank and in the Gulf of Maine.  The waters from five different
locations form distinct clusters and are clearly distinguishable.  B) Projection of CZCS data for waters on
and around Georges Bank on 13 June 1980; these three water types are also easily separable in the single-
band feature space and show some differences compared to the same locations sampled 1 month earlier.
GS = Gulf Stream waters; CMAB = Central Mid-Atlantic Bight waters; S of GB = waters south of
Georges Bank; GB = waters on Georges Bank; GM = Gulf of Maine waters; N Flank GB and S Flank
GB are waters on the north and south flanks of Georges Bank respectively.

In analysing the SeaWiFS image from 8 October 1997 (Fig. 4), pixels were
selected from the same five locations (GS, CMAB , S of GB, GB, and GM ) identified in
the 7 July 1980 CZCS image. As a result of the increased spectral resolution of SeaWiFS
data over CZCS data, the new sensor provides more degrees of freedom for classification
(Fig. 5A), and the information contained in the additional spectral bands can be exploited
to better discriminate water types. For comparison to the CZCS clustering analysis in this
preliminary work, similar features (normalised water-leaving radiance at 443, 510 and
555 nm) were extracted from the SeaWiFS data from each of these five regions and

Figure 3. Chlorophyll-like pigment concentration
derived from CZCS data for the clusters shown in
Figs. 2A,B.  Mean values (bar height) and
standard deviations (black lines) were calculated
for each of the different locations and dates from
the same pixels used in Fig. 2. Interpretation
based on derived pigment concentrations alone
will fail to distinguish different water types which
do not exhibit differences in pigment
concentration. For example, although pigment
concentrations for the S of GB waters (indicated
by height of green bar) and GM waters (height of
leftmost pink bar) on 7 July are the same, these
water types are readily separable as distinct
clusters in the single band projections shown in
Fig. 2A.
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Figure 4. SeaWiFS-derived normalized water-leaving radiances (mW/(sr·cm2·Pm)) in three spectral bands
nLw(443), nLw(510), nLw(555), and chlorophyll (mg/m3) for the northwest Atlantic, 8 October 1997.

Georges Bank appears as a region of high pigment in the chlorophyll image.  Note that the pigment levels
over the Bank are considerably higher on this day than they were on 7 July 1980 (see Fig. 1). Land and
clouds appear black, coastline is shown in pink.  This scene was processed using SeaDAS 3.1 from Level

1A HRPT data (ver. 1) acquired from the Goddard DAAC.
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Figure 5.  A) Mean spectra of normalised water-leaving radiance for five water types (see legend above)
identified in the SeaWiFS imagery for the northwest Atlantic (including waters on Georges Bank and in the

Gulf of Maine) on 8 October 1997. B) Projection of the SeaWiFS data for these same water types in a
single-band feature space (similar to that shown in Fig. 2).  The waters from these five different locations
form distinct clusters, and project onto the same regions of feature space as did the CZCS-derived clusters
from 7 July 1980 (Fig. 2A). GS = Gulf Stream waters; CMAB = Central Mid-Atlantic Bight waters; S of

GB = waters south of Georges Bank; GB = waters on Georges Bank; GM = Gulf of Maine waters.

projected in feature space (Fig. 5B). Despite the fact that the SeaWiFS imagery was
captured with a different sensor and during a different season several years after the
CZCS image, the same water types are clearly distinguishable, occupying similar regions
in this three-dimensional feature space. Notably, the waters over Georges Bank (GB)
project onto the same location in this feature space for both the 8 October 1997 image
and the 7 July 1980 image, even though the October 8 image revealed much higher
derived pigment values for these waters (compare Figs. 1 and 4). Our simple clustering
approach has the ability to correctly identify a water type over time despite large pigment
differences, as well as to distinguish different water types that have the same pigment
concentration (see Fig. 3), underscoring the fact that this technique is able to exploit
additional information in ocean colour data not reflected in pigment distributions.

Some variability in these water types is evident from a comparison of Figs. 2A
and 5B. For example, both the CMAB  and GS waters in the autumn image (Fig. 5B)
form tighter clusters compared to the summer image (Fig. 2A), which is likely
attributable to a change in the optical properties of these water types as winter
approaches. Perhaps the most notable difference between the 1980 and 1997 pictures is
the cluster representing the waters located just south of Georges Bank (S of GB). This
water type appeared as a distinct and quite separate cluster for 7 July 1980, and was
easily distinguishable in the CZCS image as a bright feature in all three spectral bands,
accompanied by high derived pigment values (Fig. 1). Such a bright region is not
apparent in the 8 October 1997 SeaWiFS imagery (Fig. 4), and although this water type is
clearly distinguishable from GB and GM  waters (Fig. 5B), the water south of Georges
Bank in autumn appears to be closely related to that on the Bank and in the Gulf of
Maine, since the S of GB cluster projects near these other water types in feature space.
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This variability in the optical properties of the S of GB water type between the two
images could either be attributable to an episodic event (e.g., the occurrence of a
coccolithophore bloom in July 1980), or it could be the result of systematic seasonal
changes, which recur annually. Application of an automatic water type classification
scheme to a long time series of imagery would allow characterisation of seasonal and
annual temporal variability in the optical properties of northwest Atlantic water types.

Classification of Globally-Occurring Phytoplankton-Dominated Waters

Ocean regions considered in this initial cluster analysis of globally-occurring
phytoplankton-dominated waters differed not only in the phytoplankton taxa present, but
also in the abundance of phytoplankton cells present. The six data sets we considered
were compiled based on observations reported in the literature (Table 1). Some
represented bloom conditions of an identified phytoplankton taxon; for example, one
water type (cyantt) was extracted from a Trichodesmium bloom (Subramaniam and
Carpenter 1994) in the Gulf of Thailand (Fig. 6). Conditions with sub-bloom concen-
trations and mixed-taxa phytoplankton communities were also included in the analysis.
For example, we used CZCS data for the Southern California Bight (coccus)
corresponding to the first 13 stations of a ship-based transect (Fig. 7) conducted by Balch
et al. (1989). The authors reported crossing a 25 km long patch containing the
coccolithophore Umbilicosphaera sibogae (representing at most 60-75% of the
phytoplankton biomass); abundances in the patch ranged between 2000 - 4000 cells/l
with no detached coccoliths detected. For this same transect, Eppley et al. (1984)
reported that U. sibogae was most abundant in the first 27 km of transect, but was present
with other species including diatoms. This is in contrast to coccolithophore bloom
conditions on the northwest European Shelf (cocccb) where Holligan et al. (1983)
reported very high concentrations of Emiliana huxleyi (8.5x106 cells/l) and the presence
of abundant detached coccoliths (up to 108 detached coccoliths/l).

For each of the phytoplankton data sets (Table 1), normalised water-leaving
radiances in each spectral band were extracted from the corresponding CZCS data for

Table 1.  Summary of data used in preliminary analysis of global ocean phytoplankton blooms.

Data set: coccus1 dinogp1 cocccb2 dinord2 cyantt3 cyanta3

group: coccolithophore dinoflagellate coccolithophore dinoflagellate cyanobacteria cyanobacteria

species: U. sibogaea G. polyedraa E. huxleyib no in situ obs.c Trichodesmiumd Trichodesmiumd

location: E Pacific shelf

(S. CA Bight)

117.5W 32.5N

E Pacific shelf

(S. CA Bight)

117.5W 32.5N

NW Euro. Shelf

(NW of France)

5.43E 50.04N

W Atlantic slope

(NY Bight)

73.7W 39.3N

Gulf of Thailand

(off Khanom R.)

100E 8N

NW Australia

(Dampier Ar.)

119E 21S

date: 4 Oct. 1981 4 Oct. 1981 29 May 1982 3 Sept. 1985 21 Feb. 1982 1 Nov. 1980

CZCS file: 81278193901 81278193901 82149111148 n/a 82052051917 80306042051

resolution: ~1 km ~1 km ~1 km ~4 km ~1 km ~4 km

# pixels: 100 (st. 1-13) 40 (st. 31-36) 100 100 100 100
aBalch et al. 1989; Eppley et al. 1984. bHolligan et al.1983. cBrown & Yoder 1994b. dSubramaniam & Carpenter 1994.
1Barney Balch provided sample station positions; Curt Vandetta provided data from West Coast Time Series archives.
2Chris Brown provided data for 3 Sept. 1995 and the NW European Shelf (for which Steve Groom provided images).
3John Ryan processed Thailand, NW Australia data; Dan Ziskin and Frances at NASA/DAAC expedited data orders.
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Figure 6. CZCS-derived normalized water-leaving radiances (mW/(sr·cm2·Pm)) in three spectral
bands nLw(443), nLw(520), nLw(550), and chlorophyll (mg/m3) for the Trichodesmium bloom in the Gulf
of Thailand off the Khanom River east of the Thai peninsula (between ~6o and 9oN), 21 February 1982.

Land and clouds appear black.
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selected pixels in the regions of interest.
Single-band features and band-ratio
features derived from the nLw data were
considered. Following feature extraction,
the data were projected in several feature
spaces and clusters identified. In a 3-
dimensional single-band feature space
(Fig. 8), the six data sets projected into 4
distinct clusters; the 4 different water
types represented by these clusters are
dinoflagellate-dominated waters,
Trichodesmium bloom waters,
coccolithophore bloom waters (with
abundant detached coccoliths) and non-
bloom coccolithophore waters (no
detached coccoliths). Using this simple
approach, it is possible to distinguish
between oceanic regions containing
distinct blooms of different major taxa,
and also to separate coccolithophore
waters into two optically different types.
With this same approach we also found
some evidence that we could distinguish
“other waters”, those outside the areas in
each CZCS scene where phytoplankton
blooms were documented. In single-band
feature space, the four phytoplankton
water types were clearly separable from
the corresponding "other waters" (not

shown). In addition, a preliminary analysis of uncorrected reflectance in the 750 nm band
indicates that this feature may have discriminating power for cyanobacterial blooms; the
Trichodesmium waters were associated with higher reflectance values in this band than
the coccolithophore water types. This observation is consistent with reports of the

Figure 5.  CZCS-derived chlorophyll-like
pigments (mg m-3) for the Southern California
Bight, 4 October 1981. Transect stations
occupied by Balch et al. (1989) are shown as
red points.  The coccolithophore U. sibogae
dominated the phytoplankton biomass at the
13 northernmost stations and the
dinoflagellate G. polyedra was highly
abundant at the 6 southernmost stations.  Land
and clouds appear black.

Figure 7.  CZCS-derived chlorophyll-like pigments (mg
m-3) for the Southern California Bight, 4 October 1981.
Transect stations occupied by Balch et al. (1989) are
shown as red points.  The coccolithophore U. sibogae
dominated the phytoplankton biomass at the 13 north-
ernmost stations and the dinoflagellate G. polyedra
was highly abundant at the 6 southernmost stations.
Land and clouds appear black.

Figure 8.  Projection of
phytoplankton-dominated waters in
single-band feature space.  Data
from six ocean regions cluster into
four distinct water types.
Dinoflagellate-dominated waters
(shown in red), Trichodesmium
bloom waters (shown in blue), and
two types of coccolithophore
waters (shown in green, bloom (+)
and non-bloom (o) concentrations)
are clearly distinguishable.

de
gr

ee
s 

N

degrees W

32.4

33.6

-118 -117

.25

.5

2.5

5

10

50

.05

1

.1

25

0
0.5

1
1.5

2
2.5 0

1

2

0

1

2

nLw(520)

nLw(443)

n
L

w
(5

5
0

)

coccus
cocccb
dinogp
dinord
cyanta
cyantt



12

detection of Amphanizomenon and Nodularia blooms in the Baltic Sea using near-
infrared signals from the LANDSAT MSS satellite (Horstmann et al. 1978, Ulbricht
1983a,b; all as cited in Borstad et al. 1992).

INDICATIONS FOR FUTURE RESEARCH

This initial work demonstrates the ability to use ocean colour data to distinguish
between northwest Atlantic water types in summer and autumn, including those waters
occurring within a spatially restricted region such as Georges Bank, where the interaction
of tidal flow with complex bottom topography can result in the formation of fronts
between different water types. Further development of classification techniques for these
waters will be carried out in the context of in situ data collected during the ecological and
hydrographic work in progress for the GLOBEC Georges Bank program, as well as our
current research examining in situ optical variability in this region. We have also
established the basis for developing a comprehensive approach to optically classify
several different types of phytoplankton blooms simultaneously by automatically
distinguishing them from each other. The next steps in the development of feature-based
water type classifiers include the rigorous definition of water type classes, the
formalisation of class boundaries, and the development and application of statistical
decision rules for classification. Statistical decision theory can be used to derive an
optimum classification rule if multivariate probability density functions are known for
each class or if an empirical probability model can be obtained by statistical estimation.
Alternatively, a decision rule may be derived directly from the distribution of samples in
feature space. Feature-based classification is also possible where no a priori information
is available, through the exploitation of naturally occurring groupings or clusters in the
data. Features can then be empirically related to water type.

An immediate extension of this feature-based classification work is a hybrid
approach, involving an integration of model-based inversion techniques and feature-
based classification approaches. Combining model-based and feature-based techniques is
a robust approach to the classification problem, since a hybrid technique can capitalise on
the predictive power of the existing semi-analytic models as well as take advantage of the
intrinsic features in the data that do not rely on assumptions inherent in the models. In
this manner, the best attributes of both classification approaches can be exploited.
Application of these classification techniques will contribute to the interpretation of the
underlying properties that define water types, and will facilitate examination of spatial
and temporal variability in water types which can be optically discriminated.
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