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Abstract—We present a parametric technique for simultaneous
outlier rejection and position estimation from a set of range
measurements. This approach utilizes an adapted version of
the Random Sample Consensus (RANSAC) algorithm, which
has found extensive use in image matching applications. Our
implementation has been demonstrated to function in real time
on an Autonomous Underwater Vehicle (AUV) for the purposes
of localizing a stationary acoustic beacon and aiding navigation.

Index Terms—underwater acoustics, single beacon navigation,
autonomous underwater vehicle, parametric modeling, outlier
rejection

I. INTRODUCTION

Acoustics plays a critical role in underwater communication,
navigation, and localization due to the absence of GPS and
the limitations of dead reckoning using inertial sensors. The
most ubiquitous use is measuring ranges using acoustic travel
time multiplied by the speed of sound. These ranges may
be measured between a ship and an autonomous underwater
vehicle (AUV) for tracking, between an AUV and a seafloor
beacon for use as a navigation reference, or between a ship
and a seafloor beacon for surveying the exact location of the
beacon. In each case, the range measurements must be made
from multiple locations so the solution can be triangulated.
However, acoustic range data suffers from errors that are
highly non-Gaussian and prone to outliers due to ray bending
in the water column and multi-path propagation from surface
and seafloor reflections. These outlier ranges are often difficult
to reject in the absence of a priori knowledge about platform
movement.

This problem has many similarities to the problem of esti-
mating the transformation between two images using matched
keypoints. Such an estimation can be used for the purpose of
estimating camera motion, uncalibrated stereo image rectifi-
cation, or constructing a photomosaic. The Random Sample
Consensus (RANSAC) algorithm has enjoyed broad success
in addressing these problems. In contrast to regressive meth-
ods that require outlier rejection as a pre-processing step,
RANSAC simultaneously rejects outliers while estimating the
parameters of the model. It works by first randomly selecting
a number of samples to uniquely constrain a parameterized
model. Then, it computes the number of inliers from the entire
data set that also fit that model within a specified threshold.

Fig. 1: Top: An AUV accumulates uncertainty as it maneuvers
in the absence of external navigation fixes. By obtaining acous-
tic ranges to the beacon, the AUV’s uncertainty is constrained
by the uncertainty in the range. Bottom: Over short distances,
the AUV position can be assumed to be perfect for the purpose
of localizing the beacon. In both cases, it is readily apparent
that orthogonal bearings provide the optimal constraints for
single beacon navigation.

Lastly, it iterates upon this process while saving the parameters
of the model that maximize the number of inliers.

We begin with a discussion of prevailing underwater navi-
gation techniques, in particular range-only techniques, and de-
scribe the advantages our approach has over existing methods.
We then present modifications to the RANSAC algorithm that
make it suitable for outlier rejection and position estimation
based on acoustic ranges. We also present a refinement step
that improves the position estimate using all ranges that are
inliers to the estimated model parameters. We then discuss
the process of implementation on an AUV for the purpose of
estimating the location of and navigating relative to an acoustic
beacon on the seafloor.



II. RELATED WORK

Once an AUV dives below the surface, it loses its connection
with GPS satellites and must estimate its position using a
combination of on-board inertial sensors and external acoustic
references. In typical cases, an acoustic beacon replies to an
interrogation ping from the AUV, and the range can be inferred
from the two-way travel time based on the local speed of
sound. When multiple beacons respond to the same ping,
termed long-baseline (LBL) navigation, the AUV is able to
to triangulate its position based on a single interrogation [1].
However, based on the added time and cost to deploy and
survey in each acoustic beacon, there is interest in ways that
a single beacon can be utilized to aid navigation.

A. Single Beacon Navigation

Ultra-short baseline (USBL) arrays can be used to provide
bearing information in addition to range from a single ping.
These have proven effective for AUV docking [2] as well
as tracking applications [3]. A more exotic beacon has been
demonstrated that generates a spiral wave front such that
bearing can be determined based on frequency [4]. A fair
amount of work has also been done to improve upon the
interrogate-reply paradigm used in LBL navigation. Chip-
scale atomic clocks (CSAC) can be utilized to provide one-
way-travel time from synchronized pings. These have been
demonstrated both where the USBL array is on the vehicle
[5] as well as where the USBL array is on the ship and the
position solution can be transmitted to the AUV [6]. This latter
approach has also been implemented on autonomous surface
platforms [7].

B. Range-Only Navigation

In many cases, range information alone is ample to aid
navigation. Multiple pings made relative to a moving platform
create a synthetic array over time, enabling triangulation sim-
ilar to LBL navigation. However, consideration of geometry
is critical. Erroneous mirror solutions can arise when the
AUV moves straight without turning. Furthermore, the beacon
only constrains the error along the bearing to the beacon,
as shown in Figure 1, so orthogonal bearings provide the
optimal constraints on the uncertainty. As a result, much of the
work in range-only navigation involves pre-defined maneuvers
for areal coverage [8] or for docking applications [9]. These
approaches have utilized both two-way [10] and one-way
travel times [11].

C. Outlier Rejection

An important consideration for position estimates using
acoustic ranges is rejecting bad ranges, or outliers. Acoustic
ranges are subject to noise that is highly non-Gaussian, so
linear methods such as regression or simple averaging over
time will not improve results. These bad ranges sometimes
arise where the ping bounces off the surface of the seafloor.
When the AUV detects this multi-path ping rather than the
direct path, the range can be overestimated. Ray bending in
stratified ocean layers exacerbates this. Bad ranges can also

arise from false detections on background noise in the ocean.
Lastly, sometimes there is no detection, creating gaps in the
time series. Methods of outlier rejection have included manual
rejection by trained operator, [11], particle filters [5], [6], and
single cluster graph partitioning [12].

Another method that simultaneously estimates parameters
while rejecting outliers is the Random Sample Consensus
(RANSAC) algorithm [13]. It has found extensive use in
automated image matching because it is robust to the large
amounts of non-Gaussian noise inherent in computing image
transforms using matched features. [14]. In the context of
underwater acoustics, it has been used as a pre-processing step
for bearing-only estimation [15], [16].

III. METHODS

A. Random Sample Consensus

The goal of the RANSAC algorithm is to find a solution S
given a set of N records R = {R1, R2, ..., RN} that maxi-
mizes the number of records that contribute to the solution (the
inliers) while rejecting the records that do not contribute to the
solution (the outliers). A threshold h is specified, within which
a record will be considered an inlier to the solution. First, a
subset of K records is chosen at random, where K is the
minimum number of records required to uniquely constrain
the solution. Then, the solution to this subset is found, and
each record is tested to see if it is an inlier to that solution.
If the current solution has a higher fraction of inliers f than
the existing solution, then the current solution is saved as the
best solution thus far. This process continues for Q iterations,
determined from the probability p that a solution with inlier
fraction f can be found by randomly sampling K records Q
times. [17].

Q ≥ log(1− p)

log(1− fK)
(1)

Each record Ri = [xi, yi, ri] is a measurement of AUV
position, computed in a local latitude/longitude reference
frame, and the corresponding range. Two records produce
0, 1, or 2 solutions S = [xs, ys] based on the intersections
between the range circles centered at the AUV positions. A
third record is therefore required to disambiguate the solution,
so K = 3. Computing the intersections between two circles
is a straightforward mathematical operation. We maintain a
circular buffer of the N most recent records to avoid degraded
performance from old records with higher uncertainty relative
to the current record.

B. Refinement

At this point, the adapted RANSAC algorithm has provided
a solution that fits 2 records exactly, with the remaining
inlier records lying within a threshold distance. For certain
applications, it may be desirable to refine the solution to
minimize the error within the entire set of inlier records. For
each inlier record, we can compute the distance between the
record and the solution.



Algorithm 1 RANSAC

1: input:
2: set of N records R1, R2, ..., RN

3: inlier threshold h
4: output:
5: best solution B
6: initialize:
7: iteration count i← 0
8: required iterations Q←∞
9: inlier fraction f ← 0

10: while i < Q do
11: i← i + 1
12: randomly select K records Rn1

, Rn2
, ..., RnK

13: compute solution S using K records
14: inlier count c← 0
15: for j = 1 to N do
16: compute error e between Rj and S
17: if e < h then
18: c← c + 1
19: if c

N < f then
20: B ← S
21: f ← c

N
22: Q← updated required iterations
23: return B

di =
√

(xi − xs)2 + (yi − ys)2 (2)

The difference between this distance and the range is the
error between the record and the solution.

ei = di − ri (3)

By scaling the difference between the record and the solu-
tion along each axis by the ratio of the error to the distance, we
can compute a vector pointing from the solution to the edge
of the range circle. This error vector represents the amount
the solution would have to move to reduce the error to zero
for that record.

xe,i = (xi − xs)
ei
di

(4)

ye,i = (yi − ys)
ei
di

(5)

We can compute the mean of these error vectors over the
set of inliers i ∈ I .

x̄e =
∑
i∈I

wiex (6)

ȳe =
∑
i∈I

wiey (7)

The weight wi can be used to favor certain records over
others, for instance, to trust more recent records where the
AUV’s position estimation is more reliable. The weights must

Fig. 2: Diagram of the simulation setup. The direct path is
illustrated by the green dotted line.

sum to unity. For the results presented here we have used
uniform weighting.

The solution can then be updated by augmenting the current
solution by the mean error vector.

xs,updated = xs + x̄e (8)

ys,updated = ys + ȳe (9)

This process can be iterated until the magnitude of the mean
error vector drops below some threshold.

IV. RESULTS

A. Simulation

We developed a simulation environment in MATLAB to test
both the estimation algorithm as well as the behaviors acting
on these estimates. Since these estimates subsequently affect
the next record that is observed, such simulations help us to
analyze many different behaviors before testing in the water.
To realistically model the acoustic ranges between the AUV
and the beacon, several kinds of noise are added to the actual
values. First, Gaussian noise is added to each computed range.
Next, there is a 10% likelihood that uniformly distributed noise
is added to the range, simulating a multi-path return. Then,
there is a 10% likelihood that a completely random range is
returned, simulating a detection off of ambient noise in the
water column. Lastly, there is a 10% likelihood that no range
is returned, simulating no detection of the reply ping. These
values have been tuned heuristically to provide acoustic range
variations similar to those encountered locally.

The simulation setup is illustrated in Figure 2. We started
with the simplest possible behavior where the vehicle al-
ways bears towards the estimated beacon location at some
predefined speed. To model realistic vehicle dynamics, the
maximum heading rate of the vehicle was limited to 10 degrees
per second. The AUV began the simulation at a random
position and with a random heading somewhere in a box of
1000m radius around the beacon. As it estimated the beacon’s



Fig. 3: From top to bottom, left to right: snapshots from one
simulation run. Outlier ranges are shown as red circles, while
inlier ranges that contribute to the location estimate, shown as
a white dot, are green. The actual beacon location is shown
as a black dot.

location, it altered its bearing directly towards the estimate. Its
speed was a constant 1.9 meters per second, a typical value
at the higher end of AUV maneuverability. When the AUV
came within a 10 meter threshold of the beacon, the current
iteration was ended and the next iteration began.

Figures 3 illustrates several snapshots from one simulation
run. To evaluate the performance of the algorithm and the
behavior, the length of the actual path taken by the vehicle is
normalized by the length of the direct path. This is the shortest
path in a straight line that the AUV would have to travel
to reach the beacon, less the 10 meter threshold. A Monte
Carlo approach of 5,000 simulation runs was computed, and
the normalized distance calculated for each one. A histogram
of these distances is shown in Figure 4. Over 90% of the runs
resulted in vehicle paths that were less than 10% greater than
the direct path.

B. Relative Loitering

An adaptive vehicle behavior was developed as a REMUS
objective that enables the AUV to loiter near seafloor node
equipped with an acoustic beacon [18]. The motivation here
is twofold. First, the AUV is used to offload data from an ocean
bottom seismometer (OBS) using the high throughput of an

Fig. 4: Histogram (black) and cumulative distribution (red line)
of distance ratios accumulated over 5,000 iterations of a Monte
Carlo simulation.

optical modem at short ranges [19]. Second, the optical modem
also permits the AUV to transmit an accurate time, enabling
the OBS to reset its time base which can drift nonlinearly over
long deployments [20]. The AUV continuously estimates the
relative position of the beacon after each ping while attempting
to circle at a specified radius. This enables it to account both
for the initial error in the OBS location as well as its own
accumulated uncertainty as it maneuvers. Furthermore, this
circling behavior keeps the AUV and the node within each
others’ optical beam pattern, ensuring the the link remains
continuously active throughout the loiter.

Figure 5 shows vehicle interface program (VIP) playback
from one of several test missions in Buzzards Bay, MA. The
AUV begins to circle the location where it has been told the
beacon is prior to its mission. As more records are collected,
the position estimate shifts to the actual location. Circling a
beacon is the optimal geometry for single transponder, range
only navigation because it continuously provides orthogonal
bearings at the fastest possible update rate. For this experiment,
the inlier threshold was set to h = 2 meters and the confidence
was set to p = 0.9999. Through experimentation we have
found that using N = 20 records provides a good balance
between reactiveness and a stable solution. The AUV was able
to circle at a radius of 10 meters and maintain the optical link
while continuing to update the position estimate.

V. DISCUSSION

We have successfully demonstrated the ability of an AUV
to estimate the location of a stationary seafloor beacon and
use this estimate to inform adaptive behaviors. This is shown
in simulation for transiting towards a beacon as well as
in practice for circling a beacon where the application is
establishing and maintaining an optical link with a seafloor
node. Since geometry is vitally important to single beacon,
range only position estimation, the circling behavior is ideal



Fig. 5: Playback from one of several test missions in Buzzards
Bay, MA, demonstrating the relative loiter behavior.

both for obtaining orthogonal bearings to the beacon for
keeping the vehicle within the beam of the optical modem.
Because of this geometry, the refinement step provided a useful
improvement to the solution based on the diversity of bearings
contributed to the update.

While circles provide an optimal geometry, navigating di-
rectly towards the beacon provides poor geometry for esti-
mating the position because the beacon is always at the same
bearing to the vehicle. The upper frames in Figure 3 show how
solutions lie within the inlier threshold can still be estimated
far away from the beacon but along the perimeter of the
range circles. This is also evident in the vehicle’s changes in
direction as it maneuvers towards the beacon. Interestingly, at
further distances, these poor solutions have a minimal effect
on the ultimate time to reach the beacon, supported by the
simulation results in Figure 4, since they are in the general
direction of the beacon.

An area of future work we are interested in is utilizing
the inlier error vectors from the refinement to inform future
behaviors. Statistics on these vectors in angular space can
indicate both the bearing-dependent uncertainty of the solution
as well as how diverse the bearings are that contribute to the
estimate. One potential approach is to design a behavior that
deliberately maneuvers to maximize bearing orthogonality. An
AUV could use this behavior to monitor its uncertainty when
operating in the vicinity of a beacon, then perform a maneuver
to obtain orthogonal bearings when the uncertainty grows
beyond a desirable threshold.
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