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Abstract-With the advent of new robotic technologies such as 
AUVs, a number of end user communities are being inundated 
with large amounts of data.  The traditional techniques of 
manually counting and sorting out organisms in individual images 
are just not scaleable to the large datasets that are now being 
acquired.  This paper examines the use of morphological image 
operators in the automated analysis of imagery for studies 
associated with coral reef ecology.  We propose a texture-based 
algorithm to segment out areas of coral cover in these images.  
Results show percent cover values competitive with the existing 
human methods. 

I. INTRODUCTION 

Deep insular shelf and upper slope coral reefs (30-100m) are 
of interest to scientists because their distribution is largely 
unknown and they appear to be healthier than shallower reefs 
[1].  These reefs could serve as habitat and spawning grounds 
for commercial fish species.  Reaching such depths requires a 
submersible or robotic vehicle as the safe depth limit of 
SCUBA divers is exceeded, and analysis becomes dependent 
on photographic images taken from these various platforms.  
Although camera mounts are used by divers to characterize 
coral cover in shallow water [2], the human methods used to 
quantify coral cover are simply not suitable to process the large 
amounts of image data collected with underwater vehicles. 

The typical methods for shallow water imagery include 
using a computer to generate random points across an image 
with the substrate below each point being identified by a 
human operator and percent cover determined to a 2% 
resolution [1,2].  It is advantageous to automate this 
classification, not only for processing larger datasets but also 
with the ultimate goal of in situ recognition by autonomous 
underwater vehicles (AUV). 

The Montastrea annularis complex is a major reef-building 
coral representing 75% of all coral surveyed in [1].  It exists in 

flattened colonies to maximize growth in low light conditions 
and has a small polyp size [3].  Thus, in images it appears 
smooth relative to other substrates and has low intensity 
distortion due to curvature, making it appealing to a texture-
based recognition algorithm.  We propose such an algorithm to 
segment out these corals in the images, providing a continuous 
representation of where M. annularis complex lies in the image 
as well as a value for living percent cover. 

 

II. METHODS 

A. Images 
Seabed is a passively stable, hover-capable AUV designed 

for underwater imaging and mapping [4].  It uses a Pixelfly 
1024x1280 CCD camera with 12 bits of dynamic range to take 
high-resolution images as it navigates 3-4m above the seafloor.  
In June, 2003, Seabed ran a 1500m transect in the Hind Bank 
Marine Conservation District, located south of the US Virgin 
Islands, producing over a thousand images.  The intensity and 
color contrast of each image were adjusted as described in [5] 
to account for uneven illumination and the nonlinear 
attenuation of light underwater. 

Twenty images were selected evenly along the transect as a 
representative dataset.  The colonies of M. annularis complex 
were manually marked in a photo-editing program and the 
images then converted to binary image standards, denoted M, 
for quantifying the algorithm’s performance. 

From the set of representative images, three 500x500-pixel 
portions of three different pictures, shown in Fig. 1.a-c, were 
intelligently selected to serve as training images to set 
algorithm parameters.  Portions within these images were 
marked as either M. annularis complex, shadow, sand, or rock 
so that non-coral areas could also be discriminated against. 
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Figure 1. (a-c) Training images. (d-f) Blue areas denote the optimized simple 

grayscale threshold. (g-i) Red areas denote the optimized Fisher threshold.  
Note how the Fisher threshold catches more shadows and bare substrate while 

leaving more areas of M. annularis complex. 

 

B. Grayscale Thresholds 
An easy way to distinguish between regions in an image is to 

use a simple grayscale threshold value.  For a given grayscale 
image with 256 intensity values ranging from 0 to 255, all 
pixels greater than a certain value (or less than, depending on 
the nature of the threshold) are assigned logical 1, while other 
pixels are assigned logical 0.  The binary image which has 
been “recognized” by the threshold process can be denoted by 
R.  Also let C denote the binary training image where regions 
marked as M. annularis complex equal logical 1 and other 
pixels are 0.  Similarly, let Xr denote the binary training image 
corresponding to the marked region you are trying to 
distinguish against, such as sand or shadow.  One can then 
define ζ and η such that 
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The optimal threshold will occur with the maximization of ζ 

and minimization of η.  To find this point, the threshold value 
can be iterated and ζ and η calculated for each value.  The 

threshold will be optimized where ζ–η is at a maximum.  Fig. 
2.a demonstrates this for shadows in the imagery.  This kind of 
simple threshold works well for areas in the images such as 
sand where there is high contrast between classes.  Shadows, 
however, have an average intensity in the image much closer to 
that of corals.  Thus, darker corals might be eliminated and 
lighter shadows remain after the threshold, as seen in Fig. 1.d-f.  
To provide higher contrast between shadows and coral for 
threshold purposes, we turn to discriminant analysis. 

C. Fisher Linear Discriminant 
Each pixel in a color image has three channels: red, green 

and blue.  An image can be converted from the spatial domain 
to the color domain by plotting each pixel in space where the x, 
y, and z axes represent the red, green, and blue channels.  From 
this domain, the traditional grayscale operation becomes a 
vector projection of each pixel onto the normal vector.  If the 
vector of projection is rotated in space, the grayscale image 
changes.  At some orientation of this vector, a maximum 
contrast between coral and shadows is achieved.  To find this 
vector, the Fisher Linear Discriminant is utilized [6,7]. 

Discriminant analysis seeks to find the axis w which 
maximizes the scatter between two classes in d-dimensional 
space [6].  It was successfully employed in [7] to enhance 
contrast in helping to segment underground pipe images. 

 
( ) ( )21

1
21 mmSSw −+= −   (3) 

 
where S and m are the scatter and mean of each class, 
respectively. 
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For the purposes of our work, the two classes are the pixels 

in the training images marked as either M. annularis complex 
or shadow.  An optimal threshold was found using equations (1) 
and (2) and is shown in Fig. 2.b.  Fig. 1.g-i shows an overlay of 
areas eliminated by the threshold and the original grayscale 
image. 

D. Texture Analysis 
Our next goal was to quantify texture in the images.  We use 

a method similar to that presented in [8] except that all 
operations are done using mathematical morphology [9].  Let S 
denote the strong neighbor structuring element so binary 
erosion and dilation of B by S can be described respectively as: 
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Figure 2. Optimized grayscale (a) and fisher thresholds (b).  The inflection 
point of Zeta in (a) is due to darker intensities of M. annularis complex. 

 
 

where B is any binary image.  The grayscale erosion and 
dilation of G by S can be described respectively as: 
 

]}[:)({),( SDxxSGSGE x ∈−∧=        (8) 
 

]}[:)({),( SDxxSGSGD x ∈+∨=        (9) 
 

where G is any grayscale image.  The grayscale erosion can be 
subtracted from the grayscale dilation to obtain a value which 
represents the maximum difference between intensity values 
within an area the size of the structuring element S.  This is 
known as the morphological gradient [9]. 
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The value of the morphological gradient will be relatively 
low for areas in the image with low-frequency intensity 
variation, such as M. annularis complex and shadows.  
Regions with higher-frequency intensity variation, such as 
rocks and bare substrate, will produce a higher value.  
Optimizing a threshold for the morphological gradient was 
done using equations (1) and (2) in a process identical to that 
used to threshold shadows and sand.  Fig. 3.a-d demonstrates 
each of the thresholds in the recognition process up to this 
point. 

E. Nonlinear Filtering 
We can not take the binary image resulting from the 

morphological gradient threshold and subtracted out regions of 
sand and shadow recognized by the earlier grayscale thresholds.  
The resulting image in Fig. 3.e shows a general density of M. 
annularis complex, but there is substantial salt and pepper 
noise which we wish to eliminate.  This can be accomplished 
with the use of an open-close alternating sequence filter [9].  
Binary opening and closing can be defined respectively as: 
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Figure 3. Sample recognition process. (a) Original image. (b) Sand (red) and 
Fisher shadow (blue) thresholds. (c) Morphological gradient (MG). (d) MG 

threshold. (e) A0, MG threshold with sand and shadows removed. (f) A2. (g) A4. 
(h) A8. (i) A16. (j) Aoptimal after 7 iterations overlaid with the original image. 

 
 

The alternating sequence filter works through repeated 
openings and closings with increasingly larger structuring 
elements, described by 
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where, on the ith iteration, the binary image Ai-1 is opened and 
then closed by the disk-shaped structuring element Di with 
radius i.  The 0th iteration, A0, is simply the original binary 
image before filtering. 

Filtering quickly eliminates high-frequency noise in the 
image, but further iterations can result in severe degradation of 
recognized areas, as is seen in Fig. 3.f-i.  Thus, a threshold 
optimization scheme similar to that described earlier was 
implemented.  Values from equations (1) and (2) were 
generated for each filter iteration and the optimal iteration 
determined by maximizing the difference between ζ and η.  
The recognized area after the optimal filter iteration is 
superimposed over the original image in Fig. 3.j. 

 

III. RESULTS 

The performance of the algorithm was quantified with its 
recognized percent cover, correlation, and false positive and 
false negative errors.  Percent cover was defined 
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where i is the optimal number of filter iterations and the image 
area is the total number pixels in the image. 

Correlation was determined as the ratio between the logical 
intersection and the union of recognized and marked areas. 
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Fig. 4 shows the correlation for each image as a function of 

the actual percent cover in the image.  Correlation increases 
exponentially from 0 in zero cover to around 0.7 in mid-ranges 
of 30% cover. 

False-positive error was defined as the percent of the 
recognized area incorrectly identified; conversely, false-
negative error was the percent area of M. annularis complex 
missed by the algorithm. 
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Fig. 5 relates false-positive and false-negative errors for each 

image as a function of the actual percent cover in the image.  
False-positive error decreases exponentially from 100% in zero 
cover to around 10% in mid-range 30% cover.  False-negative 

error increases exponentially from 0% in zero cover, but is 
highly variable in mid-range cover values. 

Fig. 6 compares the M. annularis complex percent cover 
recognized by the algorithm to that determined by the Random 
Point Method [1,2].  The algorithm overestimates percent 
cover at very low actual cover values.  However, with nearly 
all of the images containing greater than 5% actual cover, the 
algorithm performed within 1 standard deviation of the 
Random Point Method. 

 

IV. DISCUSSION 

We found that algorithmic percent cover values compared 
favorably with those obtained by using the traditional random 
point method even though, as presented in Fig. 4 and 5, 
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Figure 4. Correlation as a function of actual M. annularis complex cover. 
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Figure 5.  False-positive and false-negative errors as a function of actual 

M. annularis complex cover. 

 



correlation is lower than desired and errors are relatively high.  
Unlike percent cover, correlation and error are much more 
rigorous statistics, relying on the discrete location of the 
recognized area rather than the total area it occupies.  Here, we 
see that degraded M. annularis complex is being compensated 
for by misidentified substrates in the percent cover calculations, 
or an equalization of false-positive and false-negative errors.  
False-negative error appears to dominate over false-positive 
error at higher cover values; that is, more M. annularis 
complex is missed than other substrate is misidentified.  This 
would indicate that our recognized percent cover values are 
lower than actual, which is precisely the trend in Fig. 6.  The 
algorithm performs most poorly at low actual cover values 
because error is amplified with less cover in the denominator. 

A disadvantage to the algorithm is its capability only to 
recognize one species of coral.  Although the transect was 
dominated by M. annularis complex, as readily seen in Fig. 7, 
the recognition of other species and substrates will be crucial to 
future autonomous exploration and characterization of 
shallower reefs, which can have a larger number of species and 
can be more structurally complex.  Nevertheless, the relative 
ease with which M. annularis complex was segmented with a 
simple texture-based algorithm fuels optimism that other 
substrates can be classified based on different techniques 
utilizing the distinguishing characteristics of the substrate. 

 
The thresholds we used are sensitive to intensity and color 

variations throughout the dataset.  They are also largely 
dependent upon the training images used to establish them.  
The level to which the training images sufficiently represent 
the dataset as a model becomes a trade-off with the number of 

training images used.  While we only used three smaller 
training images to represent twenty large images, the number 
of training images needed to represent one thousand images 
would probably not need to be much larger, with consideration 
given to the homogeneity of the image scenery. 

We feel that some of the error in segmentation can be related 
to the Fisher projection used to threshold shadows.  The 
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Figure 6. Comparison of the algorithmic recognized percent cover and the 

standard deviation of the Random Point Method (RPM).  Red areas indicate 
1 standard deviation (68% confidence interval) while blue areas indicate 
2 standard deviations (95% confidence interval) from the normal value. 
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Figure 7. Sample recognized images. Original images (left) overlaid with 
Aoptimal, recognized area after 7 filter iterations (right). 



advantages obvious in Fig. 2 of the Fisher threshold over the 
simple grayscale threshold may be diminutive relative to color 
and intensity variations over the entire dataset as a result of the 
color correction algorithm [5].  Texture largely remains 
independent of intensity, but the sample recognition process in 
Fig. 3 shows that blurry substrate of median intensity is 
misidentified as coral in the lower left of the image. 

In conclusion, this algorithm is an excellent step toward in 
situ classification of bottom cover by AUVs.  While the 
quantitative analysis is not optimal, the qualitative information 
provided is sufficient to give an AUV a general idea of where 
M. annularis complex is concentrated and supply it with 
information to help it map reef structures along a nonlinear 
path.  Currently, this algorithm can be used to rapidly analyze 
large datasets and produce reasonable estimates of percent 
cover for M. annularis complex in place of time-consuming 
human-based methods. 
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