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Figure 1: The annual mean sea surface height (SSH) of the North Atlantic for 2007. Colorbar at right is

in meters. The principal features are a high over the subtropics and a low over the subpolar region. The

inferred geostrophic current is sketched at a few locations. Geostrophic currents are parallel to lines of

SSH, with higher SSH to the right of the current in the northern hemisphere. A central goal of this essay

is to understand how Earth’s rotation leads to this key relationship between SSH and currents.
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Abstract: This essay is the first of a four-part introduction to the Coriolis force and its consequences9

for the atmosphere and ocean. It is intended for students who are beginning a quantitative study of10

geophysical fluid dynamics and who have some background in classical mechanics and applied11

mathematics.12

The equation of motion appropriate to a steadily rotating reference frame includes two terms that13

account for accelerations that arise from the rotation of the reference frame, a centrifugal force and a14

Coriolis force. In the special case of an Earth-attached reference frame of interest here, the centrifugal15

force is effectively subsumed into the gravity field. The Coriolis force has a very simple mathematical16

form, −2ΩΩΩ×V′M, where ΩΩΩ is Earth’s rotation vector, V′ is the velocity observed from the rotating17

frame and M is the parcel mass. The Coriolis force is perpendicular to the velocity and so tends to18

change velocity direction, but not velocity amplitude. Hence the Coriolis force does no work.19

Nevertheless the Coriolis force has a profound importance for the circulation of the atmosphere and20

oceans.21

Two direct consequences of the Coriolis force are considered in this introduction: If the Coriolis22

force is the only force acting on a moving parcel, then the velocity vector of the parcel will be turned23

anti-cyclonically (clockwise in the northern hemisphere) at the rate − f , where f = 2Ωsin(latitude) is24

the Coriolis parameter. These free motions, often termed inertial oscillations, are a first approximation25

of the upper ocean currents generated by a transient wind event. If the Coriolis force is balanced by a26

steady force, say a horizontal component of gravity as in Fig.1, then the associated geostrophic wind or27

current will be in a direction that is perpendicular to the gradient of the SSH and thus parallel to isolines28

of SSH. In the northern hemisphere, higher SSH is to the right of the current. This geostrophic balance29

is the defining characteristic of the large scale, low frequency, extra-tropical circulation of the30

atmosphere and oceans.31

A little more on Figure 1: The 2007 annual mean of sea surface height (SSH) observed by satellite32

altimetry and compiled by the Aviso project, http://www.aviso.oceanobs.com/duacs/ SSH is a constant33

pressure surface that is displaced slightly but significantly from level and hence there is a horizontal34

component of gravity along this surface that is proportional to the gradient of SSH. What keeps the SSH35

displaced away from level? We can be confident that the horizontal gravitational force associated with36

this tilted SSH is balanced locally (at a given point) by the Coriolis force acting upon currents that flow37

parallel to isolines of SSH. This geostrophic relationship is a central topic of this essay. Notice that by38

far the largest gradients of SSH and so the largest geostrophic currents are found on the western39

boundary of the gyres. This east-west asymmetry is a nonlocal consequence of Earth’s rotation that will40

be taken up in Part 3 of this three-part series.41
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1 LARGE-SCALE FLOWS OF THE ATMOSPHERE AND OCEAN 5

1 Large-scale flows of the atmosphere and ocean81

The large-scale flows of Earth’s atmosphere and ocean take the form of circulations around centers of82

high or low gravitational potential (the height of a constant pressure surface relative to a known level,83

the sea surface height, SSH, of Fig. 1, or the 500 mb height of Fig. 2). Ocean circulation features of this84

sort include gyres that fill entire basins, and in the atmosphere, a broad belt of westerly wind that85

encircles the mid-latitudes in both hemispheres). Smaller scale circulations often dominate the weather.86

Hurricanes and mid-latitude storms have a more or less circular flow around a low, and many regions of87

the ocean are filled with slowly revolving eddies having a diameter of several hundred kilometers. The88

height anomaly that is associated with these circulation features is the direct result of a mass excess or89

deficit (high or low height anomaly).90

What is at first surprising and deserving of an explanation is that large scale mass anomalies91

implicit in the SSH and height fields of Figs. (1) and (2) persist for many days or weeks even in the92

absence of an external momentum or energy source. The winds and currents that would be expected to93

accelerate down the height gradient (in effect, downhill) and disperse the associated mass anomaly are94

evidently strongly inhibited. Large-scale, low frequency winds and currents are observed to flow in a95

direction almost parallel to lines of constant height; the sense of the flow is clockwise around highs96

(northern hemisphere) and anti-clockwise around lows. The flow direction is reversed in the southern97

hemisphere, anti-clockwise around highs and clockwise around lows. From this we can infer that the98

horizontal gravitational force along a pressure surface must be balanced approximately by a second99

force that acts to deflect horizontal winds and currents to the right of the velocity vector in the northern100

hemisphere and to the left of the velocity vector in the southern hemisphere (you should stop here and101

make a sketch of this). This deflecting force is the Coriolis force1,2 and is the theme of this essay. A102

quasi-steady balance between the horizontal gravitational force (or equivalently, pressure gradient) and103

the Coriolis force is called a geostrophic balance, and an approximate or quasi- geostrophic balance is104

the defining characteristic of large scale atmospheric and oceanic flows.3105

We attribute profound physical consequences to the Coriolis force, and yet cannot point to a106

physical interaction as the cause of the Coriolis force in the straightforward way that height anomalies107

1The main text is supplemented liberally by footnotes that provide references and background knowledge. Many of these

footnotes are important, but they may nevertheless be skipped to facilitate a first reading.
2After the French physicist and engineer, Gaspard-Gustave de Coriolis, 1792-1843, whose seminal contributions include

the systematic derivation of the rotating frame equation of motion and the development of the gyroscope. An informative

history of the Coriolis force is by A. Persson, ’How do we understand the Coriolis force?’, Bull. Am. Met. Soc., 79(7),

1373-1385 (1998).
3To be sure, it’s not quite this simple. This ’large scale’ is a shorthand for (1) large spatial scale, (2) low frequency, (3)

extra-tropical, and (4) outside of frictional boundary layers. It is important to have a quantitative sense what is meant by each

of these (which turn out to be linked in interesting ways) and we will come to this in Parts 2 and 3. For now, suffice it to say

that this present use of ’large scale’ encompasses everything that you can readily see in Figs. 1 and 2, except for the equatorial

region, roughly ±10 deg of latitude in Fig. 1.
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Figure 2: A weather map at 500 mb, a middle level of the atmosphere, on 14 April, 2017 (thanks to Okla-
homa Mesonet, https://www.mesonet.org/index.php, with data from NOAA, National Weather Service).
The solid contours are the 500 mb height above sea level (units are decm; 582 is 5820 m) contoured at
60 m intervals. The observed horizontal wind is shown as barbs (one thin barb = 10 knots ≈ 5 m s−1,
one heavy barb = 50 knots). The data listed at each station are temperature (red) and dewpoint (green),
and the 500 mb height in decm (black). Several important phenomena are evident on this map: (1) The
zonal winds at mid-latitudes are mainly westerly, i.e., west to east, and with considerable variability in
the north-south component, here a prominent ridge over the mid-western US. The broad band of westerly
winds includes the jet stream(s), where wind speed is typically ≈ 30 m s−1. (2) Within the westerly wind
band, the 500 mb surface generally slopes downward toward higher latitude, roughly 200 m per 1000
km. There was thus a small, but significant component of gravity along the 500 mb surface directed from
south to north. (3) The wind and height fields exhibit a geostrophic relationship: wind vectors are nearly
parallel to the contours of constant height, greater height is to the right of the wind vector, and faster
winds are found in conjunction with larger height gradients.
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are related to the mass field. Rather, the Coriolis force arises from motion itself, combined with the108

necessity that we observe the atmosphere and ocean from an Earth-attached and thus rotating,109

noninertial reference frame. In this respect the Coriolis force is quite different from other important110

forces acting on geophysical fluids, e.g., friction and gravity, that come from an interaction of physical111

objects.112

1.1 Models and reference frames113

This essay proceeds inductively, developing and adding new concepts one by one rather than deriving114

them from a comprehensive starting point. In that spirit, the first physical model considered here in Part115

1 will be a single, isolated fluid particle, or ’parcel’. This is a very drastic and for most purposes116

untenable idealization of a fluid. Winds and currents, like all macroscopic fluid flows, are effectively a117

continuum of parcels that interact in three-dimensions; the motion of any one parcel is connected by118

pressure gradients and by friction to the motion of essentially all of the other parcels that make up the119

flow. This global dependence is at the very heart of fluid mechanics, but can be set aside here because120

the Coriolis force on a given parcel depends only upon the velocity of that parcel. What will go missing121

in this single parcel model is that the external forces on a parcel (the F below) must be prescribed in a122

way that can take no account of global dependence. The phenomena that arise in a single parcel model123

are thus quite limited, but are nevertheless a recognizable subset of the phenomena that arise in more124

realistic fluid models and in the real atmosphere and ocean.125

1.1.1 Classical mechanics observed from an inertial reference frame126

If the parcel is observed from an inertial reference frame4 then the classical (Newtonian) equation of127

motion is just128

d(MV)

dt
= F+g∗M,129

where d/dt is an ordinary time derivative, V is the velocity in a three-dimensional space, and M is the130

parcel’s mass. The parcel mass (or fluid density) will be presumed constant in all that follows, and the131

4’Inertia’ has Latin roots in+artis meaning without art or skill and secondarily, resistant to change. Since Newton’s

Principia physics usage has emphasized the latter: a parcel having inertia will remain at rest, or if in motion, continue without

change unless subjected to an external force. A ’reference frame’ is comprised of a coordinate system that serves to arithmetize

the position of parcels, a clock to tell the time, and an observer who makes an objective record of positions and times as seen

from that reference frame. A reference frame may or may not be attached to a physical object. In this essay we suppose purely

classical physics so that measurements of length and of time are identical in all reference frames; measurements of position,

velocity and acceleration are reference frame-dependent, as discussed in Section 2. This common sense view of space and

time begins to fail when velocities approach the speed of light, not an issue here. An ’inertial reference frame’ is one in which

all parcels have the property of inertia and in which the total momentum is conserved, i.e., all forces occur as action-reaction

force pairs. How this plays out in the presence of gravity will be discussed briefly in Section 3.1.
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equation of motion rewritten as132

dV

dt
M = F+g∗M, (1)133

where F is the sum of the forces that we can specify a priori given the complete knowledge of the134

environment, e.g., frictional drag with the sea floor, and g∗ is gravitational mass attraction. These are135

said to be central forces insofar as they act in a radial direction between parcels, or in the case of136

gravitational mass attraction, between parcels and the center of mass of the Earth.5137

This inertial frame equation of motion has two fundamental properties that are noted here because138

we are about to give them up:139

Global conservation. For each of the central forces acting on the parcel there will be a corresponding140

reaction force acting on the environment that sets up the force. Thus the global time rate of change of141

momentum (global means parcel plus the environment) due to the sum of all of the central forces142

F+g∗M is zero, and so the global momentum is conserved. Usually our attention is focused on the local143

problem, i.e., the parcel only, with this global conservation taken for granted and not analyzed explicitly.144

Invariance to Galilean transformation. Eqn. (1) should be invariant to a steady, linear translation of145

the reference frame, often called a Galilean transformation, because only relative motion has physical146

significance. Thus a constant velocity added to V will cause no change in the time derivative, and147

should as well cause no change in the forces F or g∗M. Like the global balance just noted, this148

fundamental property is not invoked frequently, but is a powerful guide to the form of the forces F. For149

example, a frictional force that satisfies Galilean invariance should depend upon the difference of the150

parcel velocity with respect to a surface or adjacent parcels, and not the parcel velocity only.151

1.1.2 Classical mechanics observed from a rotating, noninertial reference frame152

When it comes to the analysis of the atmosphere or ocean we always use a reference frame that is153

attached to the rotating Earth — true (literal) inertial reference frames are not accessible to most kinds154

of observation and wouldn’t be desirable even if they were. Some of the reasons for this are discussed155

in a later section, 4.3, but for now we are concerned with the consequence that, because of the Earth’s156

rotation (Fig. 3) an Earth-attached reference frame is significantly noninertial for the large-scale,157

low-frequency motions of the atmosphere and ocean: Eqn. (1) does not hold good even as a first158

approximation. The equation of motion appropriate to an Earth-attached, rotating reference frame159

5Unless it is noted otherwise, the acceleration that is observable in a given reference frame will be written on the left-hand

side of an equation of motion, as in Eqn. (1), even when the acceleration is considered to be the known quantity. The forces,

i.e., everything else, will be written be on the right-hand side of the equation. The parcel mass M is not considered variable

here, and M may be divided out, leaving all terms with physical dimensions [length time−2], i.e., accelerations. Even then,

the left and right-hand side term(s) will be called ’acceleration’ and ’force(s)’.
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Figure 3: Earth’s rotation vector, ΩΩΩ,
maintains a nearly steady bearing
close to Polaris, commonly called
the Pole Star or North Star. Earth
thus has a specific orientation with
respect to the universe at large, and,
in consequence, all directions are not
equal. This is manifest as a marked
anisotropy of most large-scale circu-
lation phenomena, e.g., the east-west
asymmetry of ocean gyres noted in
Fig. 1 and the westward propagation
of low frequency waves and eddies
studied in Part 3.

(derived in detail in Sections 2 and 4.1) is instead160

dV′

dt
M = − 2ΩΩΩ×V′M +F′+gM, (2)161

where the prime on a vector indicates that it is observed from the rotating frame, ΩΩΩ is Earth’s rotation162

vector (Fig. 3), gM is the time-independent inertial force, gravitational mass attraction plus the163

centrifugal force associated with Earth’s rotation and called simply ’gravity’ (discussed further in164

Section 4.1). Our obsession here is the new term, −2ΩΩΩ×V′M, commonly called the Coriolis force in165

geophysics.166

1.2 The goals and the plan of this essay167

Eqn. (2) applied to geophysical flows is not the least bit controversial and so the practical thing to do is168

to accept the Coriolis force as given (as we do many other concepts) and get on with the applications.169

You can do that here by going directly to Section 5. However, that shortcut is likely to leave you170

wondering ... What is the Coriolis force? ... in the conceptual and physical sense, and specifically,171

in what sense is it a ’force’? The classical mechanics literature applies a bewildering array of names,172

that it is the Coriolis ’effect’, or, a pseudo force, a virtual force, an apparent force, an inertial force (we173

will use this), a noninertial force (which makes more literal sense), and most equivocal of all, a fictitious174
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correction force.6 A case can be made for each of these terms, but our choice will be just plain Coriolis175

force, since we are going to be most concerned with what the Coriolis term (force) does in the context176

of geophysical flows. But, regardless of what we call it, to learn what −2ΩΩΩ×V′M is, we plan to take a177

slow and careful journey from Eqn. (1) to Eqn. (2) so that at the end we should be able to explain its178

origin and basic properties.7179

We have already noted that the Coriolis force arises from the rotation of an Earth-attached180

reference frame. The origin of the Coriolis force is thus found in kinematics, i.e., mathematics, rather181

than physics, taken up in Section 2. This is part of the reason why the Coriolis force can be hard to182

grasp, conceptually. 8 Several very simple applications of the rotating frame equation of motion are183

considered in Section 3. These illustrate the often marked difference between inertial and rotating frame184

descriptions of the same phenomenon, and they also show that the rotating frame equation of motion (2)185

does not retain the fundamental properties of the inertial frame Eqn. (1) noted above. Eqn. (2) applies186

on a rotating Earth or a planet, where the centrifugal force associated with planetary rotation is canceled187

(Section 4). The rotating frame equation of motion thus treats only the comparatively small relative188

velocity, i.e., winds and currents. This is a significant advantage compared with the inertial frame189

equation of motion which has to treat all of the motion, including that due to Earth’s rotation. The gain190

in simplicity of the rotating frame equations more than compensates for the admittedly peculiar191

properties of the Coriolis force.192

The second goal of this essay is to begin to address ... What are the consequences of Earth’s193

rotation and the Coriolis force for the circulation of the atmosphere and ocean? This is an almost194

open ended question that makes up much of the field of geophysical fluid dynamics. A first step is taken195

in Section 5 by analyzing the motion of a parcel released onto a sloping surface, e.g., the sea surface or196

500 mb pressure surface (if they are considered to be fixed), and including a simplified form of friction.197

The resulting motion includes free inertial oscillations, and a forced and possibly steady geostrophic198

6The latter is by by J. D. Marion, Classical Mechanics of Particles and Systems (Academic Press, NY, 1965), who de-

scribes the plight of a rotating observer as follows (the double quotes are his): ‘... the observer must postulate an additional

force - the centrifugal force. But the ”requirement” is an artificial one; it arises solely from an attempt to extend the form of

Newton’s equations to a non inertial system and this may be done only by introducing a fictitious ”correction force”. The same

comments apply for the Coriolis force; this ”force” arises when attempt is made to describe motion relative to the rotating

body.’
7’Explanation is indeed a virtue; but still, less a virtue than an anthropocentric pleasure.’ B. van Frassen, ’The pragmatics

of explanation’, in The Philosophy of Science, Ed. by R. Boyd, P. Gasper and J. D. Trout. (The MIT Press, Cambridge

Ma, 1999). This pleasure of understanding is the true goal of this essay, but clearly the Coriolis force has great practical

significance for the atmosphere and ocean and for those of us who study their motions.
8All this talk of ’forces, forces, forces’ seems a little quaint and it is certainly becoming tedious. Modern dynamics is

more likely to be developed around the concepts of energy, action and minimization principles, which are very useful in some

special classes of fluid flow. However, it remains that the majority of fluid mechanics proceeds along the path of Eqn. (1) laid

down by Newton. In part this is because mechanical energy is not conserved in most real fluid flows and in part because the

interaction between a fluid parcel and its surroundings is often at issue, friction for example, and is usually best-described in

terms of forces. Sometimes, just to avoid saying Coriolis force yet again, we will use instead ’rotation’.
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motion that is analogous to the currents and winds of Figs. (1) and (2).199

1.3 About these essays200

This essay has been written for students who are beginning a study of geophysical fluid dynamics.201

Some background in classical mechanics and applied mathematics (roughly second year undergraduate202

level) is assumed. Rotating reference frames and the Coriolis force are frequently a topic of classical203

mechanics courses and textbooks and there is nothing fundamental and new regarding the Coriolis force204

added here.9 The hope is that this essay will make a useful supplement to these sources by providing205

greater mathematical detail than is possible in most fluid dynamics texts, and by emphasizing206

geophysical phenomena that are missed or outright misconstrued in most classical mechanics texts.10,11
207

As well, ocean and atmospheric sciences are all about fluids in motion, and the electronic version of this208

essay includes links to animations and to source codes of numerical models that provide a much more209

vivid depiction of these motions than is possible in a hardcopy.210

This essay, along with Parts 2 and 3 and all associated materials, may be freely copied and211

distributed for educational purposes. They may be cited by the MIT Open Course Ware address.12 The212

first version of this essay was released in 2003, and since then the text and models have been revised213

and expanded a number of times. The most up-to-date version of the essays and codes may be214

downloaded from www.whoi.edu/jpweb/aCt.update.zip Comments and questions are greatly215

appreciated and may be sent directly to the author at jprice@whoi.edu216

9Classical mechanics texts in order of increasing level: A. P. French, Newtonian Mechanics (W. W. Norton Co., 1971); A.

L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, NY, 1990); C. Lanczos, The

Variational Principles of Mechanics (Dover Pub., NY, 1949). Textbooks on geophysical fluid dynamics emphasize mainly the

consequences of Earth’s rotation; excellent introductions at about the level of this essay are by J. R. Holton, An Introduction to

Dynamic Meteorology, 3rd Ed. (Academic Press, San Diego, 1992), and by B. Cushman-Roisin, Introduction to Geophysical

Fluid Dynamics (Prentice Hall, Engelwood Cliffs, New Jersey, 1994). Somewhat more advanced and highly recommended

for the topic of geostrophic adjustment is A. E. Gill, Atmosphere-Ocean Dynamics (Academic Press, NY, 1982), for waves

generally, J. Pedlosky, Waves in the Ocean and Atmosphere, (Springer, 2003) and also J. C. McWilliams, Fundamentals of

Geophysical Fluid Dynamics, (Cambridge Univ. Press, 2006).
10There are several essays or articles that, like this one, aim to clarify the Coriolis force. A fine treatment in great depth

is by H. M. Stommel and D. W. Moore, An Introduction to the Coriolis Force (Columbia Univ. Press, 1989); the present

Section 4.1 owes a great deal to their work. A detailed analysis of particle motion including the still unresolved matter

of the apparent southerly deflection of dropped particles is by M. S. Tiersten and H. Soodak, ‘Dropped objects and other

motions relative to a noninertial earth’, Am. J. Phys., 68(2), 129–142 (2000). A good web page for general science students

is http://www.ems.psu.edu/%7Efraser/Bad/BadFAQ/BadCoriolisFAQ.html
11The Coriolis force also has engineering applications; it is exploited to measure the angular velocity required for vehicle

control systems, http://www.siliconsensing.com, and to measure mass transport in fluid flow, http://www.micromotion.com.
12Price, James F., 12.808 Supplemental Material, Topics in Fluid Dynamics: Dimensional Analysis, the Coriolis Force,

and Lagrangian and Eulerian Representations, http://ocw.mit.edu/ans7870/resources/price/index.htm (date accessed) License:

Creative commons BY-NC-SA.
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Figure 4: Two reference frames
are represented by coordinate axes
that are displaced by the vector Xo

that is time-dependent. In this Sec-
tion 2.1 we consider only a rela-
tive translation, so that frame two
maintains a fixed orientation with
respect to frame one. The rotation
of frame two will be considered be-
ginning in Section 2.2.
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2 Noninertial reference frames225

The first step toward understanding the origin of the Coriolis force is to describe the origin of inertial226

forces in the simplest possible context, a pair of reference frames that are represented by displaced227

coordinate axes, Fig. (4). Frame one is labeled X and Z and frame two is labeled X ′ and Z′. It is helpful228

to assume that frame one is stationary and that frame two is displaced relative to frame one by a229

time-dependent vector, Xo(t). The measurements of position, velocity, etc. of a given parcel will thus230

be different in frame two vs. frame one. Just how the measurements differ is a matter purely of231

kinematics; there is no physics involved until we define the acceleration of frame two and use the232

accelerations to write an equation of motion, e.g., Eqn. (2).233
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2.1 Kinematics of a linearly accelerating reference frame234

If the position vector of a given parcel is X when observed from frame one, then from within frame two235

the same parcel will be observed at the position236

X′ = X−Xo.237

The position vector of a parcel thus depends upon the reference frame. Suppose that frame two is238

translated and possibly accelerated with respect to frame one, while maintaining a constant orientation239

(rotation will be considered shortly). If the velocity of a parcel observed in frame one is dX/dt, then in240

frame two the same parcel will be observed to have velocity241

dX′

dt
=

dX

dt
−

dXo

dt
.242

The accelerations are similarly d2X/dt2 and243

d2X′

dt2
=

d2X

dt2
−

d2Xo

dt2
. (3)244

We are going to assume that frame one is an inertial reference frame, i.e., that parcels observed in frame245

one have the property of inertia so that their momentum changes only in response to a force, F, i.e., Eqn.246

(1). From Eqn. (1) and from Eqn. (3) we can easily write down the equation of motion for the parcel as247

it would be observed from frame two:248

d2X′

dt2
M = −

d2Xo

dt2
M +F+g∗M. (4)249

Terms of the sort −(d2Xo/dt2)M appearing in the frame two equation of motion (4) will be called250

’inertial forces’, and when these terms are nonzero, frame two is said to be ’noninertial’. As an example,251

suppose that frame two is subject to a constant acceleration, d2Xo/dt2 = A that is upward and to the252

right in Fig. (4). From Eqn. (4) it is evident that all parcels observed from within frame two would then253

appear to accelerate with a magnitude and direction −A, downward and to the left, and which is, of254

course, exactly opposite the acceleration of frame two with respect to frame one. An inertial force255

results when we multiply this acceleration by the mass of the parcel. Thus an inertial force is exactly256

proportional to the mass of the parcel, regardless of what the mass is. But clearly, the origin of the257

inertial force is the acceleration, −A, imposed by the accelerating reference frame, and not a force per258

se. Inertial forces are in this respect indistinguishable from gravitational mass attraction which also has259

this property. If an inertial force is dependent only upon position, as is the centrifugal force due to260

Earth’s rotation (Section 4.1), then it might as well be added with gravitational mass attraction g∗ to261

give a single, time-independent acceleration field, usually termed gravity and denoted by g. Even more,262

this combined mass attraction plus centrifugal acceleration is the only acceleration field that may be263
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observed directly, for example by a plumb line.13 But, unlike gravitational mass attraction, there is no264

interaction between particles involved in an inertial force, and hence there is no action-reaction force265

pair associated with an inertial force. Global momentum conservation thus does not obtain in the266

presence of inertial forces. There is indeed something equivocal about the phenomenon we are calling267

an inertial force, and it is not unwarranted that some authors have deemed them to be ’virtual’ or268

’fictitious correction’ forces.6269

Whether an inertial force is problematic or not depends entirely upon whether d2Xo/dt2 is known270

or not. If it should happen that the acceleration of frame two is not known, then all bets are off. For271

example, imagine observing the motion of a plumb bob within an enclosed trailer that was moving272

along in irregular, stop-and-go traffic. The bob would be observed to lurch forward and backward273

unexpectedly, and we would soon conclude that studying dynamics in such an uncontrolled, noninertial274

reference frame was going to be a very difficult endeavor. Inertial forces could be blamed if it was275

observed that all of the physical objects in the trailer, observers included, experienced exactly the same276

unaccounted acceleration. In many cases the relevant inertial forces are known well enough to use277

noninertial reference frames with great precision, e.g., the topography of Earth’s gravity field must be278

known to within a few tens of centimeters to interpret sea surface altimetry data of the kind seen in Fig.279

(1)14 and the Coriolis force can be readily calculated as in Eqn. (2) knowing only Earth’s rotation vector280

and the parcel velocity.281

In the specific example of a translating reference frame sketched in Fig. (4), one could just as well282

transform the observations made from frame two back into the inertial frame one, use the inertial frame283

equation of motion to make a calculation, and then transform back to frame two if required. By that284

tactic we could avoid altogether the seeming delusion of an inertial force. However, when it comes to285

the observation and analysis of Earth’s atmosphere and ocean, there is really no choice but to use an286

Earth-attached and thus rotating and noninertial reference (discussed in Section 4.3). That being so, we287

have to contend with the Coriolis force, an inertial force that arises from the rotation of an288

Earth-attached frame. The kinematics of rotation add a small complication that is taken up in the next289

Section 2.2. But if you followed the development of Eqn. (4), then you already understand the origin of290

inertial forces, including the Coriolis force.291

13A plumb bob is nothing more than a weight, the bob, that hangs from a string, the plumb line (and plumbum is the Latin

for lead, Pb). When a plumb bob is at rest in a given reference frame, the plumb line is parallel to the local acceleration field

of that reference frame. If the bob is displaced and released, it will oscillate as a simple pendulum. The observed period of

small amplitude oscillations, P, can be used to infer the magnitude of the acceleration, g = L/(P/2π)2, where L is the length

of the plumb line. If the reference frame is attached to the rotating Earth, then the motion of the bob will be effected also by

the Coriolis force, in which case the device is often termed a Foucault pendulum, discussed further in a later problem, 4.5.
14Earth’s gravity field is the object of extensive and ongoing survey by some of the most elegant instruments ever flown in

space, see http://www.csr.utexas.edu/grace/ and http://www.esa.int/Our Activities/Operations/GOCE operations
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2.2 Kinematics of a rotating reference frame292

The equivalent of Eqn. (4) for the case of a steadily rotating reference frame is necessary to reveal the293

Coriolis force. Reference frame one will again be assumed to be stationary and defined by a triad of294

orthogonal unit vectors, e1, e2 and e3 (Fig. 5). A parcel P can then be located by a position vector X295

X = e1x1 + e2x2 + e3x3, (5)296

where the Cartesian (rectangular) components, xi, are the projection of X onto each of the unit vectors297

in turn. It is useful to rewrite Eqn. (5) using matrix notation. The unit vectors are made the elements of298

a row matrix,299

E = [e1 e2 e3], (6)300

and the components xi are taken to be the elements of a column matrix,301

X =





x1

x2

x3



 . (7)302

Eqn. (5) may then be written in a way that conforms with the usual matrix multiplication rules as303

X = EX. (8)304

The vector X and its time derivatives are presumed to have an objective existence, i.e., they305

represent something physical that is unaffected by our arbitrary choice of a reference frame.306

Nevertheless, the way these vectors appear clearly does depend upon the reference frame (Fig. 5) and307

for our purpose it is essential to know how the position, velocity and acceleration vectors will appear308

when they are observed from a steadily rotating reference frame. In a later part of this section we will309

identify the rotating reference frame as an Earth-attached reference frame and the stationary frame as310

one aligned on the distant fixed stars. It is assumed that the motion of the rotating frame can be311

represented by a time-independent rotation vector, ΩΩΩ. The e3 unit vector can be aligned with ΩΩΩ with no312

loss of generality, Fig. (5a). We can go a step further and align the origins of the stationary and rotating313

reference frames because the Coriolis force is independent of position (Section 2.2).314

2.2.1 Transforming the position, velocity and acceleration vectors315

Position: Back to the question at hand: how does this position vector look when viewed from a316

second reference frame that is rotated through an angle θ with respect to the first frame? The answer is317

that the vector ’looks’ like the components appropriate to the rotated reference frame, and so we need to318

find the projection of X onto the unit vectors that define the rotated frame. The details are shown in Fig.319

(5b); notice that x2 = L1+L2, L1 = x1tanθ , and x′2 = L2cosθ . From this it follows that320
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Figure 5: (a) A parcel P is located by the tip of a position vector, X. The stationary reference frame
has solid unit vectors that are presumed to be time-independent, and a second, rotated reference frame
has dashed unit vectors that are labeled èi. The reference frames have a common origin, and rotation
is about the e3 axis. The unit vector e3 is thus unchanged by this rotation and so `e3 = e3. This holds
also for ΩΩΩ′ = ΩΩΩ, and so we will use ΩΩΩ exclusively. The angle θ is counted positive when the rotation is
counterclockwise. (b) The components of X in the stationary reference frame are x1,x2,x3, and in the
rotated reference frame they are x′1,x′2,x′3.

x′2 = (x2 − x1tanθ )cosθ = −x1sinθ + x2cosθ . By a similar calculation we can find that321

x′1 = x1cosθ + x2sinθ . The component x′3 that is aligned with the axis of the rotation vector is322

unchanged, x′3 = x3, and so the set of equations for the primed components may be written as a column323

vector324

X
′ =





x′1
x′2
x′3



=





x1 cosθ + x2 sinθ

−x1 sinθ + x2 cosθ

x3



 . (9)325

By inspection this can be factored into the product326

X
′ = RX, (10)327
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where X is the matrix of stationary frame components and R is the rotation matrix,15
328

R(θ ) =





cosθ sinθ 0

− sinθ cosθ 0

0 0 1



 . (11)329

This θ is the angle displaced by the rotated reference frame and is positive counterclockwise. The330

position vector observed from the rotated frame will be denoted by X′; to construct X′ we sum the331

rotated components, X′, times a set of unit vectors that are fixed and thus332

X′ = e1x′1 + e2x′2 + e3x′3 = EX
′ (12)333

For example, the position vector X of Fig. (5) is at an angle of about 45◦ counterclockwise from334

the e1 unit vector and the rotated frame is at θ = 30◦ counterclockwise from the stationary frame one.335

That being so, the position vector viewed from the rotated reference frame, X′, makes an angle of 45◦ -336

30◦ = 15◦ with respect to the e1 (fixed) unit vector seen within the rotated frame, Fig. (6). As a kind of337

verbal shorthand we might say that the position vector has been ’transformed’ into the rotated frame by338

Eqs. (9) and (12). But since the vector has an objective existence, what we really mean is that the339

components of the position vector are transformed by Eqn. (9) and then summed with fixed unit vectors340

to yield what should be regarded as a new vector, X′, the position vector that we observe from the341

rotated (or rotating) reference frame.342

Velocity: The velocity of parcel P seen in the stationary frame is just the time rate of change of the343

position vector seen in that frame,344

dX

dt
=

d

dt
EX = E

dX

dt
,345

since E is time-independent. The velocity of parcel P as seen from the rotating reference frame is346

similarly347

dX′

dt
=

d

dt
EX

′ = E
dX′

dt
,348

which indicates that the time derivatives of the rotated components are going to be very important in349

what follows. For the first derivative we find350

dX′

dt
=

d(RX)

dt
=

dR

dt
X+R

dX

dt
. (13)351

The second term on the right side of Eqn. (13) represents velocity components from the stationary352

frame that have been transformed into the rotating frame, as in Eqn. (10). If the rotation angle θ was353

15A concise and clear reference on matrix representations of coordinate transformations is by J. Pettofrezzo Matrices

and Transformations (Dover Pub., New York, 1966). An excellent all-around reference for undergraduate-level applied

mathematics including coordinate transformations is by M. L. Boas, Mathematical Methods in the Physical Sciences, 2nd

edition (John Wiley and Sons, 1983).
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Figure 6: (a) The position vector X seen from the stationary reference frame. (b) The position vector as
seen from the rotated frame, denoted by X′. Note that in the rotated reference frame the unit vectors are
labeled ei since they are fixed; when these unit vectors are seen from the stationary frame, as on the left,
they are labeled èi. If the position vector is stationary in the stationary frame, then θ + ψ = constant.
The angle ψ then changes as dψ/dt = −dθ/dt = −Ω, and thus the vector X′ appears to rotate at the
same rate but in the opposite sense as does the rotating reference frame.

constant so that R was independent of time, then the first term on the right side would vanish and the354

velocity components would transform exactly as do the components of the position vector. In that case355

there would be no Coriolis force.356

When the rotation angle is time-varying, as it will be here, the first term on the right side of Eqn.357

(13) is non-zero and represents a velocity component that is induced solely by the rotation of the358

reference frame. For an Earth-attached reference frame359

θ = θ0 +Ωt,360

where Ω is Earth’s rotation rate measured with respect to the distant stars, effectively a constant defined361

below (and θ0 is unimportant). Though Ω may be presumed constant, the associated reference frame is362

nevertheless accelerating and is noninertial in the same way that circular motion at a steady speed is363

accelerating because the direction of the velocity vector is continually changing (cf. Fig. 10). Given this364

θ (t), the time-derivative of the rotation matrix is365

dR

dt
= Ω





− sinθ (t) cosθ (t) 0

−cosθ (t) − sinθ (t) 0

0 0 0



 , (14)366

which has the elements of R, but shuffled around. By inspection, this matrix can be factored into the367
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product of a matrix C and R as368

dR

dt
= Ω CR(θ (t)), (15)369

where the matrix C is370

C =





0 1 0

−1 0 0

0 0 0



 =





1 0 0

0 1 0

0 0 0



R(π/2). (16)371

Multiplication by C acts to knock out the component ( )3 that is parallel to ΩΩΩ and causes a rotation of372

π/2 in the plane perpendicular to ΩΩΩ. Substitution into Eqn. (13) gives the velocity components373

appropriate to the rotating frame374

d(RX)

dt
= ΩCRX+R

dX

dt
, (17)375

or using the prime notation ( )′ to indicate multiplication by R, then376

dX′

dt
= ΩCX

′ +

(

dX

dt

)′

(18)377

The second term on the right side of Eqn. (18) is just the rotated velocity components and is present378

even if Ω vanished (a rotated but not a rotating reference frame). The first term on the right side379

represents a velocity that is induced by the rotation rate of the rotating frame; this induced velocity is380

proportional to Ω and makes an angle of π/2 radians to the right of the position vector in the rotating381

frame (assuming that Ω > 0).382

To calculate the vector form of this term we can assume that the parcel P is stationary in the383

stationary reference frame so that dX/dt = 0. Viewed from the rotating frame, the parcel will appear to384

move clockwise at a rate that can be calculated from the geometry (Fig. 7). Let the rotation in a time385

interval δ t be given by δ ψ = −Ωδ t; in that time interval the tip of the vector will move a distance386

|δ X′| = |X′|sin(δ ψ) ≈ | X′|δ ψ, assuming the small angle approximation for sin(δ ψ). The parcel will387

move in a direction that is perpendicular (instantaneously) to X′. The velocity of parcel P as seen from388

the rotating frame and due solely to the coordinate system rotation is thus limδ t→0
δX′

δ t
= −Ω×X ′Ω×X ′Ω×X ′, the389

vector cross-product equivalent of ΩCX′ (Fig. 8). The vector equivalent of Eqn. (18) is then390

dX′

dt
=−Ω×X ′Ω×X ′Ω×X ′ +

(

dX

dt

)′

(19)391

The relation between time derivatives given by Eqn. (19) applies to velocity vectors, acceleration392

vectors, etc., and may be written as an operator equation,393

d( )′

dt
=−Ω×Ω×Ω×( )′+

(

d( )

dt

)′

(20)394
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Figure 7: The position vector X′ seen from
the rotating reference frame. The unit vectors
that define this frame, `ei, appear to be station-
ary when viewed from within this frame, and
hence we label them with ei (not primed). As-
sume that Ω > 0 so that the rotating frame is
turning counterclockwise with respect to the
stationary frame, and assume that the parcel P
is stationary in the stationary reference frame
so that dX/dt = 0. Parcel P as viewed from
the rotating frame will then appear to move
clockwise on a circular path.

that is valid for all vectors regardless of their position with repsect to the axis of rotation.16 From left to395

right the terms are: 1) the time rate of change of a vector as seen in the rotating reference frame, 2) the396

cross-product of the rotation vector with the vector and 3) the time rate change of the vector as seen in397

the stationary frame and then rotated into the rotating frame. Notice that the time rate of change and398

prime operators of (20) do not commute, the difference being the cross-product term which represents a399

time rate change in the direction of the vector, but not its magnitude. The left hand side, term 1), is the400

time rate of change that we observe directly or seek to solve when working from the rotating frame.401

Acceleration: Our goal here is to relate the accelerations seen in the two reference frames and so402

differentiating Eqn. (18) once more and after rearrangement of the kind used above403

d2X′

dt2
= 2ΩC

dX′

dt
+Ω2

C
2
X
′+

(

d2X

dt2

)′

(21)404

The middle term on the right includes multiplication by the matrix C2 = CC,405

C2 =





1 0 0

0 1 0

0 0 0



R(π/2)





1 0 0

0 1 0

0 0 0



R(π/2) =





1 0 0

0 1 0

0 0 0



R(π) =−





1 0 0

0 1 0

0 0 0



 ,406

that knocks out the component corresponding to the rotation vector ΩΩΩ and reverses the other two407

components; the vector equivalent of Ω2C2X′ is thus −ΩΩΩ×ΩΩΩ×X′ (Fig. 8). The vector equivalent of408

16Imagine arrows taped to a turntable with random orientations. Once the turntable is set into (solid body) rotation, all of

the arrows will necessarily rotate at the same rotation rate regardless of their position or orientation. The rotation will, of

course, cause a translation of the arrows that depends upon their location, but the rotation rate is necessarily uniform, and

this holds regardless of the physical quantity that the vector represents. This is of some importance for our application to a

rotating Earth, since Earth’s motion includes a rotation about the polar axis, as well as an orbital motion around the Sun and

yet we represent Earth’s rotation by a single vector.
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Figure 8: A schematic showing the relation-
ship of a vector X, and various cross-products
with a second vector ΩΩΩ (note the signs). The
vector X is shown with its tail perched on the
axis of the vector ΩΩΩ as if it were a position
vector. This helps to visualize the direction of
the cross-products, but it is important to note
that the relationship among the vectors and
vector products shown here holds for all vec-
tors, regardless of where they are defined in
space or the physical quantity, e.g., position
or velocity, that they represent.

Eqn. (21) is then17
409

d2X′

dt2
= −2ΩΩΩ×

dX′

dt
− ΩΩΩ×ΩΩΩ×X′ +

(

d2X

dt2

)′

(22)410

Note the similarity with Eqn. (3). From left to right the terms are 1) the acceleration as seen in the411

rotating frame, 2) the Coriolis term, 3) the centrifugal18 term, and 4) the acceleration as seen in the412

stationary frame and then rotated into the rotating frame. As before, term 1) is the acceleration that we413

directly observe or seek to solve for when working from the rotating reference frame.414

2.2.2 Stationary ⇒ Inertial; Rotating ⇒ Earth-Attached415

The third and final step in this derivation of the Coriolis force is to define the inertial reference frame416

one, and then the rotation rate of frame two. To make frame one inertial it is presumed that the unit417

17The relationship between the stationary and rotating frame velocity vectors given by Eqs. (18) and (19) is clear visually

and becomes intuitive given just a little experience. It is not so easy to intuit the corresponding relationship between the

accelerations given by Eqs. (21) and (22). To understand the transformation of acceleration there is really no choice but to

understand (be able to reproduce and then explain) the mathematical steps going from Eqn. (18) to Eqn. (21) and/or from

Eqn. (19) to Eqn. (22).
18’Centrifugal’ and ’centripetal’ have Latin roots, centri+fugere and centri+peter, meaning center-fleeing and center-

seeking, respectively. Taken literally these would indicate merely the sign of a radial force, for example. However, they

are very often used to mean specifically a term of the sort Ω2r, seen on the right side of Eq. (22), i.e., the centrifugal force

in an equation of motion written for a rotating, non-inertial reference frame. The same kind of term, though with the rotation

rate written as ω and referring to the rotation rate of the parcel rather than the reference frame, will also arise as the acceler-

ation observed in an inertial reference frame. In that case ω2r is the centripetal acceleration that accompanies every curving

trajectory. This seeming change of identity is an important facet of rotating dynamics that will be discussed further in Sec.

3.2.



2 NONINERTIAL REFERENCE FRAMES 22

vectors ei could in principle be aligned on the distant, ’fixed stars’.19 The rotating frame two is418

presumed to be attached to Earth, and the rotation rate Ω is then given by the rate at which the same419

fixed stars are observed to rotate overhead, one revolution per sidereal day (Latin for from the stars), 23420

hrs, 56 min and 4.09 sec, or421

Ω = 7.2921×10−5 rad s−1. (23)422

A sidereal day is only about four minutes less than a solar day, and so in a purely numerical sense,423

Ω ≈ Ωsolar = 2π/24 hours = 7.2722×10−5 rad s−1 which is certainly easier to remember than is Eqn.424

(23). For the purpose of a rough estimate, the small numerical difference between Ω and Ωsolar is not425

significant. However, the difference between Ω and Ωsolar can be told in numerical simulations and in426

well-resolved field observations. And too, on Mach’s Principle,19 the difference between Ω and Ωsolar427

is highly significant.428

Earth’s rotation rate is very nearly constant, and the axis of rotation maintains a nearly steady429

bearing on a point on the celestial sphere that is close to the North Star, Polaris (Fig. 3). The Earth’s430

rotation vector thus provides a definite orientation of Earth with respect to the universe, and Earth’s431

rotation rate has an absolute magnitude. The practical evidence of this comes from rotation rate432

sensors11 that read out Earth’s rotation rate with respect to the fixed stars as a kind of gage pressure,433

called ’Earth rate’.20
434

19‘Fixed’ is a matter of degree; the Sun and the planets certainly do not qualify as fixed, but even some nearby stars move

detectably over the course of a year. The intent is that the most distant stars should serve as sign posts for the spatially-averaged

mass of the universe as a whole on the hypothesis that inertia arises whenever there is an acceleration (linear or rotational)

with respect to the mass of the universe. This grand idea was expressed most forcefully by the Austrian philosopher and

physicist Ernst Mach, and is often termed Mach’s Principle (see, e.g., J. Schwinger, Einstein’s Legacy Dover Publications,

1986; M. Born, Einstein’s Theory of Relativity, Dover Publications, 1962). Mach’s Principle seems to be in accord with all

empirical data, including the magnitude of the Coriolis force. Mach’s principle is best thought of as a relationship, and is not,

in and of itself, the fundamental mechanism of inertia. A new hypothesis takes the form of so-called vacuum stuff (or Higgs

field) that is presumed to pervade all of space and so provide a local mechanism for resistance to accelerated motion (see P.

Davies, ‘On the meaning of Mach’s principle’, http://www.padrak.com/ine/INERTIA.html). The debate between Newton and

Leibniz over the reality of absolute space — which had seemed to go in favor of relative space, Leibniz and Mach’s Principle

— has been renewed in the search for a physical origin of inertia. when this is achieved, then we can then point to a physical

origin of the Coriolis force.

Observations on the fixed stars are a very precise means to define rotation rate, but can not, in general, be used to define the

linear translation or acceleration of a reference frame. The only way to know if a reference frame that is aligned on the fixed

stars is inertial is to carry out mechanics experiments and test whether Eqn.(1) holds and global momentum is conserved. If

yes, the frame is inertial.
20For our present purpose ΩΩΩ may be presumed constant. In fact, there are small but observable variations of Earth’s rotation

rate due mainly to changes in the atmospheric and oceanic circulation and due to mass distribution within the cryosphere, see

B. F. Chao and C. M. Cox, ‘Detection of a large-scale mass redistribution in the terrestrial system since 1998,’ Science, 297,

831–833 (2002), and R. M. Ponte and D. Stammer, ‘Role of ocean currents and bottom pressure variability on seasonal polar

motion,’ J. Geophys. Res., 104, 23393–23409 (1999). The direction of ΩΩΩ with respect to the celestial sphere also varies

detectably on time scales of tens of centuries on account of precession, so that Polaris has not always been the pole star (Fig.

3), even during historical times. The slow variation of Earth’s orbital parameters (slow enough to be assumed to vanish for

our purpose) are an important element of climate, see e.g., J. A. Rial, ‘Pacemaking the ice ages by frequency modulation of
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Assume that the inertial frame equation of motion is435

d2X

dt2
M = F+G∗M and

d2X

dt2
M = F+g∗M (24)436

(G∗ is the component matrix of g∗). The acceleration and force can always be viewed from another437

reference frame that is rotated (but not rotating) with respect to the first frame,438

(

d2X

dt2

)′

M = F
′+G

′
∗M and

(

d2X

dt2

)′

M = F′+g′∗M, (25)439

as if we had chosen a different set of fixed stars or multiplied both sides of Eqn. (22) by the same440

rotation matrix. This equation of motion preserves the global conservation and Galilean transformation441

properties of Eqn. (24). To find the rotating frame equation of motion, eliminate the rotated acceleration442

from Eqn. (25) using Eqs. (21) and (22) and then solve for the acceleration seen in the rotating frame:443

the components are444

d2X′

dt2
M = 2ΩC

dX′

dt
M−Ω2

C
2
X
′M +F

′+G
′
∗M (26)445

and the vector equivalent is446

d2X′

dt2
M = − 2ΩΩΩ×

dX′

dt
M − ΩΩΩ×ΩΩΩ×X′M +F′+g∗

′M. (27)447

Eqn. (27) has the form of Eqn. (4), the difference being that the noninertial reference frame is rotating448

rather than translating. If the origin of this noninertial reference frame was also accelerating, then there449

would be a third inertial force term, −(d2Xo/dt2)M. Notice that we are not yet at Eqn. (2); in Section450

4.1 the centrifugal force and gravitational mass attraction terms will be combined into the451

time-independent inertial force g.452

Earth’s orbital eccentricity,’ Science, 285, 564–568 (1999).

As well, Earth’s motion within the solar system and galaxy is much more complex than a simple spin around a perfectly

stable polar axis. Among other things, the Earth orbits the Sun in a counterclockwise direction with a rotation rate of 1.9910

×10−7 s−1, which is about 0.3% of the rotation rate Ω. Does this orbital motion enter into the Coriolis force, or otherwise

affect the dynamics of the atmosphere and oceans? The short answer is no and yes. We have already accounted for the rotation

of the Earth with respect to the fixed stars. Whether this rotation is due to a spin about an axis centered on the Earth or due to

a solid body rotation about a displaced center is not relevant for the Coriolis force per se, as noted in the discussion of Eqn.

(20). However, since Earth’s polar axis is tilted significantly from normal to the plane of the Earth’s orbit around the Sun

(the tilt implied by Fig. 3), we can ascribe Earth’s rotation Ω to spin alone. The orbital motion about the Sun combined with

Earth’s finite size gives rise to tidal forces, which are small but important spatial variations of the centrifugal/gravitational

balance that holds for the Earth-Sun and for the Earth-Moon as a whole (described particularly well by French9, and see also

Tiersten, M. S. and H Soodak, ’Dropped objects and other motions relative to the noninertial earth’, Am. J. Phys., 68 (2), Feb.

2000, 129-142).
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2.2.3 Remarks on the transformed equation of motion453

Once the transformation rule for accelerations, Eqn. (22), is in hand, the path to the rotating frame454

equation of motion is short and direct — if Eqn. (25) holds in a given reference frame (say an inertial455

frame, but that is not essential) then Eqs. (26) and (27) hold exactly in a frame that rotates at the456

constant rate and direction given by ΩΩΩ with respect to the first frame. The rotating frame equation of457

motion includes two terms that are dependent upon the rotation vector, the Coriolis term,458

−2ΩΩΩ×(dX′/dt), and the centrifugal term, −ΩΩΩ×ΩΩΩ×X′. These terms are sometimes written on the left459

side of an equation of motion as if they were going to be regarded as part of the acceleration, i.e.,460

d2X′

dt2
M + 2ΩΩΩ×

dX′

dt
M + ΩΩΩ×ΩΩΩ×X′M = F′+g∗′M. (28)461

Comparing the left side of Eqn. (28) with Eqn. (22), it is evident that the rotated acceleration is equal to462

the rotated force,463

(

d2X

dt2

)′

M = F′ +g∗′M,464

which is well and true and the same as Eqn. (25).21 However, it is crucial to understand that the left side465

of Eqn. (28), (d2X/dt2)′ is not the acceleration that is observed from the rotating reference frame,466

d2X′/dt2. When Eqn. (28) is solved for d2X′/dt2, it follows that the Coriolis and centrifugal terms are,467

figuratively or literally, sent to the right side of the equation of motion where they are interpreted as if468

they were forces.469

When the Coriolis and centrifugal terms are regarded as forces — and it is argued here that they470

should be when observing from a rotating reference frame — they have all of the peculiar properties of471

inertial forces noted in Section 2.1. From Eqn. (28) (and Eqn. 4) it is evident that the centrifugal and472

Coriolis terms are exactly proportional to the mass of the parcel observed, whatever that mass may be.473

The acceleration associated with these inertial forces arises from the rotational acceleration of the474

reference frame, combined with relative velocity for the Coriolis force. They differ from central forces475

F and g∗M in the respect that there is no physical interaction that causes the Coriolis or centrifugal476

force and hence there is no action-reaction force pair. As a consequence the rotating frame equation of477

motion does not retain the global conservation of momentum that is a fundamental property of the478

inertial frame equation of motion and central forces (an example of this nonconservation is described in479

Section 3.4). Similarly, we note here only that invariance to Galilean transformation is lost since the480

Coriolis force involves the velocity rather than velocity derivatives. Thus V′ is an absolute velocity in481

the rotating reference frame of the Earth. If we need to call attention to these special properties of the482

Coriolis force, then the usage Coriolis inertial force seems appropriate because it is free from the taint483

21Recall that ΩΩΩ = ΩΩΩ′ and so we could put a prime on every vector in this equation. That being so, it would be better to

remove the visually distracting primes and then make note that the resulting equation holds in a steadily rotating reference

frame. We will keep the primes for now, since we will be considering both inertial and rotating reference frames until Section

5.
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of unreality that goes with ’virtual force’, ’fictitious correction force’, etc., and because it gives at least a484

hint at the origin of the Coriolis force. It is important to be aware of these properties of the rotating485

frame equation of motion, and also to be assured that in most analysis of geophysical flows they are of486

no great practical consequence. What is most important is that the rotating frame equation of motion487

offers a very significant gain in simplicity compared to the inertial frame equation of motion, discussed488

further in Section 4.489

The Coriolis and centrifugal forces taken individually have simple interpretations. From Eqn. (27)490

it is evident that the Coriolis force is normal to the velocity, dX′/dt, and to the rotation vector, ΩΩΩ. The491

Coriolis force will thus tend to cause the velocity to change direction but not magnitude, and is492

appropriately termed a deflecting force as noted in Section 1 (the purest example of this deflection493

occurs in an important phenomenon called inertial motion, described in Section 5.2.) The centrifugal494

force is in a direction perpendicular to and directed away from the axis of rotation. It is independent of495

time and is dependent upon position. How these forces effect dynamics in simplified conditions will be496

considered in Sections 3, 4.3 and 5.497

2.3 Problems498

(1) It is important that Eqs. (9) through (12) have an immediate and concrete meaning for you. Some499

questions/assignments to help you along: Verify Eqs. (9) and (12) by some direct500

experimentation, i.e., try them and see. Show that the transformation of the vector components501

given by Eqs. (10) and (11) leaves the magnitude of the vector unchanged, i.e., |X′| = |X|. Verify502

that R(θ1)R(θ2) = R(θ1 +θ2) and that Rθ−1 = R(−θ ), where R−1 is the inverse (and also the503

transpose) of the rotation matrix.504

(2) Show that the unit vectors that define the rotated frame can be related to the unit vectors of the505

stationary frame by `E = ER
−1 and hence the unit vectors observed from the stationary frame506

turn the opposite direction of the position vector observed from the rotating frame (and thus the507

reversed prime). The components of an ordinary vector (a position vector or velocity vector) are508

thus said to be contravariant, meaning that they rotate in a sense that is opposite the rotation of509

the coordinate system. What, then, can you make of `EX′ = ER
−1

RX?510

3 Inertial and noninertial descriptions of elementary motions511

The object of this section is to evaluate the equations of motion (24) and (27) for several examples of512

elementary motions. The goal will be to understand how the accelerations and the inertial forces —513

gravity, centrifugal and Coriolis — depend upon the reference frame. Though the motions considered514

here are truly elementary, nevertheless the analysis is slightly subtle in that the acceleration and inertial515

force terms will change identity, as if be fiat, from one reference frame to another. To appreciate that516
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A characterization of the forces on geophysical flows.

central? inertial? Galilean invariant? position only?

contact forces yes no yes no

grav. mass attraction yes yes yes yes

centrifugal no yes yes yes

Coriolis no yes no no

Table 1: Contact forces on fluid parcels include pressure gradients (normal to a surface) and frictional

forces (mainly tangential to a surface). The centrifugal force noted here is that associated with Earth’s ro-

tation. ’position only’ means dependent upon the parcel position but not the parcel velocity, for example.

This table ignores electromagnetic forces that are usually small.

there is more to this analysis than an arbitrary relabeling of terms, it will be very helpful for you to517

make a sketch of each case, starting with the observed acceleration.518

3.1 Switching sides519

One-dimensional, vertical motion with gravity. Consider a parcel of fixed mass M that is in contact520

with the ground and at rest. For this purpose a reference frame that is attached to the ground may be521

considered to be inertial. The vertical component of the equation of motion is then, in general,522

d2z

dt2
M = Fz −gM,523

where the observed acceleration is written on the left hand side and the forces are listed on the right side.524

The forces acting on this parcel include a contact force, F, that acts over the surface of the parcel. To525

measure the contact force, the parcel could (in principal) be enclosed in a wrap-around strain gage that526

reads out the tangential and normal stresses acting on the surface of the parcel. In this case the strain527

gauge will read a contact force that is upwards, Fz > 0. The other force acting on this parcel is due to528

gravity, gM, an inertial force that acts throughout the body of the parcel (in this section there is no529

distinction between g and g∗) (Table 1). To make an independent measure of g, the direction may be530

observed as the direction of a stationary plumb line, and the magnitude of g could be inferred from the531

period of small oscillations.13 For the conditions prescribed, parcel at rest, the equation of motion for a532

ground-attached533

inertial frame : 0 = Fz −gM, (29)534

indicates a static force balance between the upward contact force, Fz, and the downward force due to535

gravity, i.e., the parcel’s weight (we said this would be elementary).536
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Now suppose that the same parcel is observed from a reference frame that is in free-fall and537

accelerating downwards at the rate −g with respect to the ground-attached frame.22 When viewed from538

this reference frame, the parcel is observed to be accelerating upward at the rate g that is just the539

complement of the acceleration of the free-falling frame, d2z′/dt2 = g > 0. In this free-falling frame540

there is no gravitational force (imagine astronauts floating in space and attempting pendulum541

experiments ..... ’Houston, we have a pendulum problem’) and so the only force recognized as acting on542

the parcel is the upward contact force, Fz, which is unchanged from the case before, i.e., the contact543

force is invariant. The equation of motion for the parcel observed from this free-falling reference frame544

is then, listing the observed acceleration d2z/dt2 = g on the left,545

noninertial frame : g = Fz/M. (30)546

Notice that in going from Eqn. (29) to the free-falling frame Eqn. (30 the term involving g has switched547

sides; gM is an inertial force in the inertial reference frame attached to the ground, Eqn. (29), and548

appears to be an acceleration in the free-falling reference frame appropriate to Eqn. (30). Exactly this549

kind of switching sides will obtain when we consider rotating reference frames and the centrifugal and550

Coriolis forces.551

Two-dimensional, circular motion; polar coordinates. Now consider the horizontal motion of a552

parcel, with gravity and the vertical component of the motion ignored. For several interesting examples553

of circular motion it is highly advantageous to utilize polar coordinates, which are reviewed here briefly.554

If you are familiar with polar coordinates, jump ahead to Eqns. (35) and (36).555

Presume that the motion is confined to a plane defined by the usual cartesian coordinates x1 and x2

and unit vectors e1 and e2. Thus the position of any point in the plane may be specified by (x1,x2) and

vectors by their projection onto e1 and e2. Alternatively, a position may also be defined by polar

coordinates, the distance from the origin, r, and an angle, λ between the radius vector and (arbitrarily)

e1. The angle λ increases anti-clockwise (Fig. 9). To insure that the polar coordinates are unique we

will require that

r ≥ 0 and 0 ≤ λ < 2π.

The position vector is then556

X = rer,557

where the unit vector er has an origin at the parcel position and is in the direction of a line segment from558

the origin to the parcel position. The direction of er is thus λ . The unit vector eλ is orthogonal and to559

22Gravitational mass attraction is an inertial force and a central force that has a very long range. Consider two gravitating

bodies and a reference frame attached to one of them, say parcel one, which will then be observed to be at rest. If parcel two

is then found to accelerate towards parcel one, the total momentum of the system (parcel one plus parcel two) will not be

conserved, i.e., in effect, gravity would not be recognized as a central force. A reference frame attached to one of the parcels

is thus noninertial. To define an inertial reference frame in the presence of mutually gravitating bodies we can use the center

of mass of the system, and then align on the fixed stars. This amounts to putting the entire system into free-fall with respect

to any larger scale (external to this system) gravitational mass attraction (for more on gravity and inertial reference frames see

http://plato.stanford.edu/entries/spacetime-iframes/).
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Figure 9: The unit vectors e1,e2

define a cartesian reference frame.
The unit vectors for a polar coordi-
nate system, er and eλ , are defined
at the position of a given parcel
(red dot) with er in the direction
of the line segment from the origin
to the parcel position. These po-
lar unit vectors are in general time-
dependent because the angle λ is
time-dependent.

the left of er. The conversion from cartesian to polar coordinates is560

r =
√

x2 + y2 and λ = tan−1 (y/x),561

and back,562

x = r cosλ and y = r sinλ .563

The polar system unit vectors are time-dependent because λ is in general time-dependent. To find564

out how they vary with λ(t) we start by writing their expression in terms of the time-independent565

cartesian unit vectors as566

er = cosλe1 + sinλe2, and, eλ = − sinλe1 + cosλe2. (31)567

From Eqn (31) the time rate changes are568

der

dt
= ωeλ and

deλ

dt
= −ωer, (32)569

where ω = dλ/dt. The d/dt operating on a polar unit vector induces a rotation of 90 degrees in the570

direction of ω , and stretching by the factor ω . With these results in hand the parcel velocity is readily571
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computed as572

dX

dt
=

dr

dt
er + r

der

dt
=

dr

dt
er + rωeλ (33)573

which shows the polar velocity components574

Ur =
dr

dt
and Uλ = rω.575

A second, similar differentiation yields the the acceleration,576

d2X

dt2
=

(

d2r

dt2
− rω2

)

er +

(

2ω
dr

dt
+ r

dω

dt

)

eλ , (34)577

and the equation of motion sorted into radial and tangential components,578

(

d2r

dt2
− rω2

)

M = Fr, (35)579

580

(

2ω
dr

dt
+ r

dω

dt

)

M = Fλ . (36)581

We can rewrite Eqns. (35) and (36) in a way that will help develop a physical interpretation by noting582

that rω2 = U2
λ /r and that the angular momentum is L = rUλ M and thus583

(

d2r

dt2
−

U2
λ

r

)

M = Fr, (37)584

and585

1

r

dL

dt
= Fλ . (38)586

Two points: 1) The centripetal acceleration depends quadratically upon the tangential velocity, Uλ ,587

times the radius of curvature, 1/r, and 2) The angular momentum can change only if there is a torque,588

rFλ , exerted upon the parcel, with the moment arm being the distance to the origin, r.589

Notice that there are terms −rω2 and 2ω dr
dt

on the left-hand side of (35) and (36) that have the590

form of centrifugal and Coriolis terms and are oftentimes said to be such, e.g., Boas.15 This careless591

labeling may be harmless in some contexts, but for our goals here it is a complete error: these equations592

have been written for an inertial reference frame where centrifugal and Coriolis forces do not arise. The593

angular velocity ω in these equations is that of the parcel position, not the rotation rate of the reference594

frame, and these terms are an essential part of the acceleration seen in the inertial reference frame. To595

see this last important point, consider uniform circular motion, r = const and ω = dλ/dt = const. The596

radial acceleration is then from Eqn (35), −rω2 < 0, which is the centripetal (center-seeking)597

acceleration of uniform circular motion (d/dt operating twice on er times a constant r, or, Fig. 10). To598
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Figure 10: The velocity at two times
along a circular trajectory (thin blue line)
having radius r and frequency ω . The
angular distance between the two times
is δ λ = δ tω and the velocity change
is δ V = V2 −V1. In the limit δ t → 0,
the time rate change of velocity δ V/δ t
is toward the center of curvature, i.e.,
a centripetal acceleration. If the mo-
tion is steady and circular, then dV/dt =
−|V|ωer = −rω2er, where er is the ra-
dial unit vector. The centripetal accel-
eration may also be written −(U2

λ/r)er,
where Uλ = ωr is the azimuthal speed.
The shaded rectangle is a control volume
used in a later problem to find the equiv-
alent of centripetal acceleration in carte-
sian coordinates, u∂ v/∂ x, for the partic-
ular position shown here.

say it a little more emphatically, −rω2 is the entire acceleration observed in the case of uniform circular599

motion. Given that the motion is uniform, then this radial acceleration implies a centripetal radial force,600

Fr = −rω2M < 0, and the radial component balance Eqn (35) reduces to601

uniform circular motion, inertial frame : − rω2M = Fr. (39)602

The azimuthal component Eqn. (36) vanishes term by term.603

It is straightforward to find the corresponding rotating reference frame equation of motion. The604

origin of the rotating frame may be set at the origin of the fixed frame, and hence the radius is the same,605

r′ = r. The unit vectors are identical since they are defined at the location of the parcel, e′r = er and606

e′λ = eλ . The components of the force F are also identical in the two frames, F ′
r = Fr and F ′

λ = Fλ .607

Differences arise when the angular velocity ω of the parcel is decomposed into the presumed constant608

angular velocity of the rotating frame, Ω, and a relative angular velocity of the parcel when viewed609

from the rotating frame, i.e., ω ′, i.e.,610

ω = Ω+ω ′.611

An observer in the rotating reference frame will see the parcel motion associated with the relative612

angular velocity, but not the angular velocity of the reference frame, Ω, though she will know that it is613

present. Substituting this into the inertial frame equations of motion above, and rearrangement to keep614

the observed acceleration on the left hand side while moving terms containing Ω to the right hand side615

yields the rather formidable-looking rotating frame equations of motion:616

d2r′

dt2
− r′ω ′2 = r′Ω2 +2Ωω ′r′ +F ′

r/M, (40)617
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2ω ′ dr′

dt
+ r′

dω ′

dt
= −2Ω

dr′

dt
+F ′

λ /M. (41)618

We can write these using the rotating frame velocity components, U ′
r = dr′/dt and U ′

λ = ω ′r′ and619

angular momentum, L′ = r′U ′
λ M, as620

d2r′

dt2
−

U ′2
λ

r
= r′Ω2 +2ΩU ′

λ +F ′
r /M, (42)621

622

1

rM

dL′

dt
=−2ΩU ′

r +F ′
λ /M. (43)623

There is a genuine centrifugal force term ∝ Ω2 > 0 in the radial component (40), and there are Coriolis624

force terms, ∝ 2Ω, on the right hand sides of both (40) and (41). This makes the third time that we have625

derived the centrifugal and Coriolis terms — in Cartesian coordinates, Eqn. (26), in vector form, Eqn.626

(27), and here in polar coordinates. It is worthwhile for you to verify the steps leading to these627

equations, as they are perhaps the most direct derivation of the Coriolis force and most easily show how628

the factor of 2 arises in the Coriolis term.629

Now let’s use these rotating polar coordinates to analyze the simple but important example of630

uniform circular motion whose inertial frame description was Eqn (39). Assume that the reference631

frame rotation rate is ω , the angular velocity of the parcel seen in the inertial frame. Thus dω ′/dt = 0,632

and the parcel is stationary in the rotating frame; we might call this a co-rotating frame. It follows that633

d( )/dt = Uλ = Ur = 0 and so the azimuthal component Eqn. (43) vanishes term by term. All that is634

left of the radial component Eqn. (42) is635

co− rotating, non− inertial frame : 0 = r′ω2M +F ′
r (44)636

and recall that r′ = r. The term r′ω2M > 0 is a centrifugal (center fleeing) force that must be balanced637

by a centripetal contact force, F ′
r , which is the same contact force observed in the inertial frame,638

F ′
r = Fr =−r′ω2M, consistent with Eqn. (44). Thus Eqns (39) and (44) comprise another example of639

switching sides: an acceleration seen in an inertial frame — in this case a centripetal acceleration on the640

left side of Eqn. (39) — is transformed into an inertial force — a centrifugal force on the right side of641

(44) — when the same parcel is observed from a non-inertial, co-rotating reference frame.642

Before moving on to other applications it may be prudent to note that a rotating frame description643

is not always so adept as it may appear so far. For example, assume that the parcel is at rest in the644

inertial frame, and that the horizontal component of the contact force vanishes. The inertial frame645

equation of motion in polar coordinates Eqns. (35) and (36) vanishes term by term; clearly, nothing is646

happening in an inertial frame. Now suppose that the same parcel is viewed from a steadily rotating647

reference frame, say rotating at a rate Ω, and at a distance r′ from the origin. Viewed from this frame,648

the parcel will appear to be moving in a circle of radius r′ = constant and in a direction opposite the649

rotation of the reference frame. The parcel’s rotation rate is ω ′ =−Ω, just as in Figure (7). With these650
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conditions the tangential component equation of motion vanishes term by term (F = 0), but three of the651

radial component terms are nonzero,652

−r′ω ′2 = r′Ω2 +2Ωω ′r′, (45)653

and indicate an interesting balance between the centripetal acceleration, −r′ω ′2 (the observed654

acceleration is listed on the left hand side), and the sum of the centrifugal and Coriolis inertial forces655

(the right hand side, divided by M, and note that ω ′ = −Ω). Interesting perhaps, but disturbing as well;656

a parcel that was at rest in an inertial frame has acquired a rather complex momentum balance when657

observed from a rotating reference frame. It is tempting to deem the Coriolis and centrifugal terms that658

arise in this example to be ’virtual’, or ’fictitious, correction’ forces to acknowledge this discomfort.6659

But to be consistent, we would have to do the same for the observed, centripetal acceleration on the left660

hand side. In the end, labeling terms this way wouldn’t add anything useful, and it might serve to661

obscure the fundamental issue — all accelerations and inertial forces are relative to a reference frame.662

From these first two examples it should be evident that this applies just as well to centrifugal and663

Coriolis forces as it does to gravitational mass attraction.664

3.2 To get a feel for the Coriolis force665

The centrifugal force is something that we encounter in daily life. For example, a runner having V = 5666

m s−1 and making a moderately sharp turn, radius R = 15 m, will easily feel the centrifugal force,667

(V 2/R)M ≈ 0.15gM, and will compensate instinctively by leaning toward the center of the turn. It is668

unlikely that a runner would think of this centrifugal force as virtual or fictitious.669

The Coriolis force associated with Earth’s rotation is by comparison very small, only about670

2ΩVM ≈ 10−4gM for the same runner. To experience the Coriolis force in the same direct way that we671

can feel the centrifugal force, i.e., to feel it in our bones, will thus require a platform having a rotation672

rate that exceeds Earth’s rotation rate by a factor of about 104. A merry-go-round having a rotation rate673

Ω = 2π/12 rad s−1 = 0.5 rad s−1 is ideal. To calculate the forces we will need a representative body674

mass, say M = 75 kg, the standard airline passenger before the era of super-sized meals and passengers.675

Zero relative velocity. To start, let’s presume that we are standing quietly near the outside radius676

r = 6 m of a merry-go-round that it is rotating at a steady rate, Ω = 0.5 rad s−1. How does the677

description of our motion depend upon the reference frame?678

Viewed from an approximate inertial frame outside of the merry-go-round, the radial component679

balance Eqn. (36) is, with ω = Ω and dr/dt = dω/dt = Fθ = 0680

−rΩ2M = Fr, (46)681

in which a centripetal acceleration (×M) is balanced by an inward-directed contact force,682

Fr = −rΩ2M = −112 N, equivalent to the weight of a mass Fr/g = 11.5 kg (also equivalent to about 28683
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lbs) and is quite noticeable. This contact force is exerted by the merry-go-round on us. Just to be684

concrete, let’s imagine that this contact force is provided by a hand rail.685

Viewed from the rotating reference frame, i.e., our view from the merry-go-round, there is no686

acceleration, and the radial force balance is Eqn.(44) with r′ = r,687

0 = r′Ω2M +F ′
r . (47)688

The physical conditions are unchanged and thus contact force exerted by the merry-go-round is exactly689

as before, F ′
r = Fr = −112 N. As we described in Sec. 3.1, the acceleration seen in the inertial frame690

has become an inertial force, a centrifugal force, in the rotating frame. Within the rotating frame, the691

centrifugal force is quite vivid; it appears that we are being pushed outwards, or centrifugally, by a force692

that is distributed throughout our body. To maintain our fixed position, this centrifugal force is opposed693

by a centripetal contact force, F ′
r , exerted by the hand rail.694

With relative velocity. Most merry-go-rounds have signs posted which caution riders to remain in695

their seats after the ride begins. This is a good and prudent rule, of course. But if the goal is to get a feel696

for the Coriolis force then we may decide to go for a (very cautious) walk on the merry-go-round.697

Azimuthal relative velocity: Let’s assume that we walk azimuthally so that r = 6 m and constant. A698

reasonable walking pace under the circumstance is about Uw = 1.5 m s−1, which corresponds to a699

relative rotation rate ωw = 0.25 rad s−1, and recall that Ω = 0.5 rad s−1. If the direction is in the700

direction of the merry-go-round rotation, then ω = Ω+ωw = 0.75 rad s−1. From the inertial frame701

Eqn. (36), the centripetal force required to maintain r = constant when moving at this greater angular702

velocity is703

−rω2M = −r(Ω+ωw)2M = Fr ≈−253 N,704

which is roughly twice the centripetal force we experienced when stationary. If we then reverse705

direction and walk at the same speed against the rotation of the merry-go-round, ω = 0.25 rad s−1, and706

Fr is reduced to about -28 N. This pronounced variation of Fr with ω is a straightforward consequence707

of the quadratic dependence of centripetal acceleration upon the rotation rate (or azimuthal velocity, if708

r = const).709

When our motion is viewed and analyzed from within the rotating frame of the merry-go-round,710

we distinguish between the rotation rate of the merry-go-round, Ω, and the relative rotation rate,711

ω ′ = ωw, due to our motion. The radial component of the rotating frame equation of motion (40)712

reduces to713

−r′ω2
wM = (r′Ω2 +2Ωωwr′)M +F ′

r . (48)714

The term on the left is a centripetal acceleration, the first term on the right is the centrifugal force, and715

the second term on the right, ∝ 2Ωωw, is a Coriolis force. For these conditions, the Coriolis force is716

substantial, 2r′Ωω ′M±112 N, with the sign determined by the direction of motion relative to Ω. If717

Ω > 0 and ωw > 0, i.e., walking in the anti-clockwise direction of the merry-go-round rotation, then the718

radial Coriolis force is positive and to the right of the relative velocity.719
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Some authors describe the Coriolis force in this case as a (relative) velocity-dependent part of the720

centrifugal force. This is, however, somewhat loose and approximate; loose because the centrifugal721

force is defined to be dependent upon rotation rate and position only (not the relative velocity), and722

approximate because this would seem to overlook the centripetal acceleration term that does exist (left723

side of (48). As well, this interpretation does not extend to radial motion (next).724

Radial relative velocity: Now let’s consider a very cautious walk along a radial hand rail, so that our725

rotation rate remains constant at ω = Ω = 0.5 rad sec−1. Presume a modest radial speed726

dr′/dt = 1 m s−1. In practice, this is difficult to maintain for more than a few steps, but that will suffice.727

Viewed from an inertial frame, the azimuthal component of the equation of motion, Eqn. (36),728

reduces to729

2Ω
dr

dt
M = Fλ , (49)730

where Fλ ≈ 75 N for the given data. The sense is positive, or anti-clockwise. The left hand side of (49)731

has the form of a Coriolis force, but this is an inertial frame description, so there is no Coriolis force.732

Perhaps the best inertial frame description is via the budget of angular momentum, L = r2ΩM and733

hence L ∝ r2 since Ω and M are constant in this case. When dr/dt > 0 the angular momentum is734

increasing and must be provided by a positive torque, rFλ . If the radial motion was instead inward so735

that dr/dt < 0, the angular momentum would then be becoming less positive and Fλ would be negative.736

Be sure that the sense (direction) of Fλ is clear before going on to consider this motion from the rotating737

frame.738

From within the rotating frame, and given that the motion is constrained to be radial only, the739

azimuthal component of the equation of motion reduces to a force balance,740

0 =−2Ω
dr′

dt
M +F ′

λ , (50)741

where −2Ωdr′

dt
M is the Coriolis force and F ′

λ = Fλ is the contact force as before. For example, if the742

radial motion is outward, dr′

dt
≥ 0, then the azimuthal Coriolis force is clockwise, −2Ωdr′

dt
M ≤ 0, which743

is to the right of and normal to the radial velocity.744

Be careful! If you have a chance to do this experiment you will learn with the first few steps whether745

the Coriolis force is better described as real or as a fictitious correction force. Be sure to ask permission746

of the operator before you start walking around, and exercise genuine caution. The Coriolis force is an747

inertial force and so is distributed throughout your body, unlike the contact force which acts only where748

you are in contact with the merry-go-round, i.e., through a secure hand grip. The radial Coriolis force749

associated with azimuthal motion is much like an increase or slackening of the centrifugal force and so750

is not difficult to compensate. Be warned, however, that the azimuthal Coriolis force associated with751

radial motion is startling, even presuming that you are the complete master of this analysis. (If you do752

not have access to a merry-go-round or if you feel that this experiment is unwise, then see Stommel and753

Moore10 for alternate ways to accomplish some of the same things.)754
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3.3 An elementary projectile problem755

A very simple projectile problem analyzed from inertial and rotating reference frames can reveal some756

other aspects of rotating frame dynamics. Assume that a projectile is launched with velocity757

(U0,V0,W0) = (0,1,1) and from the origin (x,y) = (0,0). The only force presumed to act on the758

projectile after launch is the downward force of gravity, −gMe3, which is the same in either reference759

frame.760

From the inertial frame. The equations of motion and initial conditions in Cartesian components are761

linear and uncoupled;762

d2x

dt2
= 0; x(0) = 0,

dx

dt
= 0, (51)763

d2y

dt2
= 0; y(0) = 0,

dy

dt
= V0,

d2z

dt2
= −g; z(0) = 0,

dz

dt
= W0,

where M has been divided out. These are readily integrated to yield the solution for the time interval764

0 < t < 2W0
g

when the parcel is in flight;765

x(t) = 0, (52)766

y(t) = y0 + tV0,767

z(t) = t(W0 −
1

2
gt).768

The horizontal displacement (x,y) is sketched as the blue curve of Fig. (11), a linear displacement769

toward positive y until to t = 2π when the parcel returns to the ground. The vertical displacement (not770

shown) is a simple up and down, with constant downward acceleration.771

From the rotating frame. How would this same motion look when viewed from a rotating reference772

frame? With no loss of generality we can make the origin of a rotating frame coincident with the origin773

of the inertial frame and assume that the rotation is about the e3 (vertical, or z) axis at a constant Ω. The774

equations of motion, with F = 0, are (Eqn. (27),775

d2x′

dt2
= −2Ωv′+ x′Ω2; x′(0) = 0,

dx′

dt
= 0, (53)776

d2y′

dt2
= 2Ωu′ + y′Ω2; y′(0) = 0,

dy′

dt
= V0,

d2z′

dt2
= −g; z′(0) = 0,

dz′

dt
= W0.
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Figure 11: (left) The horizontal trace of a parcel launched from (0,0) in the positive y-direction as seen
from an inertial reference frame (blue line) and as seen from a rotating frame (black line). The elapsed
time is marked at intervals of π/2. The rotating frame was turning anti-clockwise with respect to the
inertial frame, and hence the black trajectory turns clockwise with time at the same rate, though in the
opposite direction. For comparison, the red trajectory was computed with the Coriolis force only (no
centrifugal force; the motivation for this will come in Sec. 4). This an inertial motion that makes two
complete clockwise orbits in time = 2π, twice the rate of the reference frame rotation. Videos from com-
parable laboratory experiments may be viewed at http://planets.ucla.edu/featured/spinlab-geoscience-
educational-film-project/ (right) (upper) The radius (distance from origin) and (lower) speed for the
three trajectories. Notice that 1) the inertial and rotating trajectories have equal radius, while the radius
of the Coriolis trajectory is much less, and 2) the inertial and Coriolis trajectories show the same, con-
stant speed, while the rotating trajectory has a greater and increasing speed on account of the centrifugal
force.

The z component equation is unchanged since the rotation axis was aligned with z. This is quite general;777

motion that is parallel to the rotation vector ΩΩΩ is unchanged by rotation.778

The horizontal components of the rotating frame equations (53) include Coriolis and centrifugal779

force terms that are coupled but linear, and so we can integrate this system almost as easily as the780

inertial frame counterpart,781

x′(t) = − tV0 sin (−Ωt), (54)782

783

y′(t) = tV0 cos(−Ωt), (55)784

and find the black trajectory of Fig. (11). The rotating frame trajectory rotates clockwise, or opposite785

the reference frame rotation, and makes a complete rotation in time = 2π/Ω. When it intersects the786

inertial frame trajectory we are reminded that the distance from the origin (radius) is not changed by787
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rotation, r′ = r, since the coordinate systems have coincident origins. We know the inertial frame radius,788

r = tV0, and hence we also know789

r′ = tV0. (56)790

The angular position of the parcel in the inertial frame is λ = π/2 and constant, since the motion is791

purely radial. The relative rotation rate of the parcel seen from the rotating frame is ω ′ =−Ω, and thus792

λ ′ = π/2−Ωt, (57)793

which, together with Eqn. (56), gives the polar coordinates of the parcel position. Both the radius and794

the angle increase linearly in time, and the rotating frame trajectory is Archimedes spiral.795

When viewed from the rotating frame, the projectile is observed to be deflected to the right which796

we can attribute to the Coriolis force. Notice that the horizontal speed and thus the kinetic energy797

increase with time (Fig. 11, right). This cannot be attributed to the Coriolis force, which is always798

perpendicular to the velocity and so can do no work. The rate of increase of rotating frame kinetic799

energy (per unit mass) is800

dV′2/2

dt
=

d(V 2
0 + r′2Ω2)/2

dt

=
dr′

dt
r′Ω2

(58)801

which may be interpreted as the work done by the centrifugal force, r′Ω2, on the radial velocity, dr′/dt.802

In fact, if the projectile had not returned to the ground, its speed (observed from the rotating reference803

frame) would have increased without limit so long as the radius increased. It was noted earlier that a804

rotating, non-inertial reference frame does not, in general, conserve global momentum, and now it is805

apparent that energy is also not conserved. Nevertheless, we can provide a complete and internally806

consistent accounting of the energy changes seen in a rotating frame, as in Eqn. (58).807

3.4 Appendix to Section 3; Spherical Coordinates808

Spherical coordinates can be very useful when motion is more or less confined to the surface of a809

sphere, e.g., the Earth, approximately. We will have occasion to use spherical coordinates later on, and810

so will go ahead and write them down here while polar coordinates are still fresh and pleasing(?). The811

method for finding the equation of motion in spherical coordinates is exactly as above, though with the812

need for an additional angle. There are many varieties of spherical coordinates; we will use ’geographic’813

spherical coordinates in which the longitude (also called azimuth) is measured by λ , where 0 ≤ λ ≤ 2π,814

increasing anti-clockwise (Figure 12), the latitude (also called elevation) is measured by φ , where815

−π/2 ≤ φ ≤ π/2, increasing anti-clockwise and with a zero at the equator and distance from the origin816

by r. The conversion from spherical to cartesian coordinates is:817

x = r cos2 φ , y = r cosφ sinλ , z = r sinφ ,818
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Figure 12: A three-dimensional tra-
jectory (blue dots) with, for one point
only, the radius (blue line) and the
spherical unit vectors (red, green and
black). The spherical system coordi-
nates are: (1) the longitude, λ , the an-
gle between the projection of the ra-
dius onto the (x,y) plane and the x
axis; (2) the latitude, φ , the angle be-
tween the radius and the (x,y) plane,
and (3) the radius magnitude, r. The
black dashed center line will be the
axis of rotation (pole) when reference
frame rotation is considered. The per-
pendicular distance from the pole to
a given point, labeled b, is then very
important. The (x,y, z) components of
this point are also shown.

and the reverse,819

λ = tan−1 (y/x), φ = sin−1 (z/
√

x2 + y2 + z2), r =
√

x2 + y2 + z2.820

The spherical system unit vectors (Fig. 13) written in Cartesian coordinates are:821

eλ = − sinλe1 + cosλe2, (59)822

823

eφ = −cosλ sinφe1 − sinλ sinφe2 + cosφe3, (60)824

825

er = cosλ cosφe1 + sinλ cosφe2 + sinφe3. (61)826

Notice that when φ = 0 these reduce to the polar coordinate system.827

The position and velocity vectors are828

X = rer, (62)829

and830

dX

dt
=

dr

dt
er + r

dφ

dt
eφ + r cosφ

dλ

dt
eλ , (63)831

where the velocity components are832

Uλ = r cosφ
dλ

dt
, Uφ = r

dφ

dt
, and Ur =

dr

dt
.833
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Figure 13: A three-dimensional tra-
jectory (blue dots) that begins at
lower center and then turns counter-
clockwise as it moves toward positive
z. Radials from the origin (0,0,0) are
the blue lines shown at three points
along the trajectory. The spherical
system unit vectors are in red, green
and black at the same points. Notice
that these change direction along the
trajectory and that the black vector, er,
remains aligned with the radial.

These bear obvious similarity to the now familiar polar velocity, though with the moment arm834

r cosφ = b in the longitudinal component in place of r only. Continuing on to find the acceleration and835

then the equation of motion in λ , φ and r components:836

(2
dr

dt

dλ

dt
cosφ − 2r

dφ

dt

dλ

dt
sinφ + r cosφ

d2λ

dt2
)M = Fλ , (64)837

838

(2
dr

dt

dφ

dt
+ r

d2φ

dt2
+ r cosφ (

dλ

dt
)2 sinφ )M = Fφ , (65)839

840

(
d2r

dt2
− r cosφ (

dλ

dt
)2 cosφ − r(

dφ

dt
)2)M = Fr. (66)841

These may be rewritten in a more compact and revealing form be defining angular momentum for the λ842

and φ coordinates:843

Lλ = (r cosφ )2 dλ

dt
M, and Lφ = r2 dφ

dt
M,844

and centripetal accelerations (×M) for the λ and φ components:845

Cλ = − r cosφ (
dλ

dt
)2M and Cφ = − r(

dφ

dt
)2M.846

In these variables the equations of motion are:847

1

r cosφ

dLλ

dt
= Fλ , (67)848
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849

1

r

dLφ

dt
− Cλ sinφ = Fφ , (68)850

851

d2r

dt2
M + Cλ cosφ +Cφ = Fr. (69)852

The rotating frame equations follow from the substitution853

dλ

dt
= Ω+

dλ ′

dt
,854

and rearranging the way we did for the polar coordinates:855

(2
dr′

dt

dλ ′

dt
cosφ ′ + r cosφ ′ d2λ ′

dt2
− 2r′

dφ ′

dt

dλ ′

dt
sinφ ′)M = −2Ω

dr′

dt
cosφ ′ + 2Ωr′

dφ ′

dt
sinφ ′ + F ′

λ ,

(70)856

(2
dr′

dt

dφ ′

dt
+ r′ cosφ ′ (

dλ ′

dt
)2 sinφ ′ + r′

d2φ ′

dt2
)M = − r′ cosφ ′Ω2 sinφ ′ − 2Ω r cosφ ′ dλ ′

dt
sinφ ′ + F ′

φ ,

(71)857

(
d2r′

dt2
− r′ cosφ ′ (

dλ ′

dt
)2 cosφ ′ − r′(

dφ ′

dt
)2)M = r′ cosφ ′ Ω2 cosφ ′ + 2Ωr′ cosφ ′dλ ′

dt
cosφ ′ + F ′

r .

(72)858

We can tidy these up a little by rewriting in terms of L′
λ = (r′ cosφ ′)2 dλ ′

dt
M, etc.,859

1

r′ cosφ ′

dL′
λ

dt
= −2ΩU ′

r cosφM + 2ΩsinφU ′
φ M +F ′

λ , (73)860

861

1

r′

dL′
φ

dt
− C′

λ sinφ = − r′ cosφ ′ sinφ ′Ω2M−2Ωsinφ ′Uλ M + F ′
φ , (74)862

863

d2r′

dt2
M + Cλ cosφ + Cφ = r′ cos2 φΩ2M + 2ΩcosφUλ M + F ′

r . (75)864

3.5 Problems865

(1) Given that we know the inertial frame trajectory, Eqns. (52), show that we may compute the866

rotating frame trajectory by applying a time-dependent rotation operation via Eqn. (12), X′ = RX867

and with θ = Ωt, with the result Eqns. (54) and (55). So for this case — a two-dimensional planar868

domain and rotation vector normal to the plane, we can either integrate the rotating frame869

equations of motion, or, rotate the inertial frame solution. This will not be the case when we870

finally get to an Earth-attached, rotating frame.871
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(2) In the example of Sec. 3.2, walking on a merry-go-round, it was suggested that you would be able872

to feel the Coriolis force directly. Imagine that you are riding along on the projectile of Sec 3.3873

(don’t try this one at home) — would you be able to feel the Coriolis force?874

(3) The centrifugal force produces a radial acceleration on every object on the merry-go-round and875

thus contributes to the direction and magnitude of the time-independent acceleration field876

observed in a rotating frame, an important point returned to in Section 4.1. For example, show that877

a plumb line makes an angle to the vertical of arctan (r′Ω2/g), where the vertical direction and g878

are in the absence of rotation.879

(4) Your human pinball experiments on the merry-go-round of Sec. 3.2 were illuminating, and880

something you wanted to share with your father, Gustav-Gaspard, and younger brother,881

Gustav-Gaspard Jr. Your father is old school — he doesn’t believe in ghosts or magic or virtual882

forces — and engages in a heated debate with GG Jr. regards just what happened on the883

merry-go-round: is it a Coriolis force that pushes everything sideways when motion is radial —884

this is GG Jr.’s assertion — or was it simply a torque required to change angular momentum, as885

your father insists?886

(5) The spherical system equations (64) - (66) are fairly forbidding upon a first or second encounter887

and you certainly can not expect to spot errors without considerable experience (and in fact, errors888

(probably typographical) are common in the literature). How can we check that the equations889

listed here are correct? One straightforward if slightly tedious way to check the equations is to890

define a 3-dimensional trajectory in the spherical system, X(λ ,φ , r), convert to the familiar891

X(x,y, z) coordinates, and compute the velocity, acceleration, Coriolis force, etc. in the cartesian892

coordinates. Then compute the same quantities using the spherical system, and compare the893

results directly. The script sphere check.m (Sec. 6.3) does just this. You can use that script to894

define a new trajectory (your choice), and check the results for yourself.895

4 A reference frame attached to the rotating Earth896

4.1 Cancellation of the centrifugal force by Earth’s (slightly chubby) figure897

If Earth was a perfect, homogeneous sphere (it is not), the gravitational mass attraction at the surface,898

g∗, would be directed towards the center (Fig. 14). Because the Earth is rotating, every parcel on the899

surface is also subject to a centrifugal force900

CCC = −ΩΩΩ×ΩΩΩ×X (76)901

of magnitude Ω2RE cosφ , where RE is Earth’s nominal radius, and φ is the latitude. The vector CCC is902

perpendicular to the Earth’s rotation axis, and is directed away from the axis. This centrifugal force has903

a component parallel to the surface, a shear force, Eqn. (71),904

Cφ = Ω2RE cosφ sinφ , (77)905
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Figure 14: Cross-section through a hemisphere
of a gravitating and rotating planet. The grav-
itational acceleration due to mass attraction is
shown as the vector g∗ that points to the cen-
ter of a spherical, homogeneous planet. The
centrifugal acceleration, C, associated with the
planet’s rotation is directed normal to and away
from the rotation axis, and is to scale for the
planet Saturn. The combined gravitational and
centrifugal acceleration is shown as the heav-
ier vector, g. This vector is in the direction
of a plumb line, and defines vertical. A sur-
face that is normal to g similarly defines a level
surface, and has the approximate shape of an
oblate spheroid (the solid curve). The ellipse
of this diagram has a flatness F = 0.1 that ap-
proximates Saturn; for Earth, F = 0.0033.

that is directed towards the equator (except at the equator where the 3-d vector centrifugal force is906

vertical).23 Cφ is very small compared to g∗, Cφ/g∗ ≈ 0.002 at most, but it has been present since the907

Earth’s formation. A fluid can not sustain a shear without deforming, and over geological time this908

holds as well for the Earth’s interior and crust. Thus it is highly plausible that the Earth long ago settled909

into a rotational-gravitational equilibrium configuration in which this Cφ is exactly balanced by a910

component of the gravitational (mass) attraction that is parallel to the displaced surface and poleward,911

i.e., centripetal.912

To make what turns out to be a pretty rough estimate of the displaced surface, ηΩ, assume that the913

gravitational mass attraction remains that of a sphere and that the meridional slope (1/RE)∂ ηΩ/∂ φ914

times the gravitational mass attraction is in balance with the tangential component of the centrifugal915

force (Eqn. 71),916

g∗

RE

∂ η

∂ φ
= Ω2RE cosφ sinφ . (78)917

23Ancient critics of the rotating Earth hypothesis argued that loose objects on a spinning sphere should fly off into space,

which clearly does not happen. Even so, given the persistent centrifugal force due to Earth’s rotation it is plausible that we

might drift towards the equator. Alfred Wegner proposed just this as the engine of Earth’s moving continents, which may

have helped delay the acceptance of his otherwise remarkable inference that continents move (see D. McKenzie, ’Seafloor

magnetism and drifting continents’, in A Century of Nature, 131-137. Ed. by L. Garwin and T. Lincoln, The Univ. of Chicago

Press, Chicago, Il, 2003.).
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This may then be integrated with latitude to yield the equilibrium displacement,918

ηΩ(φ ) =

∫ φ

0

Ω2R2
E

g∗
cosφ sinφdφ

=
Ω2R2

E

2g∗
sinφ 2 + constant.

(79)919

When this displacement is added onto a sphere the result is an oblate (flattened) spheroid, Fig. (14),920

which is consistent qualitatively (but not quantitatively) with the observed shape of the Earth.24 A921

convenient measure of flattening is J = (Reqt −Rpol)/Reqt , where the subscripts refer to the equatorial922

and polar radius. Earth’s flatness is J = 0.0033, which seems quite small, but is nevertheless highly923

significant in ways beyond that considered here.25,26
924

Closely related is the notion of ’vertical’. A direct measurement of vertical can be made by means925

of a plumb line; the plumb line of a plumb bob that is at rest is parallel to the local gravity and defines926

the direction vertical. Following the discussion above we know that the time-independent, acceleration927

field of the Earth is made up of two contributions, the first and by far the largest being mass attraction,928

g∗, and the second being the centrifugal acceleration, C, associated with the Earth’s rotation, Fig. (14).929

Just as on the merry-go-round, this centrifugal acceleration adds with the gravitational mass attraction930

to give the net acceleration, called ’gravity’, g = g∗+C, a time-independent vector (field) whose931

direction is observable with a stationary plumb line and whose magnitude may be inferred by observing932

the period of small amplitude oscillations when the plumb bob is displaced and released, i.e., a933

pendulum. A surface that is normal to the gravitational acceleration vector is said to be a level surface934

in as much as the acceleration component parallel to that surface is zero. A resting fluid can sustain a935

24The idea behind Eqn. (79) is generally correct, but the calculation done here is incomplete. The pole-to-equator rise

given by Eqn. (79) is about 11 km whereas precise observations show that Earth’s equatorial radius, Reqt = 6378.2, is

greater than the polar radius, Rpol = 6356.7 km, by about 21.5 km. The calculation (79) is a first approximation insofar as it

ignores the gravitational mass attraction of the equatorial bulge, which is toward the equator and thus also has a centrifugal

component. Thus still more mass must be displaced equatorward in order to increase ηΩ enough to reach a rotational-

gravitational equilibrium, the net result being about a factor of two greater amplitude than Eqn. (79) indicates.

A comprehensive source for physical data on the planets is C. F. Yoder, ‘Astrometric and geodetic data on Earth and the

solar system,’ Ch. 1, pp 1–32, of A Handbook of Physical Constants: Global Earth Physics (Vol. 1). American Geophysical

Union (1995).
25To note just two: 1) Earth’s ellipsoidal shape must be accounted for in highly precise, long range navigation systems

(GPS), while shorter range or less precise systems can approximate the Earth as spherical. 2) Because the Earth is not

perfectly spherical, the gravitational tug of the Sun, Moon and planets can exert a torque on the Earth and thereby perturb

Earth’s rotation vector.20

26The flatness of a rotating planet is given roughly by J ≈ Ω2R/g. If the gravitational acceleration at the surface, g, is

written in terms of the planet’s mean radius, R, and density, ρ , then J = Ω2/( 4
3
πGρ), where G = 6.67×10−11 m3 kg−1 s−2 is

the universal gravitational constant. The rotation rate and the density vary a good deal among the planets, and consequently

so does J. The gas giant, Saturn, has a rotation rate a little more than twice that of Earth and a very low mean density, about

one eighth of Earth’s. The result is that Saturn’s flatness is large enough, J ≈ 0.10, that it can be discerned through a good

backyard telescope or in a figure drawn to scale, Fig. (14).
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normal stress, i.e., pressure, but not a shear stress. Thus a level surface can also be defined by observing936

the free surface of a water body that is at rest in the rotating frame.27 In sum, the measurements of937

vertical and level that we can readily make necessarily lump together gravitational mass attraction with938

the centrifugal force due to Earth’s rotation.939

4.2 The equation of motion for an Earth-attached reference frame940

Now we are going to apply the inference made above, that there exists a tangential component of941

gravitational mass attraction that exactly balances the centrifugal force due to Earth’s rotation and that942

we define vertical in terms of the measurements that we can readily make; thus943

g = g∗+ΩΩΩ×ΩΩΩ×X. (80)944

The equations of motion for a rotating/gravitating planet are then,945

dV′

dt
= −2ΩΩΩ×V′ +F′/M +g (81)946

which is Eqn. (2), at last! The happy result is that the rotating frame equation of motion applied in an947

Earth-attached reference frame does not include the centrifugal force associated with Earth’s rotation948

(and neither do we tend to roll towards the equator).949

Vector notation is handy for many derivations and for visualization, but when it comes time to do a950

calculation we will need the component-wise equations, usually Earth-attached, rectangular coordinates.951

The east unit vector is ex, north is ey, and the horizontal is defined by a tangent plane to Earth’s surface.952

The vertical direction, ez, is thus radial with respect to the (approximately) spherical Earth. The rotation953

vector ΩΩΩ makes an angle φ with respect to the local horizontal x′,y′ plane, where φ is the latitude of the954

coordinate system and thus955

ΩΩΩ = Ωcosφey +Ωsinφez.956

If V′ = u′ex + v′ey +w′ez, then the full, three-dimensional Coriolis force is957

−2ΩΩΩ×V′ = − (2Ωcosφw′−2Ωsinφv′)ex − 2Ωsinφu′ey + 2Ωcosφu′ez. (82)958

959

4.3 Coriolis force on motions in a thin, spherical shell960

Application to geophysical flows is made somewhat simpler by noting that large scale geophysical961

flows are very flat in the sense that the horizontal component of wind and current are very much larger962

27The ocean and atmosphere are not at rest, and the observed displacements of constant pressure surfaces, e.g., the sea

surface and 500 mb surface, are invaluable, indirect measures of that motion that may be inferred via geostrophy, Sec 5.
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than the vertical component, u′ ∝ v′ � w′, in part because the oceans and the atmosphere are quite thin,963

having a depth to width ratio of about 0.001. As well, the ocean and atmosphere are stably stratified in964

the vertical, which greatly inhibits the vertical component of motion. For large scale (in the horizontal)965

flows, the Coriolis term multiplying w′ in the x component of Eqn. (82) is thus very much smaller than966

the terms multiplied by u′ or v′ and as an excellent approximation the w′ terms may be ignored; very967

often they are ignored with no mention made. The Coriolis term that appears in the vertical component968

is usually much, much smaller than the gravitational acceleration, and it too is often dropped without969

mention. The result is the thin fluid approximation of the Coriolis force in which only the horizontal970

Coriolis force acting on horizontal motions is retained,971

−2ΩΩΩ×V′ ≈−f×V′ = f v′ex− f u′ey (83)972

where f = f ez, and f is the very important Coriolis parameter,973

f = 2Ωsinφ (84)974

and φ is the latitude. Notice that f varies with the sine of the latitude, having a zero at the equator and

maxima at the poles; f < 0 in the southern hemisphere. The horizontal, component-wise momentum

equations written for the thin fluid form of the Coriolis force are:

du

dt
= f v − g

∂ η

∂ x
dv

dt
= − f u − g

∂ η

∂ y

(85)

where the force associated with a tilted constant pressure surface is included on the right.28
975

For problems that involve parcel displacements, L, that are very small compared to the radius of976

the Earth, RE , a simplification of f itself is often appropriate. The Coriolis parameter may be expanded977

in a Taylor series about a central latitude φ0 where the north coordinate y = y0,978

f (y) = f (y0)+(y− y0)
d f

dy
|y0

+HOT. (86)979

If the second term involving the first derivative d f/dy = 2Ωcosφ/RE , often written as d f/dy = β , is980

demonstrably much smaller than the first term, which follows if L � RE , then the second and higher981

terms may be dropped to leave982

f = f (y0), (87)983

and thus f is taken as constant. This is called the f -plane approximation. While the f -plane984

approximation is very useful in a number of contexts, there is an entire class of low frequency motions985

28This system has what will in general be three unknowns: u, v and η . For now we will take η as known, i.e., the height

of the sea floor in Sec. 5. In a more comprehensive fluid model, η may be connected to the flow by the continuity equation

that we will come to in Part 2.
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known as Rossby waves that go missing and which are of great importance for the real atmosphere and986

ocean. We will come to this phenomena in Part 3 by keeping the second order term of (86), and thus987

represent f (y) by988

f (y) = f (y0)+β(y− y0), (88)989

often called a β -plane approximation.990

4.4 One last look at the inertial frame equations991

We have noted that the rotating frame equation of motion has some inherent awkwardness, viz., the loss992

of Galilean invariance and global momentum conservation that accompany the Coriolis force. Why,993

then, do we insist upon using the rotating frame equations for nearly all of our analyses of geophysical994

flow?995

The reasons are several, any one of which would be compelling, but beginning with the fact that996

the definition and implementation of an inertial frame (outside of the Earth) is simply not a viable997

option; whatever conceptual clarity might be gained by avoiding the Coriolis force would be more than998

offset by difficulty with observation. Consider just one aspect of this: the inertial frame velocity,999

V = VΩ +V′, (89)1000

is dominated by the planetary velocity due to the solid-body rotation VΩ = ΩREcosφ , where RE is1001

earth’s nominal radius, 6365 km, and thus VΩ ≈ 450 m s−1 near the equator. A significant wind speed at1002

mid-level of the atmosphere is V ′ ≈ 30 m s−1 (the westerlies of Fig. 2) and a fast ocean current is1003

V ′ ≈ 1 m s−1 (the western boundary current of Fig. 1). An inertial frame description must account for1004

VΩ and the associated, very large centripetal force, and yet our interest is almost always the1005

comparatively small relative motion of the atmosphere and ocean, V′, since it is the relative motion that1006

transports heat and mass over the Earth. In that important regard, the planetary velocity VΩ is invisible1007

to us Earth-bound observers, no matter how large it is. To say it a little differently — it is the relative1008

velocity that we measure when observe from Earth’s surface, and it is the relative velocity that we seek1009

to know for almost every practical purpose. The Coriolis force follows.1010

The reservations regards practical use of the inertial frame equations apply mainly to observations.1011

Given that we presume to know exactly the centripetal force required to balance the planetary velocity,1012

then in principle a calculation based upon the inertial frame equations should be quite doable. To1013

illustrate this, and before we turn away completely and finally from the inertial frame equations, it is1014

instructive to analyze some very simple motions using the inertial frame, spherical equations of motion1015

(Sec. 3.4). This is partly repetitious with the discussions of Secs. 3.2 and 3.3. It will differ importantly1016

insofar as the setting will be a rotating planet, Fig. (15). As before we will analyze the motion of a1017

single parcel, but just for the sake of visualization it is helpful to imagine that this parcel is part of a1018

torus of fluid, Fig. (15), that encircles a rotating planet. It is presumed that the torus will move in a1019

completely coherent way, so that the motion of any one parcel will be the same as all other parcels.1020
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Figure 15: A schematic showing a ro-
tating planet and an encircling tube
of fluid whose motion includes a ro-
tation at the same rate as the under-
lying planet, i.e., a planetary veloc-
ity. A single parcel whose motion is
identical with the tube at large is de-
noted by the red dot. This analysis
will use spherical coordinates, Sec.
3.4. Here the radial distance from
the center will be written r = R + z,
where z � R. Not shown here is the
longitude (or azimuth) coordinate, λ ,
which is the same as in the spherical
system.

The only two forces acknowledged here will be gravity, certainly in the vertical component, and1021

also the horizontal gravitational acceleration associated with Earth’s oblate figure (equatorial bulge).1022

The basic state velocity is that due to planetary rotation, Uλ = (R+ z)cosφΩ and which is azimuthal, or1023

eastward. With these in mind, the inertial frame, spherical system equations of motion are:1024

1

(R+ z)cos φ

dLλ

dt
= 0, (90)1025

1026

1

(R+ z)

dLφ

dt
− Cλ sinφ = − (R+ z)cosφΩ2 sinφ , (91)1027

1028

d2z

dt2
+ Cλ cosφ +Cφ = −g. (92)1029

Northward motion: For the first example, presume that the parcel stays in contact with a frictionless1030

planet so that r = R and constant. The longitudinal angular velocity may be written1031

dλ

dt
= Ω+

dλ ′

dt
1032

and the tangential or λ -component angular momentum is1033

Lλ = (Rcosφ )2(Ω+
dλ ′

dt
).1034
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The λ component equation of motion (Eqn. 67) is just conservation of this angular momentum,1035

dLλ

dt
= 0,1036

and hence1037

−2Rsinφ
dφ

dt
(Ω+

dλ ′

dt
) + Rcosφ

d2λ ′

dt2
= 0.1038

Factoring out the Ω term and moving it to the right gives,1039

1

Rcosφ

dL′
λ

dt
= 2ΩsinφRcosφ

dφ

dt

= fUφ ,

(93)1040

which is the corresponding rotating frame equation of motion. But the inertial frame interpretation is1041

via angular momentum conservation: as the parcel (or torus) moves northward, dφ/dt ≥ 0 say, it1042

acquires some positive or eastward L′
λ specifically because the perpendicular to the rotation axis, b,1043

shrinks northward. The initial angular momentum includes a very large (dominant) contribution from1044

the Earth’s rotation, i.e., Ω � dλ ′/dt. You may very well feel that the inertial frame derivation is based1045

upon much more familiar, ’physical’ principles than is the rotating frame version. However, the1046

inference of an eastward relative acceleration associated with northward motion is exactly the same1047

from both perspectives, as it should be.1048

Eastward motion: The inertial frame φ component equation of motion includes a significant1049

contribution from the planetary velocity and centripetal force; if in steady state, assuming that U ′
φ = 01050

for the moment, then Eqn. (68) is just,1051

−Cλ sinφ = Fφ

= −RcosφΩ2 sinφ ,
(94)1052

a steady balance between the φ component of the centripetal acceleration and the centripetal force1053

associated with the equatorial bulging noted in Sec. 4.1. Now suppose that there is comparatively small1054

relative λ component velocity so that1055

dλ

dt
= Ω +

dλ ′

dt
1056

and substitute into the φ component equation of motion, Eqn. (68),1057

1

r

dLλ

dt
+ Rcosφ (Ω2 +2Ω

dλ ′

dt
+ (

dλ ′

dt
)2)sinφ = −RcosφΩ2 sinφ .1058

Rearranging and moving the 2Ω term to the right side yields1059

1

R

dL′
λ

dt
− C′

λ sinφ = 2ΩsinφRcosφ
dφ ′

dt

= fU ′
φ .

(95)1060
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Again, this is the rotating frame equivalent. A significant difference with the example of northward1061

motion noted above is that the induced acceleration comes from an out-of-balance centripetal force and1062

acceleration. As in the previous case, the basic state is that due to Earth’s rotation and resulting1063

gravitational-rotational equilibrium.1064

Vertical motion: Imagine a parcel that is released from (relative) rest at a height h and allowed to free1065

fall. The initially purely vertical motion has no appreciable consequences for either the φ or r1066

component equations of motion, but it does appear in the λ component equation multiplied by Ω (Eqn.1067

67). The vertical acceleration, ignoring air resistance is just1068

d2z

dt2
= −g, (96)1069

with g the presumed constant acceleration of gravity, 9.8 m sec−2. Integrating once to find the vertical1070

velocity, w = −gt, and once more for the displacement, z = h−1/2gt2. The time of flight is just1071

T =
√

2h/g.1072

The only force acting on the parcel is the radial force of gravity, and hence the parcel will conserve1073

angular momentum. The λ -component angular momentum conservation, Eqn. (67), is then just1074

d

dt

(

(R + z)2 cos2 φ (Ω +
dλ ′

dt
)

)

= 0. (97)1075

Expanding the derivative and cancelling terms gives1076

2
dz

dt
cosφ (Ω+

dλ ′

dt
)+(R+ z)cosφ

d2λ ′

dt2
= 01077

Rewriting in terms of u′ = Rcosφ dλ ′

dt
and w′ = dz

dt
and assuming that z is O(100), then z � R, and the1078

relative speed u′ is very, very small compared to the planetary rotation speed, u′ � ΩR. To an excellent1079

approximation Eqn. (97) is1080

du′

dt
≈−2Ωcosφw′. (98)1081

Thus, as the parcel falls, w′ ≤ 0, and moves into orbit closer to the rotation axis, it is accelerated to the1082

east at a rate that is proportional to twice the rotation rate Ω and the cosine of the latitude. Viewed from1083

an inertial reference frame, this eastward acceleration is the expected consequence of angular1084

momentum conservation, where the angular momentum is that due to planetary rotation. The1085

complementary rotating frame description of this motion is that eastward acceleration is due to the1086

Coriolis force acting upon the relative vertical velocity.1087

4.5 Problems1088

(1) The rather formal notions of vertical and level raised in Sec. 4.2 turned out to have considerable1089

practical importance beginning on a sweltering August afternoon when the University Housing1090



4 A REFERENCE FRAME ATTACHED TO THE ROTATING EARTH 50

Office notified your dear younger brother, GG Jr., that because of an unexpectedly heavy influx of1091

freshmen, his old and comfortable dorm room was not going to be available. As a consolation,1092

they offered him the use of the merry-go-round (the one in Section 3.3, and still running) at the1093

local, failed amusement park just gobbled up by the University. He shares your enthusiasm for1094

rotation and accepts, eagerly. The centrifugal force, amusing at first, was soon a huge annoyance.1095

GG suffered from recurring nightmares of sliding out of bed and over a cliff. Something had to be1096

done, so you decide to build up the floor so that the tilt of the floor, combined with gravitational1097

acceleration, would be just sufficient to balance the centrifugal force, as in Eqn. (78). What shape1098

η(r) is required, and how much does the outside edge (r = 6 m, Ω = 0.5 rad s−1) have to be built1099

up? How could you verify success? Given that GG’s bed is 2 m long and flat, what is the axial1100

traction, or tidal force? Is the calibration of a bathroom scale effected? Guests are always1101

impressed with GG’s rotating dorm room, and to make sure they have the full experience, he sends1102

them to the refrigerator for another cold drink. Describe what happens next using Eqn. (81). Is1103

their experience route-dependent?1104

(2) In most of what follows the Coriolis force will be represented by the thin fluid approximation Eqn.1105

(83) that accounts only for the horizontal Coriolis force due to horizontal velocity. This horizontal1106

component of the Coriolis force is proportional to the Coriolis parameter, f , and thus vanishes1107

along the equator. This is such an important and striking result that it can be easy to forget the1108

three-dimensional Coriolis force. Given an eastward and then a northward relative velocity, make1109

a sketch that shows the 3-d Coriolis force at several latitudes including the pole and the equator1110

(and recall Fig. 8), and resolve into (local) horizontal and vertical components. The vertical1111

component of the Coriolis force is negligible for most geophysical flow phenomenon, but is of1112

considerable importance for gravity mapping, where it is called the Eotvos effect (see1113

http://en.wikipedia.org/wiki/Eotvos effect (you may have to type this into your web browser)), and1114

has at least a small effect on the motion of some projectiles.1115

(3) Consider the Coriolis deflection of a long-range rifle shot, say range is L = 1 km and with a1116

trajectory that is nearly flat. Assuming mid-latitude; estimate the horizontal deflection and show1117

that it is given by δ y ≈ δ t f L/2, where δ t is the time of flight, 2 sec. Show that the vertical1118

deflection is similar and given approximately by δ z ≈ δ t fvert L cos(ψ)/2, where fvert = 2Ωcosφ1119

and ψ is the direction of the projectile motion with respect to east (north is π/2). How do these1120

deflections vary with latitude, φ , and with the direction, ψ?1121

(4) The effect of Earth’s rotation on the motion of a simple (one bob) pendulum, called a Foucault1122

pendulum in this context, is treated in detail in many physics texts, e.g. Marion6, and need not be1123

repeated here. Foucault pendulums are commonly displayed in science museums, though seldom1124

to large crowds (see The Prism and the Pendulum by R. P. Crease for a more enthusiastic1125

appraisal). It is, however, easy and fun (!) to make and observe your own Foucault pendulum,1126

nothing more than a simple pendulum having two readily engineered properties. First, the1127

e-folding time of the motion due to frictional dissipation must be long enough that the precession1128

will become apparent before the motion dies away, 20 min will suffice at mid-latitudes. This can1129

be achieved using a dense, smooth and symmetric bob having a weight of about half a kilogram or1130

more, and suspended on a fine, smooth monofilament line. It is helpful if line is several meters or1131

more in length. Second, the pendulum should not interact appreciably with its mounting. This is1132

harder to evaluate, but generally requires a very rigid support, and a bearing that can not exert1133

appreciable torque, for example a fish hook bearing on a very hard steel surface. The precession is1134

easily masked by any initial motion you might inadvertently impose, but after several careful trials1135
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you will very likely begin to see the Earth rotate under your pendulum. Can you infer your latitude1136

from the observations? The rotation effect is proportional to the rotation rate, and so you should1137

plan to bring a simple and rugged pocket pendulum (a rock on a string will do) on your1138

merry-go-round ride (Section 3.2). How do your observations (even if qualitative) compare with1139

your solution for a Foucault pendulum? (Hint - consider the initial condition.)1140

(5) In Sec. 4.4 we used the spherical system equations of motion as the starting point for an analysis of1141

some simple motions. The spherical system is an acquired taste, which I am betting you have not1142

acquired. There is a simpler way to come to several of the results of that section that you may find1143

more appealing. When observed from an inertial reference frame, the eastward velocity of the1144

parcel is U = Ωb+u′ where b = (R+ z)cos φ is the perpendicular distance to the rotation axis.1145

The parcel has angular momentum associated with this eastward velocity, L = Ub. For what1146

follows here we can think of the angular momentum as a scalar. Presume that the parcel motion is1147

unforced, aside from gravity. Show that conservation of this angular momentum under changing φ1148

and z leads immediately to the inference of a Coriolis force. In fact, you can think of this as your1149

(partial) derivation of the Coriolis force (partial since it does not include the planetary centripetal1150

acceleration, the second case considered in Sec. 4.4).1151

(6) It is interesting (though not entirely relevant to what follows) to finish the calculation of Sec. 4.41152

involving vertical motion. Show that an object dropped from rest will be displaced eastward by1153

δ x ≈ 1
3
Ωsinφ

√

8h3

g
(northern hemisphere). Show that an object shot upwards with an initial1154

vertical velocity equal to the final vertical velocity of the previous problem will be, at apogee,1155

displaced by −2δ x, i.e., westward. Finally, if shot upward and allowed to fall back to the ground,1156

the net displacement will be −4δ x. Explain why these displacements do not simply add up.1157

5 A dense parcel released onto a rotating slope with friction1158

The second goal of this essay is to begin to understand the consequences of rotation for the atmosphere1159

and ocean. As already noted in Sec. 1, the consequences of rotation are profound and wide ranging and1160

will likely be an enduring topic of your study of the atmosphere and ocean. In this section we can take a1161

rewarding and nearly painless first step toward understanding the consequences of rotation by analyzing1162

the motion of a dense parcel that is released onto a rotating, sloping sea floor. This simple problem1163

serves to illustrates two fundamental modes of the rotating momentum equations — inertial motion and1164

geostrophic motion — that will recur in much more comprehensive models and in the real atmosphere1165

and ocean.1166

The sea floor is presumed to be at a depth z = −b(y) that increases uniformly in the y direction as1167

db/dy = α, a small positive constant, O(10−2). The fixed buoyancy of the parcel is g′ = −g
δρ
ρo

, where1168

δ ρ is the density anomaly of the parcel with respect to its surroundings, say 0.5 kg m−3, and ρo is a1169

nominal sea water density, 1030 kg m−3. (Notice that a prime superscript is used here to denote1170

buoyancy, or reduced gravity. The prime previously used to indicate rotating frame velocity will be1171

omitted, with rotating frame understood.) The component of the buoyancy parallel to the sea floor, g′α,1172
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thus provides a constant force (per unit mass, understood from here on) in the y direction. Absent1173

rotation, the parcel would accelerate down hill in the positive y direction. With rotation, the parcel1174

velocity V will be significantly altered in a time Tr in the scale analysis sense (rough magnitude only)1175

that1176

f V Tr ≈ V1177

and hence1178

Tr =
1

f
(99)1179

The important time scale 1/ f is dubbed the rotation time. For a mid-latitude, 1/ f ≈ 4 hours. In other1180

words, for rotation to be of first order importance, the motion has to persist for several hours or more.1181

Thus the flight path of a golf ball (requiring about 3 seconds) is very little affected by Earth’s rotation1182

when compared to other curves and swerves, and as we knew from a more detailed calculation in Sec. 3.1183

Given that the motion will be nearly horizontal and that we seek the simplest model, rotation will be1184

modeled by the thin fluid form of the Coriolis force, and the Coriolis parameter f will be taken as1185

constant (the f -plane approximation).1186

Since the parcel is imagined to be in contact with the bottom, it is plausible that the momentum1187

balance should include bottom friction. Here the bottom friction will be represented by the simplest1188

linear (or Rayleigh) law in which the friction is presumed to be proportional to and antiparallel to the1189

velocity difference between the parcel velocity and the bottom, i.e., bottom friction = −r(V−Vbot).1190

The ocean bottom is at rest in the rotating frame and hence Vbot = 0 and omitted from here on. From1191

observations of ocean density currents (looking ahead to Fig. 16), a reasonable order of magnitude of1192

the friction coefficient is r = O(10−5) s−1.29
1193

The equations of motion for the parcel including rotation and this simplified bottom friction are1194

d2x

dt2
=

du

dt
= f v− ru, (100)1195

d2y

dt2
=

dv

dt
= − f u− rv+g′α,1196

with vector equivalent,1197

dV

dt
=− f k×V− rV+g′∇b. (101)1198

29This use of a linear friction law is purely expedient. A linear friction law is most appropriate in a viscous, laminar

boundary layer that is in contact with a no-slip boundary. In that case τ = µ ∂U
∂ z

within the laminar boundary layer, where µ

is the viscosity of the fluid. However, the laminar boundary layer above a rough ocean bottom is very thin, O(10−3) m, and

above this the flow will in general be turbulent. If the velocity that is used to estimate or compute friction is measured or

computed within the much thicker turbulent boundary layer, as it almost always has to be, then the friction law is likely better

approximated as independent of the viscosity and quadratic in the velocity, i.e., τ = ρCdU2, where Cd is the drag coefficient.

Typically, Cd = 1−3×10−3, but depending upon bottom roughness, mean speed, and more.
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Initial conditions on the position and the velocity components are1199

x(0) = X0, y(0) = Yo and u(0) = Uo, v(0) = 0. (102)1200

In most of what follows we will presume Uo = 0. Integrating once gives the solution for the velocity1201

components,1202

u(t) =
g′α

r2 + f 2
[ f − exp(−rt)( f cos(− f t)− r sin(− f t))] , (103)1203

v(t) =
g′α

r2 + f 2
[r− exp (−rt)( f sin (− f t)+ r cos(− f t))] .1204

If the position (trajectory) is required, it may be computed by integrating the velocity1205

x(t) = Xo +
∫ t

0
udt and y(t) = Yo +

∫ t

0
vdt,1206

and if the depth is required,1207

z(t) = Zo−αy(t).1208

5.1 The nondimensional equations; Ekman number1209

The solution above is simple by the standards of fluid dynamics, but it does contain three parameters1210

along with the time, and so has a fairly large parameter space. We will consider a couple of specific1211

cases motivated by observations, but our primary intent is to develop some understanding of the effects1212

of rotation and friction over the entire family of solutions. How can the solution be displayed to this1213

end?1214

A very widely applicable approach is to rewrite the governing equations and (or) the solution using1215

nondimensional variables. This will serve to reduce the number of parameters to the fewest possible1216

while retaining everything that was present in the dimensional equations. Lets start with the1217

x-component momentum equation, and hence u will be the single dependent variable and it has units1218

length and time, l and t. Time is the sole independent variabil, and obviousl its units are em t. There are1219

three independent parameters in the problem; 1) the buoyancy and bottom slope, g′α, which always1220

occur in this combination and so count as one parameter, an acceleration with units l and t and1221

dimensions l t −2. 2) the Coriolis parameter, f , an inverse time, dimensions t−1, and 3) the bottom1222

friction coefficient, r, also an inverse time scale, t−1. Thus there are five variables or parameters having1223

two fundamental units. Because we anticipate that rotation will be of great importance in the parameter1224

space of most interest, the inverse Coriolis parameter or rotation time, will be used to scale time, i.e.,1225

t∗ = t f . You can think of this as measuring the time in units of the rotation time. A velocity (speed)1226

scale is then estimated as the product of this time scale and the acceleration g′α,1227

Ugeo =
g′α

f
(104)1228
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the very important geostrophic speed. Measuring the velocity in these units then gives the1229

nondimensional velocity, u∗ = u/Ugeo and similarly for the v component. Rewriting the governing1230

equations in terms of these nondimensional variables1231

du∗

dt∗
= v∗ − Eu∗, (105)1232

dv∗

dt∗
= −u∗ − Ev∗ + 1, (106)1233

where E is the Ekman number,1234

E =
r

f
(107)1235

the nondimensional ratio of the friction parameter to the Coriolis parameter. There are other forms of1236

the Ekman number that follow from different forms of friction parameterization. They all have in1237

common that small E indicates small friction compared to rotation. The initial condition is presumed to1238

be a state of rest, u∗(0) = 0, v∗(0) = 0 and the solution of these equations is1239

u∗(t∗) =
1

1+E2
[1− exp(−Et∗)(cos(−t∗)−E sin (−t∗))] , (108)1240

v∗(t∗) =
1

1+E2
[E − exp (−Et∗)(sin (−t∗)+E cos(−t∗))] ,1241

and for completeness,1242

t∗ = t f , Ugeo =
g′α

f
, u∗ =

u

Ugeo
and v∗ =

v

Ugeo
.1243

The geostrophic scale Ugeo serves only to scale the velocity amplitude, and thus the parameter space of1244

this problem has been reduced to a single independent, nondimensional variable, t∗, and one1245

nondimensional parameter E.30
1246

The solution Eqn. (108) can be written as the sum of a time-dependent part, termed an inertial1247

motion (or just as often, inertial ’oscillation’) that is here damped by friction,1248

[

u∗

v∗

]

i

= −
exp(−Et∗)

1+E2

[

cos(−t∗)−Esin(−t∗)

sin(−t∗)+Ecos(−t∗)

]

, (109)1249

and a time-independent motion that is the single parcel equivalent of geostrophic motion1250

[

u∗

v∗

]

g

=
1

1+E2

[

1

E

]

, (110)1251

30On first encounter, this kind of dimensional analysis is likely to seem abstract, arbitrary and abstruse, i.e., far more

harmful than helpful. The method and the benefits of dimensional analysis will become clearer with experience, mainly, and

an attempt to help that along is ‘Dimensional analysis of models and data sets’, by J. Price, Am. J. Phys., 71(5), 437–447

(2003) and available online in an expanded version linked in footnote 12.
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also damped by friction. Since the IC was taken to be a state of rest, Uo = 0, the dimensional amplitude1252

is directly proportional to the geostrophic velocity scale, Ugeo. Since the model and solution are linear,1253

the form of the solution does not change with Ugeo.1254

Our discussion of the solution will generally refer to the velocity, Eqns. (109) and (110), which are1255

simple algebraically. However, the solution is considerably easier to visualize in the form of the parcel1256

trajectory, computed by integrating the velocity in time (Fig. 16, left, and see the embedded animation1257

or better, run the script partslope.m to make your own).1258

Immediately after the parcel is released from rest it accelerates down the slope. The Coriolis force1259

acts to deflect the moving parcel to the right, and by about t = 1/ f , or t∗ = 1, the parcel has been turned1260

by 1 radian, or about 50◦, with respect to the buoyancy force. The time required for the Coriolis force to1261

have an appreciable effect on a moving object is thus 1/ f , the very important rotation time scale noted1262

previously. The Coriolis force continues to turn the parcel to the right, and by about t∗ = π the parcel1263

velocity is directed up the slope. If E = 0 and there is no friction, the parcel will climb back to its1264

starting depth at t∗ = 2π (or t = 2π/ f ) where it will stop momentarily, before repeating the cycle. In the1265

meantime it will have moved a significant distance along the slope. When friction is present, 0 < E < 1,1266

the parcel still makes at least a few oscillations up and down slope, but with decreasing amplitude with1267

time, and will gradually slide down the slope. The clockwise-turning looping motion is associated with1268

near-inertial motion Eqn. (109) and the steadily growing displacement along the slope, in the positive x1269

direction mainly, is associated with quasi-geostrophic motion, Eqn. (110). In fact, these specific1270

trajectories may be viewed as nothing but the superposition of inertial and geostrophic motion, damped1271

by friction when E > 0.1272

5.2 (Near-) Inertial motion1273

In Eqn. (109) we already have a solution for inertial motion, but it is helpful to take a step back to the

dimensional form of the momentum equations, (4.3) and point out the subset that supports pure inertial

motion:
du

dt
= f v

dv

dt
= − f u

(111)

The Coriolis force can not generate a velocity, and so to get things started we have to posit an initial1274

velocity, u(t = 0) = Uo and v(t = 0) = 0. The solution is pure inertial motion,1275

u = Uo cos(− f t), and v = Uo sin(− f t), (112)1276

which is the free mode of the f-plane momentum equations, i.e., when the Coriolis force is left on it its1277

own. The speed of a pure inertial motion is constant in time, and the velocity vector rotates at a steady1278
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Figure 16: (left) Trajectories of three dense parcels released from rest onto a rotating slope. The buoy-
ancy force is toward positive y (up in this figure). These parcels differ by having rather large friction
(blue trajectory, E = r/ f = 0.25), moderate, more or less realistic friction (green trajectory, E = 0.05)
and no friction at all (red trajectory, E = 0). The elapsed time in units of inertial periods, 2π/ f , is at up-
per left. At mid-latitude, an inertial period is approximately one day, and hence these trajectories span a
little more than one week. The along- and across-slope distance scales are distorted by a factor of almost
10 in this plot, so that the blue trajectory having E = 0.25 makes a much shallower descent of the slope
than first appears here. Notice that for values of E � 1 (red and green trajectories), the motion includes
a looping inertial motion, and a long-term displacement that is more or less along the slope, the analog
of geostrophic motion. This is presumed to be a northern hemisphere problem, f > 0, so that shallower
bottom depth is to the right when looking in the direction of the long-term motion. Experiments that test
different r or different initial conditions may be carried out via the Matlab script partslope.m (linked in
Sec. 6.3). (right) The time-mean horizontal velocity (the dotted vector) and the time-mean force balance
(solid arrows) for the case E = 0.25 (the blue trajectory). The Coriolis force (/M) is labeled −f×V. The
angle of the velocity with respect to the isobaths is E = r/ f , the Ekman number.
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rate f = 2Ωsinφ in a direction opposite the rotation of the reference frame, Ω; inertial rotation is1279

clockwise in the northern hemisphere and anti-clockwise in the southern hemisphere.1280

Inertial motion is a striking example of the non-conservation property inherent to the rotating1281

frame equations: the velocity of the parcel is continually accelerated (deflected) with nothing else1282

showing a reaction force; i.e., there is no evident physical cause for this acceleration, and global1283

momentum is not conserved.31, 32
1284

The trajectory of a pure inertial motion is circular (Fig. 11),1285

x(t) =
∫

u(t)dt =
Uo

f
sin (− f t), (113)1286

y(t) =
∫

v(t)dt = −
Uo

f
cos(− f t), (114)1287

up to a constant. The radius of the circle is r =
√

x2 + y2 = |Uo | / f . A complete orbit takes time1288

2π/ f , a so-called inertial period: just a few minutes less than 12 hrs at the poles, a little less than 24 hrs1289

at 30 N or S, and infinite at the equator. (Infinite is, of course, unlikely physically, and suggests that1290

something more will arise on the equator; more on this below). Though inertial motion rotates in the1291

sense opposite the reference frame, it is clearly not just a simple rotation of the inertial frame solution1292

(cf., Fig. 11). In most cases (equator aside) the displacement associated with an inertial motion is not1293

large, typically a few kilometers in the mid-latitude ocean. Inertial motion thus does not, in general,1294

contribute directly to what we usually mean by ’circulation’, viz., significant transport by fluid flow.1295

The centripetal acceleration associated with circular, inertial motion is −U2
o /r (Fig. 10). This1296

centripetal acceleration is provided by the Coriolis force, and hence the radial momentum balance of1297

this pure inertial motion is just1298

−U2
o

r
= fUo. (115)1299

31To discern a physical cause of inertial motion we could analyze the inertial frame equivalent motion as in Sec. (3.4),

a combination of angular momentum conservation (northward relative motion) and the slightly out of balance centripetal

acceleration (eastward relative motion). See also D. R. Durran, ‘Is the Coriolis force really responsible for the inertial

oscillation?’ Bull. Am. Met. Soc., 74(11), 2179–2184 (1993).
32The Coriolis force is isomorphic to the Lorentz force, qV×B, on a moving charged particle having charge q and mass M in

a magnetic field B. The charged particle will be deflected into a circular orbit with the cyclotron frequency, qB/M, analogous

to an inertial oscillation at the frequency f . A difference in detail is that geophysical flows are generally constrained to

occur in the local horizontal plane, while a charged particle may have an arbitrary three dimensional velocity with respect

to B. What happens when V is parallel to B? Where on Earth does it happen that V (a horizontal current) may be parallel

to Ω? Still another example of such a force law comes from General Relativity which predicts that a rotating object will be

accompanied by a gravitomagnetic field that gives rise to a Coriolis-like gravitational force on moving objects. The Gravity

Probe B mission, one of the most challenging physics experiments ever conducted, has apparently confirmed the presence of

a gravitomagnetic field around Earth, see http://einstein.stanford.edu/
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Figure 17: Ocean currents measured at a depth of 25 m by a current meter deployed southwest of
Bermuda. The time scale is inertial periods, 2π/ f , which are nearly equal to days at this latitude. Hurri-
cane Felix passed over the current meter mooring between 1 < t/(2π/ f ) < 2 and the strong and rapidly
changing wind stress produced energetic, clockwise rotating currents within the upper ocean. (a) East
and north current components. Notice that the maximum north leads maximum east by about a quarter
inertial period, and hence the velocity vector is rotating clockwise. (b) Current vectors, with north ’up’.
To a first approximation the fluctuating current seen here is an inertial motion, specifically, an inertial
oscillation. A refined description is to note that it is a near-inertial oscillation; the frequency is roughly
5% percent higher than f and the amplitude e-folds over about 10 days (by inspection). These small
departures from pure inertial are indicative of wave-like dynamics considered in Part 2. (c) Acceleration
estimated from the current meter data as dV′/dt +2ΩΩΩ×V′, as if the measurements were made on a spe-
cific parcel. The large acceleration to the west northwest corresponds in time to the passage of Felix and
the direction of the estimated acceleration is very roughly parallel to the wind direction (not shown here).
Notice the much smaller oscillations of the acceleration having a period of about 0.5 inertial periods
(especially the last several inertial periods). These are likely due to pressure gradients associated with
the semidiurnal tide. This is a small part of the data described in detail by Zedler, S.E., T.D. Dickey, S.C.
Doney, J.F. Price, X. Yu, and G.L. Mellor, ’Analysis and simulations of the upper ocean’s response to Hur-
ricane Felix at the Bermuda Testbed Mooring site: August 13-23, 1995’, J. Geophys. Res., 107, (C12),
25-1 - 25-29, (2002), available online at http://www.opl.ucsb.edu/tommy/pubs/SarahFelixJGR.pdf.
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Interestingly, there are two quite different flows that are consistent with a single parcel undergoing1300

inertial motion given by Eqns. (114) and (115): 1) a vortical inertial motion associated with a steady,1301

anticyclonic eddy (or vortex), and 2) a time-dependent but spatially quasi-homogeneous inertial1302

oscillation. To treat either of these at a useful depth will require a more comprehensive two-dimensional1303

fluid model that we will come to in Part 2.33 For now, suffice it to say that vortical inertial motion is1304

very rarely (never ?) observed in the ocean or atmosphere, while near-inertial oscillations are very1305

widely observed in the upper ocean following a sudden shift in the wind speed or direction, (Fig. 17).1306

Observed near-inertial oscillations differ from pure inertial motion in that their frequency is usually1307

slightly higher than f or ’blue shifted’. As we will see in Part 2, near-inertial oscillations may be1308

thought of as the long wave length limit of gravity waves in the presence of rotation (inertial-gravity1309

waves) and the slight blue shift is characteristic of the gravity wave dynamics. The amplitude of1310

observed near-inertial oscillations also changes with time; in the case of Fig. (17), the current amplitude1311

e-folds in about one week following the very strong, transient forcing caused by a passing hurricane.1312

This decay is likely a consequence of energy dispersion in space by wave propagation, and probably not1313

the local dissipation process modeled here as −rV.1314

5.3 (Quasi-) Geostrophic motion1315

The long-term displacement of the parcel is associated with the time-independent part of the solution,1316

Eqn. (110), which is the parcel equivalent of damped, geostrophic motion. Again it is helpful to take a1317

short step back to the dimensional momentum equations (Sec. 4.3) and point out the subset that1318

supports pure geostrophic motion, r = 0 and d/dt = 0, in which case the x-momentum equation1319

vanishes term by term, and the y-component is algebraic,1320

0 = − f u+g′α (116)1321

where we have assumed reduced gravity and in this case α = ∂ η/∂ y. Thus pure geostrophic motion is1322

in the x-direction only,1323

u =
g′α

f
,1324

33A preview. The d( )/dt of Eqn. (111) is time rate of change following a given parcel and is thus Lagrangian. In order to

discern the difference between a vortical inertial motion and an inertial oscillation we would need to compute trajectories of

some additional, different parcels, but there is presently no clear motivation for proceeding that way. Analysis in an Eulerian

frame is helpful: the time derivative is then d( )/dt = ∂ ( )/∂ t + V.∇( ), a local time rate of change and an advective rate

of change. If the balance is between the local time rate change and the Coriolis force, then the solution will be a spatially

homogeneous inertial oscillation. If the balance is between the advective rate of change and the Coriolis force, then the

solution will be a steady, spatially-dependent vortical inertial motion. A map of the velocity field would be completely

different in these two flows, and yet the trajectory af a given parcel may be identical, Eqn. (114).
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which is the geostrophic velocity scale, Ugeo. In a more general vector form, good for any steady,1325

horizontal force G,1326

Vgeo =−
1

ρo f
k×G (117)1327

where k is the vertical unit vector. In practice we usually reserve the distinction ’geostrophic’ for the1328

case that the force is a horizontal pressure gradient, G = −∇P or equivalently a geopotential gradient,1329

∝ −g∇η . If the force is the vertical divergence of a horizontal wind stress, G = ∂ τ/∂ z, then the steady1330

velocity is often termed an Ekman velocity.1331

Simple though (117) is, there are several important points to make regarding geostrophy:1332

1) Perhaps the key point is that when the Coriolis force is present along with a persistent1333

applied force, there can exist (likely will exist) a steady velocity that is perpendicular to the1334

applied force provided that the forcing persists for a sufficient time, several or more rotation1335

times. Looking in the direction of the applied force, Vgeo is to the right in the northern1336

hemisphere, and to the left in the southern hemisphere.1337

2) For a given G, the geostrophic wind or current goes as 1/ f , and hence will be larger at a1338

lower latitude. Clearly something beyond pure geostrophy will be important on or very near1339

the equator where f = 0. With that important proviso, we can use Eqn. (117) to evaluate the1340

surface geostrophic current that is expected to accompany the tilted sea surface of Fig. (1)1341

outside of a near-equator zone, say ±5 degrees of latitude.1342

3) A pure geostrophic balance is sometimes said to be degenerate, insofar as it gives no clue1343

to either the origin of the motion or to the future evolution of the motion. Some other1344

dynamics has to be added before these crucial aspects of the flow can be addressed.1345

Nevertheless, geostrophy is a very important and widely used diagnostic relationship as1346

noted above, and is the starting point for more comprehensive models.1347

4) An exact instantaneous geostrophic balance does not hold, in general, even in the1348

idealized case, E = 0, because of nearly ubiquitous inertial motions. However, if we are able1349

to time-average the motion over a long enough interval that the oscillating inertial motion1350

may be averaged out, then the remaining, time-average velocity will be closer to geostrophic1351

balance. Said a little differently, geostrophic balance may be present on time-average even if1352

not instantaneously.1353

5) Because geostrophic motion may be present on long-term average (unlike inertial motion),1354

the parcel displacements and transport associated with geostrophic motion may be very large.1355

Thus, geostrophic motion makes up most of the circulation of the atmosphere and oceans.1356
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An exact geostrophic balance is an idealization (albeit a very useful one) insofar as many processes1357

can cause small departures, e.g., time dependence, advection, friction, and more. In the parcel on a1358

slope experiments we can see that quasi-geostrophy, a phrase often used to mean near-geostrophy, will1359

hold provided that the applied force varies slowly compared to the rotation time scale, 1/ f , and that the1360

Ekman number is not too large, say E ≤ 0.1, which commonly occurs. Aside from the startup transient,1361

the former condition holds exactly in these experiments since the bottom slope is spatially uniform and1362

unlimited in extent. The more realistic shallow water (fluid) model of Part 2 will supplant this latter1363

condition with the requirement that the horizontal scale L of a layer thickness (mass) anomaly must1364

exceed the rotation length scale, C/ f , where C is the gravity wave speed dependent upon stratification.1365

Trajectories having larger E show a steeper descent of the slope, from Eqn. (110), v∗/u∗ = E. It is1366

important to note that friction is large or small depending upon the ratio r/ f and not simply r alone. In1367

other words, for a given r, frictional effects are greater at lower latitudes (smaller f ). Very near the1368

equator, E will thus be large for almost any r, and on that basis alone geostrophic motion would not be1369

expected near the equator. Friction may be somewhat important in this regard, but a more1370

comprehensive fluid model treated in Part 3 Sec. 3 shows that gravity wave dynamics is likely to be1371

more important than is friction alone.1372

5.4 Energy balance1373

Energy balance makes a compact and sometimes useful diagnostic; it is compact since energy is a scalar1374

vs. a vector momentum, and it is more or less useful depending mainly upon how well the dissipation1375

processes may be evaluated. In this model problem, the energy source is the potential energy associated1376

with the dense parcel sitting on a sloping bottom and we have the luxury of knowing the dissipation1377

(bottom drag) exactly. As the parcel descends the slope, it will release potential energy and so generate1378

kinetic energy and thus motion.1379

To find the energy balance equation, multiply the x-component momentum equation (105) by u∗1380

and the y-component equation by v∗ and add:1381

d(u2
∗+ v2

∗)/2

dt∗
− v∗ = −E(u2

∗ + v2
∗). (118)1382

The term on the left is the time rate change of kinetic energy; the term on the right of (118) is the rate of1383

work by bottom friction, always negative since bottom friction opposes the velocity. The second term1384

on the left is the rate of work by the buoyancy force (in nondimensional units), which is also the rate of1385

change of potential energy. The dimensional potential energy is just PE = g′(z−Z0) = −g′α(y−Y0)1386

with Zo the initial depth, and1387

v∗ =
v f

g′α
= −

dz

dt

f

g′α2
=

−dPE

dt

1

fU2
geo

=
−dPE∗

dt∗
,1388
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Figure 18: Observations of a dense bottom current, the Faroe Bank Channel Overflow, found on the
southern flank of the Scotland-Iceland Ridge. (left) A section made across the current showing dense
water that has come through the narrow Faroe Bank Channel (about 15 km width, at latitude 62 N and
about 90 km to the northeast (upstream) of this site). This dense water will eventually settle into the deep
North Atlantic where it makes up the Upper North Atlantic Deep Water. The units of density are kg m−3,
and 1000 has been subtracted away. By inspection of these data, the reduced gravity of the dense water is
g′ = g δ ρ/ρ0 ≈ g 0.5/1000 = 0.5×10−2 m s−2, and the bottom slope is roughly α = 1.3×10−2. (right)
A current profile measured at the thick vertical line shown on the density section. The density section
was aligned normal to the isobaths and the current appeared to be flowing roughly along the isobaths.
The core of the dense water has descended roughly 200 m between this site and the Faroe Bank Channel.

the rate of change of potential energy in nondimensional units, fU2
geo. It can be helpful to integrate1389

(118) with time to compute the change in energy from the initial state:1390

(u2
∗ + v2

∗)/2 −
∫ t

o v∗dt∗ = −
∫ t

o E(u2
∗ + v2

∗)dt∗,

KE + PE = FW,

(119)1391

where KE is the kinetic energy, PE is the change in potential energy as the parcel is displaced up and1392

down the slope, and FW is the net frictional work done by the parcel, always a loss (Fig. 19).1393

The Coriolis force does no work on the parcel since it is perpendicular to the velocity, and hence1394

does not appear directly in the energy balance. Rotation nevertheless has a profound effect on the1395

energy balance. The inertial oscillations that carry the parcel up and down the slope show up in the1396

energy balance as a reversible (aside from friction) interchange of kinetic and potential energy, exactly1397

analogous to a simple pendulum. The most profund consequence of rotation is that it inhibits the release1398

of potential energy. In the important limit that E → 0, and aside from inertial motion, the parcel velocity1399
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Figure 19: The energy balance for the
trajectory of Fig. (16) having E = 0.2.
These data are plotted in a nondimen-
sional form in which the energy or work
is normalized by the square of the ve-
locity scale, Ugeo = g′α/ f , and time is
nondimensionalized by the inertial pe-
riod, 2π/ f . Potential energy was as-
signed a zero at the initial depth of the
parcel. Note the complementary inertial
oscillations of PE and KE, and that the
decrease of total energy was due to work
against bottom friction (the solid green
and dashed red lines that overlay one an-
other).

will be perpendicular to the buoyancy force, as in Eqn. (117), and the parcel will coast along an isobath1400

in steady, energy-conserving geostrophic motion. If there is some friction, as there is in the case shown,1401

then the cross-isobath component of the motion carries the parcel to greater bottom depth and thus1402

releases potential energy at a rate that is proportional to the Ekman number, Eqn. (107),1403

v∗/u∗ = E = r/ f . Whether friction or rotation is dominant, and thus whether the motion is rapidly1404

dissipated or long-lived, depends solely upon the Ekman number in this simplified system (Fig. 16b).1405

5.5 Problems1406

(1) Draw the vector force balance for inertial oscillations (include the acceleration) with and without1407

bottom friction as in Fig. (16, right).1408

(2) What value of r is required to mimic the observed decay of near-inertial oscillations of Fig. (17)?1409

Does the same model solution account also for the small, super-inertial frequency shift noted in1410

the field data?1411

(3) Write the non-dimensional form of the pure inertial motion model and solution, Eqn. (114). This1412

model is so reduced that there is, admittedly, not much to gain by nondimensionalizing Eqn. (111).1413

(4) The parcel displacement, Eq. (114), δ = Uo/ f associated with an inertial motion goes as 1/ f , and1414

hence δ → ∞ as f → 0, i.e., as the latitude approaches the equator. We can be pretty sure that1415

something will intervene to preclude infinite displacements. One possibility is that the north-south1416

variation of f around the equator will become relevant as the displacement becomes large, i.e., the1417

f−plane assumption that δ � RE noted with Eqn. (87) will break down. Suppose that we keep1418

the first order term in f (y), and assume f = βy, i.e., an equatorial beta-plane. Describe the1419

equatorial inertial oscillations of a parcel initially on the equator, and given an impulse Uo directed1420

toward the northeast. How about an impulse directed toward the northwest? You should find that1421

these two cases will yield quite different trajectories. This is an example, of which we will see1422

more in Part 2, of the anisotropy that arises from rotation and Earth’s spherical shape.1423

(5) In Sec. 5.1 it was noted that dimensional analysis may be somewhat arbitrary, as there are usually1424

several possible ways to nondimensionalize any given model. For example, in this parcel on a1425
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slope problem the time scale 1/r could be used to nondimensionalize (that is, to scale or measure)1426

the time. How would this change the solution, Eqn. (108) and the family of trajectories?1427

(6) Assuming small Ekman number, how long does it take for a geostrophic balance to arise after a1428

parcel is released? Are the time-averaged solutions of the single parcel model the solutions of the1429

time-averaged model equations? Suppose the model equations were not linear, say that friction is1430

∝ U2, then what?1431

(7) Inertial oscillations do not contribute to the long-term displacement of the parcel, though they can1432

dominate the instantaneous velocity. Can you find an initial condition on the parcel velocity that1433

prevents these pesky inertial oscillations? You can test your ideas against solutions from1434

partslope.m (Section 7).1435

(8) Explain in words why a geostrophic balance (or a near geostrophic balance) is expected in this1436

problem, given only small enough E and sufficient space and time.1437

(9) Make a semi-quantitative test of geostrophic balance for the westerly wind belt seen in Fig. (2).1438

Sample (by eye) the sea surface height of Fig. (1) along an east-west section at 33 oN, including at1439

least a few points in the western boundary region. Then estimate the east-west profile of the1440

inferred geostrophic current (and note that the buoyancy of the sea surface is effectively the full g1441

since the density difference is between water and air). What is the current direction? Using this1442

result as a guide, sketch the (approximate) large-scale pattern of surface geostrophic current over1443

the subpolar gyre and lower subtropics on Fig. (1). You can check your result against observed1444

surface currents, http://oceancurrents.rsmas.miami.edu/atlantic/florida.html1445

(10) Assuming that the descent of the dense water from Faroe Bank Channel to the site observed in1446

(Fig. 18) was due mainly to bottom friction, which trajectory of Fig. (16) is analogous to this1447

current? Said a little differently, what is the approximate Ekman number of this current?1448

(11) An important goal of this essay has been to understand geostrophic balance, the characteristic1449

feature of many large scale geophysical flows. However, it has also been noted that pure1450

geostrophy is a dead end insofar as it gives no clue to the origin or the evolution with time. To1451

predict the evolution of a flow we have to understand what are usually small departures from pure1452

geostrophy, here limited to time-dependence, e.g., inertial motion, and friction. With that in mind,1453

compare the relative importance of friction in the time-average momentum balance, Fig. (16),1454

right, and in the energy balance, Fig. (19).1455

6 Summary and Closing Remarks1456

6.1 What is the Coriolis force?1457

The flows of Earth’s atmosphere and oceans are necessarily observed and analyzed from the perspective1458

of Earth-attached and thus rotating, non-inertial coordinate systems. The inertial frame equation of1459

motion transformed to a general rotating frame includes two terms due to the rotation, a centrifugal1460

term and a Coriolis term, −2ΩΩΩ×V′M (Section 2). There is nothing ad hoc or discretionary about the1461

appearance of these terms in a rotating frame equation of motion. In the case of an Earth-attached1462
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frame, the centrifugal force is cancelled by the aspherical gravity field associated with the slightly out of1463

round shape of the Earth (Section 4). The Coriolis force remains and is of first importance for large1464

scale, low frequency winds and currents.1465

It is debatable whether the Coriolis term should be called a force as done here, or an acceleration.1466

The latter is sensible insofar as the Coriolis force on a parcel is exactly proportional to the mass of the1467

parcel, regardless of what the mass may be. This is a property shared with gravitational mass attraction,1468

but not with central forces that arise from the physical interaction of objects. Nevertheless, we chose the1469

Coriolis ’force’ label, since we were especially concerned with the consequences of the Coriolis term.1470

Because the atmosphere and the oceans are thin when viewed in the large and also stably stratified,1471

the horizontal component of winds and currents is generally much larger than is the vertical component.1472

In place of the full three-dimensional Coriolis force it is usually sufficient to consider only the1473

horizontal component acting upon the horizontal wind or currents,1474

−2ΩΩΩ×V′ ≈−f×V′ = f v′ex− f u′ey1475

where f = f ez, and f = 2Ωsin(latitude) is the Coriolis parameter which will arise very often in the1476

discussions that follow in Parts 2 and 3.1477

6.2 What are the consequences of the Coriolis force for the circulation of the1478

atmosphere and ocean?1479

Here we have made a start toward understanding the profound consequences of the Coriolis force with1480

an analysis of a dense parcel released onto a slope (Section 5). This revealed two kinds of motion that1481

depend directly upon the Coriolis force. There is a free oscillation, usually called an inertial oscillation,1482

in which an otherwise unforced current rotates at the inertial frequency, f . These inertial oscillations are1483

often a prominent phenomenon of the upper ocean current following the passage of a storm. A crucial,1484

qualitative effect of rotation is that it makes possible a steady motion that is in balance between an1485

external force (wind stress or geopotential gradient) and the Coriolis force acting upon the associated1486

geostrophic current,1487

Vgeo =−
g

ρo f
k×∇η1488

The characteristic of this geostrophic motion is that the velocity is perpendicular to the applied force; in1489

the northern hemisphere, high SSH is to the right of a geostrophic current (Fig.1). It would be easy to1490

over-interpret the results from our little single parcel model, but, a correct inference is that Earth’s1491

rotation — by way of the Coriolis force — is the key to understanding the persistent, large scale1492

circulation of both the atmosphere and the ocean outside of equatorial regions.1493
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6.3 What’s next?1494

This introduction to the Coriolis force continues (under a separate cover) with an emphasis on the1495

consequences for the atmosphere and ocean. Specific goals are to understand1496

Part 2: What circumstances lead to a near geostrophic balance? As we have noted throughout this1497

essay, a near geostrophic balance is almost inevitable for large scale, low frequency motions of the1498

atmosphere or ocean. The essential piece of this is to define what is meant by large scale. Turns out that1499

this scale depends upon the stratification and the Coriolis parameter, f , and so varies substantially with1500

latitude, being larger at lower latitudes.1501

Part 3: How does rotation of the spherical Earth lead to east-west asymmetry and to1502

time-dependent, low frequency motions ? The single new feature of Part 3 is the explicit recognition1503

that the Coriolis parameter varies with latitude, in the beta-plane approximation, f = fo +βy with y the1504

north coordinate. The resulting beta-effects includes some of the most interesting and important1505

phenomenon of geophysical flows — westward intensification of ocean gyres (Fig. 1) and westward1506

propagation of long waves in the jet stream (Fig. 2).1507

The plan/method for Parts 2 and 3 is to conduct a sequence of geostrophic adjustment experiments1508

using a model of a single fluid layer, often called the shallow water model. These experiments are1509

analyzed using potential vorticity balance, among others, and are a very considerable advance on the1510

single parcel model used here. The tools and methods of Parts 2 and 3 are in general a considerable1511

advance over those employed here in Part 1, and are much more likely to be directly useful in your own1512

research. Be assured though, that everything that you have learned here in Part 1 regarding the Coriolis1513

force acting on a single parcel will be essential background for understanding these much more1514

comprehensive models and experiments.1515

Part 4: How do the winds and beta effects shape the wind-driven gyres? The goals are to1516

understand the marked asymmetry of the wind-driven gyres, and to learn how the Sverdrup relation is1517

established following the onset of a wind field over an ocean basin.1518

6.4 Supplementary material1519

The most up-to-date version of this essay plus the related Matlab scripts may be downloaded from the1520

author’s public access web site: www.whoi.edu/jpweb/aCt.update.zip1521

Matlab scripts include the following:1522

rotation 1.m solves for the three-dimensional motion of a parcel as seen from an inertial and from a1523

rotating reference frame. Used to make Fig. 11.1524

partslope.m solves for the motion of a single dense parcel on a slope and subject to buoyancy, bottom1525
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friction and Coriolis forces as in Section 5. Easy to specify a new experiment.1526

sphere check.m used to check the spherical system equations of motion, and useful as an introduction1527

to spherical coordinates.1528
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