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Abstract—We present a scalable framework that enhances the
perception and planning capabilities of Autonomous Underwater
Vehicles (AUVs). This framework has two key attributes. First,
we use online summaries as a real-time data reduction tool for
maintaining a current representation of the data collected at
any point during a mission. Second, the data points from this
summary are stored in a database and indexed by their spatial
and temporal metadata so they can be queried for planning. We
demonstrate how this simple yet powerful approach can reduce
the amount of data required to represent a data set to a specified
resolution.

Index Terms—autonomous underwater vehicle, autonomy, per-
ception, data management

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are revolution-
izing our ability to sample and understand the ocean. Their
“autonomy” comes from their programmed ability to react to
data as it is collected in real time during missions. For the
simplest missions, an AUV might follow preprogrammed track
lines to survey an area of interest, using navigation sensors
to stay on course and maintain an appropriate depth in the
water column. Two active areas of autonomy research aim
at developing algorithms that give the AUV some freedom to
decide what path to take to successfully execute its objectives.
The first is focused on path planning and navigation based on
some known map or environmental model of an area. The
second is focused on adaptive behaviors that are a reaction to
some event that has occurred in its data streams.

A notable characteristic of these approaches is that the AUV
is acting upon either a static model or a single observation in
space and time. There is no mechanism to update this repre-
sentation with new information, nor is there a robust method
for tying multiple events together in a unified representation
of the world. Our work attempts to bridge the gap between
these two approaches using an online summary framework.
Traditional clustering algorithms are “offline” summaries, such
as the popular K-means algorithm, meaning that they operate
on entire data sets that have already been collected. In contrast,
an “online” summary is a clustering technique that operates on
data points one-at-a-time and in the order they are presented
to the algorithm. This makes them particularly well suited
to applications in robotics because they enable the robot to
maintain a dynamic “summary” of it environment based on
its observations up to the current time.

Fig. 1. Summarizing raster data using a set of soundings. [1]

Our representation can be thought of as a set of soundings
that serves both as a data reduction tool as well as a tool
for constructing locally constrained queries useful for in situ
mission planning, making it fast, lightweight, and scalable to
many kinds of data. Figure 1 shows a gridded bathymetry data
set that has been summarized by our algorithm using a set of
soundings. In this paper, We first present the mathematical for-
mulations governing the online summary algorithm, building
on prior work in the literature. Next, we describe the database
schema employed to store the summary data points and their
locations in space and time. We then go on to discuss our
implementation of this framework on an AUV and present
results from open water missions using bathymetry data. We
discuss how the same framework can be applied to data offline
as either a pre-mission or a post-mission analysis tool.

II. RELATED WORK

A. Path Planning and Navigation

Path planning is a well-studied problem in terrestrial
robotics [2]. In the underwater domain, autonomous path
planning is largely motivated by a desire to avoid obstacles
such as shallow water or to optimize for some environmental



variable such as currents [3]. One approach is to first perform
some sort of maneuver to establish an environmental baseline,
in this case current direction, and then adapt the survey track
lines to run parallel to the current direction [4]. Because of
the challenges associated with localization underwater, using
a priori maps as a navigation aid has been studied [5]. Many
of these terrain relative navigation approaches have origins
in missile guidance and space craft landing applications [6].
However, these approaches rely on a prior maps, which can
be costly to create. Simultaneous Localization and Mapping
(SLAM) algorithms have been applied underwater to both
constrain navigation uncertainty while building or augmenting
a map of an unfamiliar environment [7]. However, SLAM tech-
niques perform poorly in environments lacking rich features.

B. Adaptive Behaviors

Many adaptive AUV behaviors are pre-scripted maneuvers
triggered by detecting some feature in the environment [8].
Another application of adaptive AUV behavior is character-
izing and tracking dynamic physical oceanographic features
such as fronts [9] and plumes [10]. In one case, a reactive
behavior is triggered by measured increase in propane con-
centration [11]. Such capabilities are very important as the
Arctic because increasingly ice-free, motivating the need for
long range AUVs capable of detecting and monitoring oil spills
[12]. However, the majority of these techniques still operate
based on data that is in the current field of view of the sensor,
leaving large-scale visualization and understanding to post-
processing analysis.

C. Mission Summaries

Because of the large volume of data collected by au-
tonomous platforms, there is a strong motivation to summarize
that data, either for operator understanding or to inform
adaptive vehicle behaviors. Image-based summaries for robots
have been demonstrated using topic modeling [13] as well as
using the concept of ”surprise” as a metric for information gain
[14]. Bayesian surprise, as quantified by the Kullback-Leibler
divergence, has been shown to correlate well with human
attention [15]. This has been applied to AUV surveys for the
purposes of semantic data set compression as well as anomaly
detection [16]. While these approaches aim to summarize data
in feature space, the current effort builds upon this work by
extending it to summaries in physical space to generate sparse,
multi-resolution maps.

III. ONLINE SUMMARIES

A. Formulation

Each data point collected by the robot can be thought of as
an observation X containing a measurement vector M (i.e.
sensor data) of dimension G and a location vector L (i.e.
spatiotemporal metadata) of dimension H .

M = [m1,m2, ...mG] (1)

L = [l1, l2, ...lH ] (2)

Fig. 2. Cartoon depicting the online summary algorithm for a binary
measurement (red or blue) with a two-dimensional location space. Each row
shows a new observation relative to summary set (left) and the resulting model
of the world after an exhaustive K=1 nearest-neighbor query (right). Top: The
new observation is blue which matches the nearest member of the summary
set. The current summary set accurately predicts the new observation, so the
new observation is not added to the summary set. Center: The new observation
is red which does not match the nearest member of the summary set. The
current summary set does not accurately predict the new observation, so the
new observation is added to the summary set. Bottom: The new observation
is blue but this is irrelevant because the location distance to the nearest
member of the summary exceeds the location distance threshold. The current
summary set does not predict beyond this distance, so the new observation is
automatically added to the summary set.

X = {M,L} (3)

The summary comprises a set S of N discrete observations
or “soundings” that represent the robots knowledge of the
world. These soundings can be interpolated to determine the
predicted measurement value at any location.

S = {X1,X2, ...XN} (4)

In the G-dimensional space of possible measurements, and
in the H-dimensional space of possible locations, we can de-
fine distance metrics DM and DL that return a distance dM or
dL between two measurements or two locations, respectively.



dM,1−2 = DM (M1,M2) (5)

dL,1−2 = DL(L1,L2) (6)

We can also define a query function QS for the summary set
that returns an interpolated measurement at a given location.
An important parameter of this function is K, the number of
soundings required to compute the interpolation.

Minterp = QS(Lquery|K) (7)

When a new observation Xnew = {Mnew,Lnew} is made,
the summary set is queried at the new location. The distance is
computed between the newly observed measurement and the
interpolated measurement.

dM,new−interp = DM (Mnew, QS(Lnew|K)) (8)

If this distance is less than or equal to a specified measure-
ment threshold tM , then the new observation can be said to be
already characterized by the existing summary set. However, if
this distance exceeds this threshold, then the new observation
offers novel information and should be added as a new member
of the summary set. A location distance threshold tL can also
be set such that any new observations whose location distance
dL among the K nearest summary set members exceeds this
threshold is automatically added to the summary set. Figure
2 illustrated several examples of this process. In this way,
thresholds are analogous to resolutions in the measurement
and location spaces.

B. Implementation

The algorithm was developed in MATLAB and then imple-
mented in C++ for efficient real-time execution. The summary
set of soundings is stored in memory as an unsorted array. The
computational costs of searches of this array are linear in the
size of the summary set N . While this suffers in performance
as the summary set grows, there is ultimately a performance
gain because the array does not have to be re-indexed when
each novel observation is added. Future implementations could
utilize a buffer to store NB ≤ N unsorted new soundings
alongside an existing sorted summary set. Queries will then
be at worst NB + log(N) in complexity. When this buffer is
full, the summary can be re-indexed with 2N soundings and
the buffer cleared.

Bathymetry was selected as an initial development case
because it has direct relevance to adaptive path planning, it is a
ubiquitous measurement made by AUVs (depth plus altitude),
and it is simple to model as a 1-D measurement M = z at a
2-D location L = [x, y]. The distance metric in measurement
space is the absolute value of the difference between two
bathymetry values.

dM,1−2 = |z1 − z2| (9)

Fig. 3. The REMUS 600 AUV.

The distance metric in location space is the Cartesian
distance between two locations.

dL,1−2 =
√

(x1 − x2)2 + (y1 − y2)2 (10)

We experimented with several query and interpolation func-
tions including the simple K=1 nearest neighbor. The results
presented here use a K=3 nearest neighbor with an inverse-
distance weighting scheme such that the limit as a queried lo-
cation approaches a sounding location equals the measurement
at that sounding, and the limit as distance increases approaches
the mean of the K measurements.

IV. RESULTS

A. Local Testing

Local testing was conducted in Vineyard Sound aboard the
R/V Discovery using a REMUS 600 AUV shown in Figure
3 owned and operated by the Woods Hole Oceanographic
Institution (WHOI). This vehicle has a new core electronics
board designed for power efficiency and a PHINS inertial
navigation system [17]. The bathymetry of the survey area
is gently sloping to the southeast between roughly 5 and 10
meters of depth. Two missions were programmed onto the
vehicle, shown in Figure 4 at left. Mission 1 was a spiral
survey pattern with track line spacing of 30 meters between
revolutions. Mission 2 was a traditional mow-the-lawn type
mission with track spacing of 50 meters and legs in first the
north-south and then the east-west orientations.

Depth and altitude values were obtained from a pressure
sensor and an ADCP/DVL, respectively. The values were
added to obtain bathymetry and then time averaged over 20
vehicle cycles or approximately 2 seconds. This reduced the
processor load while naively removing some noise and outliers
from the data stream. As a rudimentary quality control step,
minimum and maximum allowable values for bathymetry were
set at 3 and 60 meters, respectively. The measurement thresh-
old tM was set to 0.5 meters, while the location threshold was
set to 50 meters. Mission 1 began with an empty summary set,
analogous to having no prior information of the survey area.
Mission 2 began with the summary set generated from Mission



Fig. 4. The planned track lines (left) and saved soundings (right) from Mission
1 (top) and Mission 2 (bottom).

1, analogous to carrying an a partial a priori map of the
survey area. As is shown in the right half of Figure 4, the first
mission produced a relatively uniform set of 90 soundings, and
the second mission added a similarly uniform 191 soundings,
primarily in areas that had not yet been surveyed. During this
second mission, the vehicle has access to the prior knowledge
of the world while simultaneously updating that corpus of
knowledge with novel information.

Although the algorithm simply saves single bathymetry
measurements to the summary set, the summary can be queried
at any time on a grid to form a raster image. This is useful
both for planning algorithms that operate on regular grids as
well as for human visualization of the data. Figure 5 shows a
progression of these raster maps as they would appear to the
vehicle at various points throughout each mission. As more
information is gathered and more soundings are saved to the
summary set, a more complete picture of the environment is
formed.

The location threshold tL is a crucial parameter, both when
building a summary in real time as well as when querying
the summary to build a raster map. In the first case, new
soundings will be added whenever the distances to the K-
nearest soundings lie beyond this threshold. The summary
set created during Missions 1 and 2 would be sparser if the
location threshold was set to a higher value, largely because,
in the case of the gently sloping seafloor in this region,
bathymetry values could be predicted from soundings that are
further away. In the second case, creating a raster map with a
location threshold that is too small will result in gaps in the
map. If the location threshold is set to infinity, then any queried
location arbitrarily far away will return some “best guess”
of the map value as informed by the interpolation function.
This may either be desirable or dangerous, depending on the
application. For instance, an on-board planner might prefer to
receive an undefined value in opposed to a highly uncertain
extrapolated value.

Fig. 5. The queried raster map as it is progressively built through Mission
1 (red, left) and Mission 2 (blue, right). Circles denote locations have been
added to the summary set.

V. DISCUSSION

In this framework, new soundings are only added to the
summary set when they contain novel information. This nov-
elty manifests itself as a threshold exceeded in either the
location space or in the measurement space. In a manner
of speaking, this is a form of anomaly detection, where the
anomalies represent observations that differ from the current
knowledge of the world. We can look at the difference between
two summary sets and compare them to see what anomalies
exist, or how the understanding of the world has changed
between the two. Figure 6 illustrates this concept, showing
the absolute difference between the raster map generated at
the completion of Mission 1 and the raster map generated at
the completion of Mission 2.

While much of the difference map falls within the specified
0.5-meter measurement threshold, there are two notable ex-
ceptions. First, there are large errors at the edges of the map.
This can be explained using the metaphor of extrapolating data
at a cliff. After Mission 1, the best guess of these bathymetry
values is that they are similar to those that have already been
seen in the interior of the map. During Mission 2, these regions
are actually explored, and their values are deeper than those
predicted. One way to mitigate this is to redefine the query
function so it better handles extrapolating data. The other



Fig. 6. Absolute differences between densely queried bathymetry maps
generated from Mission 1 and Mission 1.

notable anomaly is a bright spot in the lower left of the survey
area. Has a large rock appeared between Missions 1 and 2?
Unlikely. What happened resulted from water ingress into a
prototype 3D printed nose cone, affecting the pitch stability
and navigation estimate of the vehicle. This offers insight into
the necessity for good quality control of the data and highlights
the importance of vehicle self-monitoring. It also illustrates
the difficulty of diagnosing poor performance from a subset
of data streams.

Furthermore, the issue of accurate navigation is a concern.
The algorithm might confuse a non-novel observation at
an incorrect location as a novel observation. State-of-the-art
inertial navigation systems are typically accurate to around
.1% of distance traveled, or one meter every kilometer [18].
This is sufficient for some applications, but will fail when the
observation resolution is less than the distance threshold. One
approach to this problem is to make locally consistent maps
over short time scales and then fuse those sub-maps together
[19]. We hope to address the problems in follow-on efforts
by representing uncertainty alongside the observations in the
summary set.

The underwater environment places extreme restrictions on
the available bandwidth for communication. One of the attrac-
tive qualities of online summaries is its ability to reduce the
file size required to represent a data set to a given resolution.
Figure 7 shows the size of the summary set over Missions
1 and 2, as well as the effective compression ratio achieved
but this summary. The ratio is artificially to start high because
the quality control filter rejected the first several data points
early in the mission. The ratio stabilizes as the summary set
grows linearly as a result of the vehicle consistently exploring
new terrain that is fairly uniform. When the summary set
growth levels off, such as during Mission 2 when the vehicle
is resurveying the previously mapped area, the compression
ratio increases. The distance thresholds understandably have a
direct effect on this compression ratio, as a map with coarser

Fig. 7. Summary set size (top) and corresponding compression ratios (bottom)
for Mission 1 (red) and Mission 2 (blue).

resolution can be stored using fewer bits.
Another useful feature of this framework is that the same

basic mechanism can be used to generate a summary set from
a priori information of an area. This was illustrated in Figure
1, where a raster bathymetry data set [1] with interesting
bathymetric features has been fed through the algorithm to
generate a set of soundings. The measurement threshold was
set to 1 meter while the location threshold was set to infinity.
Notably, the soundings are denser where the variation in
bathymetry is more dramatic, and sparser in flat areas.

This exercise highlights an important characteristic of online
summaries. After a single pass of the algorithm over the data
set, a second pass might continue to add soundings to the
summary set. This is because the order in which observations
are presented to the algorithm matters, and while on the first
pass an observation might fall within the threshold, a nearby
data point added at a later time may cause the interpolated
value of that observation to fall outside the threshold. This
“jitter” in the map-making process is unsettling to us because
we are accustomed to viewing whole data sets after they are
collected when we have access to numerous tools for “optimal”
analysis.

Online methods have less guarantees about optimal per-
formance and are highly dependent on the data they are
summarizing. We can, in theory, always devise an a priori
map that would force the online summary to consider every
new observation as novel regardless of the thresholds. Thank-
fully, however, data encountered in the real world is highly
redundant, so with realistically tuned parameters massive shifts
in the map are unlikely. In the case illustrated in Figure 1,
the summary converged in six iterations, using a mere 2,777
soundings to summarize 21,291 gridded bathymetry points to
a resolution of 1 meter.

These compression rates could further be improved upon by
parameterizing the thresholds based on location. If navigation
and obstacle avoidance are the ultimate goals, then smaller



thresholds and higher resolutions are more important along
shallow coastlines, and they can be more relaxed in deeper
waters where there is more space to maneuver. Another
application is understanding ocean structures such as plumes,
fronts, or currents. In this case, the measurement space could
be multidimensional (temperature, salinity, multiple velocity
components) and the location space could be four dimensional
including depth and time. We hope that future extensions
to this work will couple summaries in the physical location
space with existing work in feature-space summaries to more
compactly represent complex structures in the environment.
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