
 

Figure 1.  Example raw image after rectification for lens distortion. 
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Abstract—We propose and implement a novel method of 

estimating attenuation coefficients and a strobe beam pattern 

using sequences of overlapping underwater color images and 

acoustic ranges from a Dopper Velocity Log (DVL).  These values 

are used to correct the images for color and illumination artifacts 

with the goal of more consistent color correction for input into 

classification algorithms. 
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I.  INTRODUCTION 

Optical imaging is an important mode of underwater 
sensing for many scientific, commercial, and military 
applications.  This task often demands high resolution imagery 
of the seafloor with accurate color representation for benthic 
characterization.  However, the physical range at which 
cameras can operate underwater is severely limited by high 
attenuation from scattering and absorption which varies by 
location [9].  Furthermore, since natural light does not 
effectively penetrate past the upper few hundred meters of 
water column, deep-diving imaging platforms must supply 
their own sources of illumination, and those operating 
untethered from ship resources are limited in the power they 
can provide for illumination.  Thus, a broad class of underwater 
images suffers from uneven altitude-dependent lighting 
patterns that must be corrected for both in intensity as well as 
in color.  An example image is shown in Fig. 1. 

Robotic imaging platforms are capable of providing large 
datasets that exceed the practical limits of exhaustive human 
analysis.  This has created a strong motivation for automatic 
processing algorithms capable of segmenting and classifying 
regions and objects in underwater imagery.  However, such 
algorithms rely on accurate, and moreover consistent, contrast 
and color information for texture and feature extraction. [1]. 

Recent work in single image dehazing has shown 
impressive results for reducing the scattering component of 
shallow naturally-lit horizontal underwater imagery and 
obtaining a metric for range [2].  However, this method 
assumes the color of the haze is constant so no color correction 
is performed.  Markov Random Fields have been used with 
statistical priors learnt from training images to restore color in 
underwater images [3].  Frame averaging is a simple and useful 
approach, but only applicable in flat, relatively uninteresting 

areas [4].  Adaptive histogram equalization performs spatially 
varying histogram equalization over image subregions, and has 
been successfully applied to grayscale underwater images [5].  
Applied in different color spaces, it can correct for some 
illumination, but haloing occurs around sharp intensity changes 
and processing color channels separately can lead to 
misrepresentations of the actual color.  Homomorphic methods 
assume a raw image is the product of an illumination and a 
reflectance image, and that the illumination component varies 
spatially more slowly than the local contrast in the reflectance 
component [6].  This model becomes linear in the logarithmic 
domain, and the illumination component can be estimated 
through low-pass filtering or parametric surface fitting.  White 
balancing can achieve simple useful results through adjusting 
relative color channel gains, but no correction is made for 
illumination patterns [7].  Example results of these methods are 
illustrated in Fig. 2. 

Each of these techniques can achieve aesthetically pleasing 
results for a single image, but the color and texture consistency 
of these corrected images with respect to their input into a 
batch dataset-level classifier is questionable.  These techniques 
also focus on the images themselves without taking advantage 
of the unique lighting constraints and additional sensors often 
present on underwater imaging platforms.  The Doppler 
Velocity Log (DVL) is a ubiquitous oceanographic sensor used 
extensively for vehicle navigation [11].  It emits 4 beams of 



 

 

 

 

Figure 2.  Example methods of correction. (from top to bottom) Frame 
averaging suffers when imagery is collected over sloping terrain or from 
varying altitudes.  Adaptive histogram equalization, here performed in 

L*a*b color space, suffers from haloing and misrepresentation of color.  
Homomorphic filtering, here using a Gaussian low-pass filter, suffers 

severe haloing artifacts around high contrast boundaries.  White balancing 
handles colors intuitively, but does not account for the illumination.  Note 
how each image itself is sufficient for human visual inspection, but there is 

significant variation in color between each method. 

sound, measuring the phase shift in the returns from the 
seafloor to determine both relative velocity and range to the 
bottom.  We present a method to utilize the DVL ranges in 
conjunction with measured sensor offsets to estimate real 
physical parameters, such as attenuation coefficients and the 
beam pattern of the strobe, from the images themselves, and 
subsequently correct for color and illumination artifacts in the 
images. 

II. METHODS 

A. Rectifying lens distortions 

Because the refractive index of water differs from that of 
air, we calibrate our camera lenses in water using the method 
described in [8] and rectify the images before subsequent 
processing. 

B. Color Attenuation Estimation 

We start with an illumination model that assumes the raw 
captured image is the product of some reflectance image we 
would like to isolate, and some illumination component that we 
would like to eliminate, 

 RAW(p,λ,i) = REF(p,λ,i)·ILL(p,λ,i) 

where p=(m,n) are pixel indices within the image, λ is the color 
channel, and i denotes the frame number.  Many deep 
underwater imaging platforms use one or several strobes for 
illumination, so we assume a point light source with spectral 
content s(λ), beam pattern BP(ϕ,ψ), and photon path length d(z) 
from source to object to camera, where z is the seafloor 
topography.  The illumination component at each pixel can 
then be decomposed into 

 ILL(p,λ,i) = K(i) s(λ) BP(ϕ,ψ) e
-α(λ)d(z)

 d(z)
-q

 (2) 

where K(i) is a camera gain term and q is a power spreading 
term.  The total attenuation coefficient α(λ)={α,γ,β} (for the 
red, green, and blue channels, respectively) is comprised of the 
sum of the scattering αs and wavelength-dependent absorbsion 
αa(λ) coefficients [9]. 

We assume that the camera gain does not change between 
images, the spectral content of the strobe is white, and the 
beam pattern of the strobe is constant over the image (this last 
assumption is weak and explored further in the next section).  
Furthermore, we assume that there is overlap between adjacent 
images, i.e. two images share pixels whose actual color values 
are identical.  We can then take the log of (1) and write, for a 
pair of images, 

 log RAW(p,λ,i) = log REF(p,λ) - d(z) α(λ) – log d(z) q (3) 

Note that the reflectance image is no longer a function of 
the frame number i.  If we assume that the seafloor is locally 
planar within the field of view, we can fit a plane to the DVL 
ranges and, using measured offsets between the strobe, camera, 
and DVL, obtain a measure of d(z).  The equation is now linear 



 

Figure 3.  A pair of images with corresponding Zernike features drawn. 

with respect to unknowns log REF(p,λ), α(λ), and q, which we 
can solve for with a constrained linear least-squares regression 
over multiple pixels.  Using average values of α(λ) and q over a 
set of images, the reflectance images can be easily recovered. 

C. Beam Pattern Estimation 

Contrary to our assumption in the previous section, the 
strobe beam pattern BP(ϕ,ψ) is rarely uniform across the 
image.  It does, however, remain constant in angular space, 
with each captured image approximating a 2-D slice through 
that space.  We can use our approximation of d(z) from the 
DVL ranges to warp each pixel into the angular space of the 
strobe.  Noting that the recovered reflectance image in the 
previous section is actually the product of the beam pattern and 
the true reflectance image, we average a series of images in 
angular space to obtain an estimate of the beam pattern of the 
strobe.  Because the strobe beam pattern is independent of 
wavelength, we can correct the raw images for beam pattern 
alone and then recalculate α(λ).  The true reflectance image can 
be recovered through 

 REF(p,λ,i) = RAW(p,λ,i) e
α(λ)d(z)

 d(z)
q
 / norm( BP(ϕ,ψ) ) (4) 

where norm( BP(ϕ,ψ) ) denotes normalization of the beam 
pattern in angular space. 

D. Correlating Underwater Imagery 

Our method of estimating the attenuation coefficients α(λ) 
is dependent upon our ability to correlate two overlapping 
images.  Correlating underwater imagery has been studied for 
the purpose of creating photomosaics of the seafloor, utilizing 
Fourier-based methods [5] and feature-based methods such as 
SIFT [10] and Zernike moments [4].  Because our goal is to 
find distinct pixel matches between images, we opt for feature-
based methods, using a local pixel average around each feature 
as an input to our regression.  Correlating features between 
images is done using the RANSAC algorithm.  We have 
experimented with both SIFT and Zernike moments; the results 
presented in this paper use Zernike features.  An example is 
shown in Fig. 3. 

III. RESULTS 

Images were collected using the SeaSLED towed camera 
system during a cruise aboard the icebreakers N.B. Palmer and 
Oden, surveying depths ranging from 300-2600m over the 
continental shelf and slope of Antarctica.  Relevant onboard 
sensors included a pair of Prosilica 1024x1360 CCD cameras 
with 12 bits of dynamic range, a custom strobe, and a 1.2 MHz 
RD Instruments DVL. 

A sequence of 100 sample images was rectified for lens 
distortion, features calculated, and then correspondences 
computed between adjacent images.  If the vehicle altitude 
changed significantly between frames, it became necessary to 
adjust the intensity of a pair of images so that features would be 
recognized similarly in each.  Once correspondences were 
determined, the average color within a 3x3 neighborhood 
surrounding each pair of features was used as input to the 
regression in (3) to obtain values for log REF(p,λ), α(λ), and q.  

We found q to consistently be approximately zero, so we 
ignored the spreading term in our subsequent calculations.  
Estimated values of α(λ) are shown at the top of Fig. 4.  
Approximately 20% of the values were less than 0.1, 
considered outliers, and ignored. 

Images were then corrected for attenuation using the mean 
values of α(λ), Fig. 6 at top.  These images were then averaged 
in angular space in 1° bins to estimate the strobe beam pattern, 
shown in Fig. 5.  The beam pattern was normalized in angular 
space, interpolated over the angular domain of each image, and 
used to correct the raw images for illumination alone, Fig. 6 
middle.  From these images, the values of α(λ) were 
recalculated, Fig. 4 bottom.  Finally, the raw images were 
corrected for both attenuation and illumination, Fig. 6 bottom.  
Photomosaics comparing raw and fully corrected imagery are 
shown in Fig. 7. 

IV. DISCUSSION 

We propose and implement a novel method of estimating 
attenuation coefficients and a strobe beam pattern using 
sequences of overlapping underwater color images and ranges 
from a DVL mounted in a known configuration with the strobe 
and camera.  These values are used to correct the images for 
color and illumination artifacts.  An overarching assumption 
we make is that the seafloor is locally planar, and the 4 ranges 
returned from the DVL adequately capture that plane.  Our 
approach is advantageous over simple frame averaging in that 

This work was funded by the NSF Center for Subsurface Sensing and 
Imaging Systems (CenSISS) Engineering Research Center (ENC) grant no. 

EEC-99868321. 



 

Figure 5.  Estimated beam pattern of the strobe in angular space.  Warmer 
hues indicate higher intensities; the dark blue border indicates angles 

outside the camera field of view.  Axes units are in degrees, with (0,0) 
corresponding to the nadir of the strobe.  The strobe was mounted facing 

forward with a downward angle of about 70 degrees; the camera was 
mounted forward and starboard of the strobe.  Note how this beam pattern 

is readily visible in Fig. 6 top. 

 

 

 

Figure 6.  Correction for attenuation alone (top), beam pattern alone 
(middle), and both (bottom).   

 

Figure 4.  Estimated alpha, color coded appropriately, for raw images (top) 
and beam pattern corrected images (bottom).  Values less than 0.1 have 
been ignored.  Dotted lines are mean values.  Note how well the alpha 
triplets correlate with each other, suggesting that the variation in our 

estimates originates from intensity variation between images.  

the seafloor need not be flat (i.e. it can be sloped) and that the 
imaging platform can undergo changes in pitch and roll, useful 
for towed sleds with limited control capability.  Color and 
intensity errors occur when the planar assumption is violated, 
such as a large boulder, or when one of the DVL beams returns 
off of a similar object.  This latter situation could be avoided by 
incorporating navigational information and creating a very low-
resolution map of the seafloor topography.  Future 
implementations of this method could use stereo camera pairs, 
structure from motion (SFM) algorithms, or multibeam sonar to 
obtain higher-resolution estimates of the bottom elevation. 

Another overarching assumption we make is that there is 
sufficient overlap between images to compute feature 
correspondences.  In the sequence of images shown here there 

was consistently >50% overlap due to the slow towing speed, 
and the bottom was relatively full of features.  Even on 
unfeatured seafloor with less overlap, our approach for 
calculating α(λ) only needs a single common pixel between a 



pair of images, and for a featureless bottom the average color 
over a larger region can be used.  A potential problem with 
using features for calculating α(λ) is that they may have more 
relief and are generally different intensities from the 
background, which could bias the estimates.  Incorporating the 
average value of low-gradient areas between features could 
improve our estimates of α(λ) in future work.  This bias could 
also explain some of the bad estimates that were rejected as 
outliers, as the outliers were the same in both calculations of 
α(λ).  The outliers could also be due to features that violate the 
planar bottom assumption in those particular images. 

We intend to implement this method across other imagery 
captured around the world to compare attenuation coefficients.  
We also recognize the need to capture images with objects of 
known color so that we can ground truth our results.  This work 
will hopefully lead towards providing more consistent color 
correction for input into classification algorithms. 
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Figure 7.  Raw (left) and corrected (right) photomosaics of a sequence of 10 images. 

 


