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Abstract— Autonomous underwater vehicle (AUV) operations
are inherently bandwidth limited but increasingly data inten-
sive. This leads to large latencies between the capture of image
data and the time at which operators are able to make informed
decisions using the results of a survey. As AUV endurance and
reliability continue to improve, there is a greater need for real-
time on-board data processing capabilities. In this paper, we
apply online data summary techniques to optical and acoustical
imagery collected by AUVs, then show how they can be used
to both create low-bandwidth semantic maps and to detect
anomalies on the seafloor.

I. INTRODUCTION

Seventy percent of the Earth’s surface is covered by
water, below which lie diverse ecosystems, rare geological
formations, important archeological sites, and a wealth of
natural resources. Understanding and quantifying these areas
presents unique challenges for the robotic imaging platforms
required to access such remote locations. Low-bandwidth
acoustic communications prevent the transmission of images
in real-time, while the large volumes of data collected often
exceed the practical limits of exhaustive human analysis. As
a result, the paradigm of underwater exploration has a high
latency of understanding between the capture of image data
and the time at which operators are able to gain a visual
understanding of the survey environment.

A robotic vehicle capturing one optical still image every
few seconds can easily generate thousands of images within
a matter of hours. This sheer volume of data presents a
formidable obstacle to any individual attempting to gain
an understanding of the survey environment. Often, when
a vehicle operator obtains a dataset for the first time, their
instinct is to quickly scan thumbnails of the images for any
that “pop out.” While this can be useful to detect obvious
anomalies, it is not necessarily the best or fastest way to
obtain images that “represent” the data in a meaningful way.
In this paper, we explore the use of online summaries [1], [2],
[3] as a framework for both mapping and anomaly detection
by maintaining a small subset of the images that exceed some
threshold of novelty when they are first encountered.

II. RELATED WORK

A. Underwater Communications

Without a physical link to the surface, AUVs rely on
acoustic signals to communicate with shipboard operators.
These channels have very limited bandwidth with throughput
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on the order of tens of bytes per second depending on range,
packet size, other uses of the channel (for instance, naviga-
tion sensors), and latencies due to the speed of sound in water
[4], [5]. While much higher data rates have been achieved
using underwater optical modems for vehicle control [6] and
two-way communication [7], these systems are limited to
ranges on the order of 100 meters and are inadequate for
long-range communication [8]. In the absence of mission-
time operator feedback, an AUV must either navigate along
a preprogrammed course or use the data it collects to alter
its behavior. Examples of the latter, termed adaptive mission
planning, include detecting mines so potential targets can
be re-surveyed in higher-resolution [9] and using chemical
sensors to trace plumes back to their source [10], [11]. The
overarching implication is that, with the exception of low-
bandwidth status messages, data collected by an AUV is not
seen by operators until after the mission is completed and
the vehicle recovered.

B. Clustering Data

Clustering can be viewed as an unsupervised compression
strategy that allows multidimensional data to be quantized
to one of several discrete distributions by defining a distance
metric between samples and minimizing some measure of
that distance. We can think of each image or section of an
image as a data point characterized by some distribution of
features, such as a quantized descriptor (which itself could
have been obtained through clustering). One of the most
well-known clustering algorithms is the K-means algorithm
which seeks to find a set of cluster centers that minimize the
within-class distances between each cluster center and the
members of its representative class [12]. While this method
has been extremely useful in generating texton dictionaries
for texture analysis [13], [14], the fact that the cluster centers
are not guaranteed to occur at a data point makes mapping
back to a single representative image for each class difficult.
A similar algorithm, k-medoids, only considers data points
as potential cluster centers, and is more useful for generating
representative images. Both of these methods require the
number of cluster to be set a priori.

Other methods seek to determine the number of clusters
based on the natural structure of the data. Affinity propa-
gation accomplishes this by picking “exemplars” that are
suggested by nearby data points [15] and has found use
in building texton vocabularies [16]. Hierarchical methods
have also been used to learn objects [17], scenes [18], and
underwater habitats [19] based on topic models using Latent
Dirichlet Allocation (LDA) [20]. However, a drawback of



all methods mentioned thus far is that they operate upon a
static dataset. This “offline” approach is ill-suited to real-time
robotic imaging because it offers no way to characterize the
dataset until after all the data has been collected.

Clustering data in an “online” fashion provides two im-
portant benefits. Firstly, it allows data to be processed
continuously throughout the mission, reducing the overall
computational load. Secondly, at any point in time it provides
a summary of the imagery captured thus far by the vehicle. A
drawback to online methods is that they offer less guarantees
of stability and are ultimately dependent upon the order
in which images are presented to the algorithm [21]. The
worst-case scenario for online approaches would be for the
most extreme data points to occur first, followed by interior
points which become poorly represented. Fortunately, natural
underwater environments are highly redundant with habitat
domains that persist across many frames. One possible
approach uses incremental clustering of topic models using
LDA [3]. We are particularly interested in recent work on
navigation summaries [1], [2] which operate on the concept
of “surprise.”

C. Surprise-Based Summaries

An event can be said to be “surprising” because it happens
unexpectedly. The idea of what is expected can be modeled
as a probability distribution over a set of variables and
considered as prior knowledge about the world. When a
novel event occurs, it augments this body of knowledge and
creates a slightly different posterior knowledge of the world.
If the amount of knowledge added by any single event is
large enough, that event can be said to be unexpected and
thus is “surprising.”

This concept has been formalized in a Bayesian framework
as the difference between the posterior and prior models of
the world [22]. For measuring this difference, the Kullback-
Leibler divergence, or relative entropy, was shown to corre-
late with an attraction of human attention,

dKL(p ‖ q) =
∑
x

p(x)log
p(x)

q(x)
(1)

Φ =
∑
i

d(p ‖ ni) (2)

where p(x) is the posterior model, q(x) is the prior model,
and x is some observed variable over which distributions can
be computed. Rather than modeling the prior knowledge Π−

as a single distribution P (F ) over a set of features F , we
follow [1] and model it over each member of summary set
S containing M members.

Π− = {P (F |S1), · · ·P (R|SM )} (3)

The posterior knowledge Π+ is simply the union of prior
knowledge with the new observation Z

Π+ = {P (F |S1), · · ·P (R|SM ), P (F |Z)} (4)

The set theoretic surprise ξ can be defined as the Hausdorff
distance between the posterior and prior distribution using
the KL divergence as a distance metric [1]. The Hausdorff
metric is a measure of the distance between two sets based
on the greatest possible difference between one point in the
first set to the nearest point on the other sets. Since the prior
and posterior sets differ only by Z, the surprise can be simply
expressed as the KL distance between observation Z and the
nearest summary image in S.

When a new observation’s surprise exceeds a threshold, it
is added to the summary set. The threshold is generally set
as the lowest value of surprise in the current summary. That
member of the old summary set with the lowest surprise is
then removed and replaced by the new observation, and the
surprise threshold set to the next least-surprising member
of the summary set. In this manner, a temporally global
summary of the images is maintained at all times [1].

III. SEMANTIC MAPPING

A. Modified Online Summaries

Our interest in creating online summaries is motivated
by advances in image compression and acoustic communi-
cations that facilitate the transmission of images during a
mission [23]. Summary images transmitted during a mission
can serve as map bases such that each non-summary image
is indexed as belonging to one of the summary set types.
In this way, a low-bandwidth semantic map can be created
to give an operator a fast, high-level understanding of the
survey environment while a mission is still underway.

There are several drawbacks to existing approaches that
make them ill-suited for picking which images to transmit
during a mission. First, the summary represents a dynamic
set of images, so there is no guarantee that an image that
is transmitted will remain a member of the summary set
throughout the rest of the mission. Second, simply transmit-
ting images based on the highest “surprise” value can result
in a handful of “outlier” images that are not representative of
the dominant habitats in a survey. Lastly, if our goal is to use
these summary images as the bases for building a semantic
map to spatially characterize the survey environment, we
need a means of reliably classifying non-summary images
online as well.

Our first modification is to represent each non-summary
image with a member of the summary set. Assuming that
we have navigation data available to be transmitted as well,
we can combine these representations with the approximate
vehicle position to create spatial coverage maps based on the
summary set. Intuitively, a non-summary image should be
best represented by the summary image that is most similar.
Representing a non-summary image by its nearest neighbor-
ing summary in this way can be thought of as minimizing the
surprise one would have when looking through all the non-
summary images represented by a given summary image.

We next must determine which summary images to trans-
mit. Obviously, it is desirable to transmit the first image as
soon as possible to minimize the latency of understanding
for the operator. However, early in the mission the surprise
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Fig. 1. Surprise as a function of image number. The threshold of surprise
grows as more images are incorporated into the summary set.

threshold grows rapidly as the algorithm determines which
images best represent the data. Thus, we wait until the
surprise threshold does not change for a specified number
of images, implying that the vehicle is imaging consistent
terrain that could be represented well by a single image.

For subsequent images, we assume that the vehicle will
be ready to transmit another image after a set number of
frames. We would like to choose a summary image that is
different enough from the previously transmitted summary
images while at the same time representative of enough
non-summary images to make it a worthwhile choice for a
map basis. This can be formulated to minimize the surprise
one would have when looking through the other summary
images. We are effectively choosing a summary subset within
the summary set. However, simply choosing the summary
image that minimizes this surprise does not guarantee that it
represents enough non-summary images to make it a useful
basis for the map. Hence, we select the summary set that
both minimizes the Haussdorff distance when the summary
set is partitioned into subsets as well as represents enough
non-summary images to exceed a given threshold.

Selecting good summary images to transmit is important
because these images will be used to represent the entire
dataset for the duration of the mission. Furthermore, this
means that, as new summary images are added to the
summary set, previously transmitted summary images should
not be removed from the summary set given the high cost of
transmitting an image. Subsequently, after a summary image
is transmitted, it becomes “static,” as opposed to the other
“dynamic” summary images.

Online summary methods do not require distances to
be recomputed for all existing data points when new data
appears which is one quality that makes them attractive
for power-limited underwater robots. Thus, when a new
summary is added to the set, we would rather not lose the
information we have gained by simply removing the least-
surprising summary image and the non-summary images that

Fig. 2. Semantic maps created after each subsequent image is transmitted
(top) with summary images and respective color codes (bottom).

it represents. Instead, we propose to merge it with the nearest
summary image so that it and its non-summary images all
become non-summary images represented by the nearest
summary image.

B. Generating Semantic Maps

We implemented this new approach on a 2800 image
dataset collected by the SeaBED AUV [24] in 2003 in the
Stellwagen Marine Sanctuary. The survey consisted of mul-
tiple track lines over various habitats composed of boulders,
rubble, sand, and mud. For each image, we computed 1000
keypoints, accumulated a histogram of oriented gradients
around each keypoint, and quantized each to one of 14 binary
patterns [25]. A global histogram was then computed for the
entire image and used as the model distribution P (F ). Con-
sidering that images are captured every 3 seconds, the total
mission time to capture 2800 images is over 2 hours. With
the current state of the art in acoustic image transmission
being approximately one full-resolution 1-megapixel image
every 15 minutes [23], we estimated that about 8 images
could be transmitted back within the course of a mission.
We set the summary set size to twice that to allow for some
flexibility.

The summary set is initialized with the first 16 images and
their corresponding surprise values are set to the smallest
surprise measured relative to the set of images before it.
Progress then continues throughout the rest of the data until
the surprise threshold is exceeded by a novel image. When
this happens, the novel surprising image is incorporated into



Fig. 3. Surprise values between all images (left) and symmetric surprise
between all images (right) using only the surprise values from their
representative summary set.

the summary set, the least surprising image removed, and
the surprise threshold augmented to the new lowest surprise
value within the set as previously described. Figure 1 plots
the surprise value and threshold throughout the course of the
mission. As more of the environment is surveyed, the more
surprising a new image must be to become incorporated into
the summary set.

Figure 2 shows the resulting progressive semantic maps
created after each subsequent image and corresponding data
are transmitted. The first image (red) was transmitted when
the surprise threshold stabilized after 147 images. Each
subsequent transmitted image was chosen after 300 frames
had elapsed, simulating a realistic 15 minute transmission
interval [23]. The first map is based on the first (red) and
second (green) images, the second on the first three, and so
on, until all 9 images are used.

To show that our overall approach preserves distance
information, we plot the surprise distance between all 3000+
images in Figure 3. At left, distances have been calculated
between each image. At right, the distances for each image
have been replaced by their representative summary image’s
distances. Remarkably, the structure within the dataset is
preserved quite well given the almost 30,000:1 compression
ratio.

Some of these classes are similar and the operator may
wish to merge them for visual clarity. In Figure 4 the 9
transmitted images have been heuristically merged into 5
distinct classes: (from top to bottom at right) sand, piled
boulders, lone boulders in sand, mud, and rubble. From the
complete mosaic and the bathymetric map, it is clear that
the piled boulders correspond to the tops of ridges. Depths
in the bathymetric map range from 60 meters (warmer hues)
to 70 meters (colder hues). Between these ridges are sandy
areas, all of which are bordered by mud and smaller rubble.

This level of dataset understanding would be extremely
valuable for an operator to possess during a mission. For
instance, if the boulder fields were of particular interest to a
scientist, the vehicle could be issued a redirect command
to resurvey that area at higher resolution. Conversely, if
a particular substrate of interest is not being imaged, the
mission can be terminated and the vehicle recovered and
relocated to another area. Furthermore, upon recovery of

Fig. 4. Photomosaic (left) and bathymetry (middle left) of the entire
mission. The final semantic map (middle right) using 9 images which have
been heuristically merged into 5 distinct classes (right) and color coded.

the vehicle, the operator has a fully classified dataset with
additional summary images as well. The non-summary im-
ages represented by each summary images can be browsed
to check the class validity. Several randomly selected non-
summary images have been chosen from each of the 5
summary sets in Figure 4 and are shown in Figure 5.

We have described modifications which enable us to select
summary images to transmit that characterize the diversity in
the dataset and will not change as additional summary images
are added and merged. After the first image is transmitted
and received, an operator has an initial understanding of the
survey environment. After the second image is transmitted
and received, additional scalar data containing navigation and
classification information can be compressed and transmitted
as well, providing the operator with ample information to be-
gin to construct a spatial map of the survey environment. The
classification masks exhibit high redundancy and covariance
so they can be compressed at high rates. These data can be
transmitted using very little bandwidth with the techniques
presented in [26] and [23].

IV. ANOMALY DETECTION

A. Semantic Mapping and Anomaly Detection

Semantic mapping and anomaly detection can be viewed
as complementary problems. In the previous section we
introduced a method to generate semantic maps by using



Fig. 5. Example imagery from each of the five heuristically merged classes.

modified online summaries to select a set of images that
best represents the survey environment. While this approach
selects for images that are “surprising,” it is biased against
“anomalies,” or surprising images which serve poorly as
summary images because few or no non-summary images
are similar to them. If we instead retain these images in
the summary set and how “surprising” they were when first

Fig. 6. Side scan sonar mosaic of the survey. Track lines are shown in
yellow, with the vehicle starting at (0,0). The known location of a downed
airplane is indicated by the red circle.

encountered, we can build up a map of how well the vehicle
“understands” the survey environment. Such a map could
inform a robot making adaptive multi-resolution surveys of
a region, suggesting a “closer look” at regions which it does
not “understand” as well as others and avoiding areas which
fit well into its current model of the world.

We demonstrate a framework for this approach using part
of a dataset collected by a 120 KHz side scan sonar from
a REMUS 600 AUV at 70m altitude. At this altitude, the
swatch width is approximately 700m to each side. Each
return is resampled to an approximately square grid given the
distance traveled between pings, in this case 1.5m, to account
for the slant range. Intensity distortions of the port and
starboard channels are corrected for using a running mean
updated at each ping. Altitudes that were not between 65m -
75m were ignored. This can be seen in the northwest corner
of the mosaic in Figure 6 where the AUV had difficulty
maintaining a constant altitude over the rugged terrain.

Consecutive “good” pings are stored in a buffer until
there are enough to form an image tile. Histograms of
oriented gradients were computed in a dense fashion across
each tile. Each histogram is treated as a distribution and
quantized according to a summary of previously observed
histograms. Each quantized pattern is then added to its
corresponding map bin based on the navigational information
of the AUV. Once a map bin has not been augmented after a
ping, the distribution of features is also quantized according



Fig. 7. Semantic map of the survey environment.

to a summary of previously observed bins. This two-level
approach allows both new “texton” [27], [13], [28] features
and new substrate “texture” classes to be “learned” as new
regions are explored.

Figure 7 shows the semantic map generated by the algo-
rithm for the same mosaic shown in Figure 6. Map bins are in
100m spacings. The majority of the bins seem to correspond
well with flatter areas in the mosaic, where several other
classes correspond with rocky areas. A downed airplane in
the survey has been classified as similar to rocky terrain.
Figure 8 shows the maximum surprise value recorded at each
bin. Lower values of surprise can be thought of as where the
AUV “understands” what it is observing. It is not surprising
that the AUV understands the flatter areas better than the
rocky areas. It is also interesting to note that the AUV is
surprised to encounter the airplane relative to the surrounding
terrain.

V. DISCUSSION

This work makes contributions to the field of autonomous
underwater robotics by describing a framework that can
be used to reduce the “latency of understanding,” or the
time delay between when an image is captured and when
it is finally “understood” by an operator. This latency is
propagated from two sources: first, from the low-bandwidth
of the acoustic communication channel which greatly re-
stricts the throughput of data; second, from the large volume
of image data that must be analyzed. The second source
has been addressed by numerous automated classification

Fig. 8. Maximum surprise for each map bin. Note how values are low in
the flat basin in the middle of the transect and higher in rocky aras and at
the airplane. The higher values at the beginning of the survey are the inital
surprise of the robot exploring somewhere for the first time.

algorithms designed to annotate image data in an offline
post-processed sense. The first source has been addressed by
recent compression work allowing a small set of images to be
transmitted over the course of a mission. We have addressed
both of these sources by describing a lightweight framework
designed to run in real time aboard a robotic vehicle that can
produce environmental maps based on a subset of summary
images and infer areas that merit additional study.

In Figures 7 and 8 it can be seen that the alrorithm is very
sensitive to noisy data. While we have taken care to only use
pings captured within an acceptable range of altitudes, addi-
tional ping filtering and quality control would likely produce
cleaner results. Furthermore, one would intuitively hope that
a downed airplane would be classified as an anomaly apart
from rocky areas. We are continuing to explore the use of
more descriptive features as well as possibly adding a third
summary layer that learns the distribution of classified map
bins.

While optical imagery offers excellent resolution at close
range, the high attenuation of light in water makes it less
ideal as a large area search sensor. Acoustic imaging sensors
such as side scan sonars are much better suited to mapping
large areas. In one possible paradigm, a side scan sonar could
be used for a high altitude search to characterize large areas
and detect anomalies which are subsequently imaged at lower



altitudes by a camera. Another area where these approaches
could be useful is the selective offloading of data after a
mission.

Existing techniques approach the visual summary problem
strictly as a visual summary problem; we approach it from
a compression standpoint in two contexts. Firstly, a robot
vehicle’s ability to communicate a high-level understanding
of its environment given the limitations of acoustic modems.
Secondly, a robot vehicle’s ability to understand its environ-
ment and resurvey areas it doesn’t understand. Our work
represents an enhancement of the capabilities of robotic
vehicles both to explore new environments and to improve
the quality of operator involvement during vehicle missions.

ACKNOWLEDGMENT
We are grateful to Clay Kunz for his generous help in

generating photomosaics of the data. We are also grateful to
Mike Purcell for providing the sidescan sonar imagery.

REFERENCES

[1] Y. Girdhar and G. Dudek, “Onsum: A system for generating online
navigation summaries,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on. IEEE, 2010, pp. 746–751.

[2] ——, “Efficient on-line data summarization using extremum sum-
maries,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 3490–3496.

[3] R. Paul, D. Rus, and P. Newman, “How was your day? online visual
workspace summaries using incremental clustering in topic space,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 4058–4065.

[4] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball,
“The whoi micro-modem: an acoustic communications and navigation
system for multiple platforms,” in OCEANS, 2005. Proceedings of
MTS/IEEE. IEEE, 2005, pp. 1086–1092.

[5] M. Stojanovic, “Recent advances in high-speed underwater acoustic
communications,” Oceanic Engineering, IEEE Journal of, vol. 21,
no. 2, pp. 125–136, 1996.

[6] M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical
communication for remote underwater robot operation,” in Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on. IEEE, 2010, pp. 4017–4022.

[7] M. Doniec and D. Rus, “Bidirectional optical communication with
aquaoptical ii,” in Communication Systems (ICCS), 2010 IEEE Inter-
national Conference on. IEEE, 2010, pp. 390–394.

[8] N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An
integrated, underwater optical/acoustic communications system,” in
OCEANS 2010 IEEE-Sydney. IEEE, 2010, pp. 1–6.

[9] L. Freitag, M. Grund, C. von Alt, R. Stokey, and T. Austin, “A shallow
water acoustic network for mine countermeasures operations with
autonomous underwater vehicles,” Underwater Defense Technology
(UDT), 2005.

[10] J. A. Farrell, S. Pang, and W. Li, “Chemical plume tracing via an
autonomous underwater vehicle,” Oceanic Engineering, IEEE Journal
of, vol. 30, no. 2, pp. 428–442, 2005.

[11] M. V. Jakuba, “Stochastic mapping for chemical plume source local-
ization with application to autonomous hydrothermal vent discovery,”
Ph.D. dissertation, Massachusetts Institute of Technology and Woods
Hole Oceanographic Institution, 2007.

[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed.
John Wiley & Sons, 2001.

[13] T. Leung and J. Malik, “Representing and recognizing
the visual appearance of materials using three-dimensional
textons,” International Journal of Computer Vision, vol. 43,
pp. 29–44, 2001, 10.1023/A:1011126920638. [Online]. Available:
http://dx.doi.org/10.1023/A:1011126920638

[14] M. Varma and A. Zisserman, “A statistical approach
to texture classification from single images,” International
Journal of Computer Vision, vol. 62, pp. 61–81,
2005, 10.1023/B:VISI.0000046589.39864.ee. [Online]. Available:
http://dx.doi.org/10.1023/B:VISI.0000046589.39864.ee

[15] B. J. Frey and D. Dueck, “Clustering by passing messages between
data points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[16] N. C. Loomis, “Computational imaging and automated identification
for aqueous environments,” Ph.D. dissertation, MIT/WHOI Joint Pro-
gram in Oceanography / Applied Ocean Science & Engineering, 2011.

[17] J. Sivic, B. Russell, A. Zisserman, W. Freeman, and A. Efros, “Un-
supervised discovery of visual object class hierarchies,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, june 2008, pp. 1 –8.

[18] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2.
IEEE, 2005, pp. 524–531.

[19] O. Pizarro, S. Williams, and J. Colquhoun, “Topic-based habitat
classification using visual data,” in OCEANS 2009 - EUROPE, may
2009, pp. 1 –8.

[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[21] S. Zhong, “Efficient online spherical k-means clustering,” in Neural
Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International
Joint Conference on, vol. 5. IEEE, 2005, pp. 3180–3185.

[22] L. Itti and P. F. Baldi, “Bayesian surprise attracts human attention,”
in Advances in neural information processing systems, 2005, pp. 547–
554.

[23] C. Murphy, “Progressively communicating rish telemetry from auton-
mous underwater vehicles via relays,” Ph.D. dissertation, MIT/WHOI
Joint Program in Oceanography / Applied Oceans Science and Engi-
neering, 2012.

[24] H. Singh, R. Eustice, C. Roman, and O. Pizarro, “The seabed auv–a
platform for high resolution imaging,” Unmanned Underwater Vehicle
Showcase, 2002.

[25] J. W. Kaeli, “Computational strategies for understanding underwater
optical image datasets,” Ph.D. dissertation, Massachusetts Institute of
Technology and Woods Hole Oceanographic Institution, 2013.

[26] T. E. Schneider, “Advances in integrating autonomy with acoustic
communications for intelligent networks of marine robots,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2013.

[27] B. Julesz, “Textons, the elements of texture perception, and their
interactions,” Nature, vol. 290, pp. 91–97, 1981.

[28] M. Varma and A. Zisserman, “A statistical approach to material
classification using image patch exemplars,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 31, no. 11, pp. 2032
–2047, nov. 2009.


