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Summary:

This essay is an introduction to the dynamics of Earth-attached reference frames, written especially
for students beginning a study of geophysical fluid dynamics. It is accompanied by four Matlab scripts
available from the Mathworks File Central archive.

An Earth-attached and thus rotating reference frame is almost always used for the analysis of the
atmosphere and ocean. The equation of motion transformed into a general rotating frame includes two
terms that involve the rotation rate — a centrifugal term and a Coriolis term. In the special case of an
Earth-attached frame the centrifugal term is exactly balanced by a small tangential component of
gravitational mass attraction and so drops out of the dynamical equations. The Coriolis term that
remains is a part of the acceleration seen from an inertial frame, but is interpreted as a force (an
apparent force) when we solve for the acceleration seen from the rotating frame. The rotating frame
perspective gives up the properties of global momentum conservation and invariance to Galilean
transformations, but leads to a greatly simplified analysis of geophysical flows.

The Coriolis force has a very simple mathematical form, ∝ 2Ω×V′, where Ω is the rotation vector
and V′ is the velocity observed from the rotating frame. The Coriolis force acts to deflect the velocity
without changing the speed and gives rise to two important modes of motion or balances within the
momentum equation. When the Coriolis force is balanced by the time rate of change of the velocity the
result is a clockwise rotating velocity (northern hemisphere) having a constant speed. These free
oscillations, usually called inertial oscillations, are commonly observed in the upper ocean following a
wind event. When the Coriolis force is balanced by a persistent external force (e.g., a large-scale
pressure gradient) the mean velocity is perpendicular to the external force. This geostrophic balance is
characteristic of the large-scale circulation around pressure anomalies in the atmosphere and ocean.
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1 Introduction to geophysical flows.

The large-scale, horizontal flows of Earth’s atmosphere and ocean are characterized by circulation
around centers of high or low pressure. Global-scale circulations of this sort include the atmospheric jet
stream that encircles the mid-latitudes, and the Antarctic circumpolar current. On a smaller scale the
weather is often dominated by storms, for example hurricanes, that have a nearly circular flow around a
low pressure center, and many regions of the ocean are filled with slowly revolving eddies that can have
a high or low pressure anomaly. The (hydrostatic) pressure anomaly at a given level is a direct
consequence of mass excess or deficit (high pressure or low pressure) in the overlying fluid. What is at
first surprising is that large scale mass and pressure anomalies often persist for many days or weeks; the
flow of mass that would otherwise accelerate down a pressure gradient and disperse the mass anomaly is
observed to be deflected to the right in the northern hemisphere and to the left in the southern
hemisphere. On time mean, winds and currents tend toward a geostrophic (Earth-turning) momentum
balance in which the pressure gradient force is closely balanced by the deflecting force, and the result is
a mean flow that is nearly parallel to lines of constant pressure.1

We attribute profound physical consequences to the deflecting force, called the Coriolis force,2 and
yet we cannot point to a physical interaction or cause of the Coriolis force in the direct way that we can
for a hydrostatic pressure anomaly. Instead, the origin of the Coriolis force is found in kinematics and in
our common practice to use an Earth-attached and thus rotating and noninertial reference frame. This
makes the Coriolis force distinct from other forces in ways and with consequences that will be a theme
of this essay.

1.1 Inertial and rotating reference frames

For the purpose of studying the Coriolis force we can idealize the motion of a fluid continuum by the
motion of a single particle. If the particle is observed from an inertial reference frame, then the classical
(Newtonian) equation of motion for the particle is just

dV
dt

= F/M. (1)

V is the velocity in a three-dimensional space, and M is the particle’s mass and F is the sum of the
forces that we can specify a priori given the complete knowledge of the environment, e.g., a pressure
gradient, frictional drag with the ground or sea floor, or gravitation. These are all central forces.3

This classical momentum equation has two fundamental properties that we remark upon here
because we are about to give them up. Global conservation: For each of the central forces there will
be a corresponding reaction force, −F, acting on the part of environment that sets up the force F. Thus
the global change of momentum (particle plus the environment) due to the sum of all of the forces F is
zero. Usually our attention is focused on the local problem, i.e., the particle only, with the global
balance taken for granted and left unanalyzed. Invariance to Galilean transformation: A second
fundamental property that is usually imposed upon Eq. (1) is that it should be invariant to Galilean
transformations since there is no way to define or measure an absolute (as opposed to a relative)
velocity. Thus a constant velocity added to V and to the environment should cause no change in the
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forces F. Like the global balance just noted, this property is not invoked frequently, but is a very
powerful guide to the possible appropriate forms of the forces F. For example, a frictional force that
satisfies Galilean invariance should depend upon differences of the velocity (say with respect to a surface
or adjacent particles) and not the particle velocity only.

In practice we almost always observe and analyze the motion of the atmosphere and ocean from a
reference frame that is attached to the rotating Earth. The equation of motion transformed into an
Earth-attached, rotating reference frame has just one additional term,

dV′

dt
= − 2Ω×V′ + F′/M, (2)

the Coriolis force (this transformation is done in detail below). The prime on a vector indicates that it is
observed from the rotating frame, and Ω is Earth’s rotation vector. The Coriolis force has a very simple,
linear form; it is perpendicular to the particle velocity and can do no work. The Coriolis force will,
however, change the direction of the velocity unless balanced by another force, often a pressure gradient
as noted in the opening paragraph. Given Eq. (2) we can begin to construct analyses and models that
are suitable for an Earth-attached reference frame. A practical person would get on with the task, and
so should you!

1.2 About this essay

But in this essay we take the time to indulge our curiosity — what is the Coriolis force? From the
literature we might find any one of several plausible answers, that it is an acceleration, a pseudo force, a
virtual force, an apparent force (our choice), and most equivocal of all, a fictitious correction force.4

This is not the clear answer we had hoped for, and now we begin to wonder — is the Coriolis force real
or is it a mathematical device to make things come out right? As we will see it is both, and to
understand how that comes about we will address a sequence of more or less naive questions that probe
the origin and some of the consequences of the Coriolis force, including:

1) Does the equation of motion (2) preserve the global conservation and Galilean
transformation properties of Eq. (1)?

2) Does the factor 2 in the Coriolis force have any parallel or a larger significance?

3) What happened to the centrifugal force that also arises in a rotating frame? Are the
Coriolis and centrifugal forces related?

4) Given that the Coriolis force causes only a deflection of velocity, does it affect energy
balance?

5) Finally and most importantly for this essay, what is the Coriolis force and what should we
call it?

A preview to this last question will show us where to begin. We have already indicated that the Coriolis
and centrifugal forces are the result of the rotation of an Earth-attached reference frame and that the
explanation of these forces is going to be largely kinematic (i.e., more mathematical than physical).
Accordingly, we begin with the transformation of the inertial frame equation of motion into a rotating
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frame, developed in detail in Section 2. This important section is intended to be largely self-contained,
however, readers are expected to come equipped with the basics of classical mechanics and with
elementary vector and matrix algebra to include coordinate transformation. Two simple applications of
the rotating frame momentum equations are considered in Section 3. These illustrate the marked
difference between inertial and rotating frame descriptions of the same phenomenon. The special but
important case of an Earth-attached reference frame suitable for analysis of atmospheric and oceanic
motions is discussed in Section 4 and a problem that illustrates some aspects of adjustment toward a
geostrophic balance is treated in Section 5. Closing remarks are in the final section, 6.

Rotating reference frames and the Coriolis force have been textbook fare for many years and there
is nothing new said here. There are useful discussions in many intermediate-level classical mechanics
texts5 and in most fluid mechanics textbooks that treat geophysical flows.6 This essay aims to
supplement those sources by providing greater (and if it succeeds, clearer) mathematical detail than do
most fluid dynamics texts. Compared with most physics texts, this essay emphasizes geophysical
phenomenon.7 A notable source is the monograph by Stommel and Moore8 which examines the Coriolis
force at roughly the level of this essay but at considerably greater length; the present Section 4.1 has
been especially strongly influenced by their work.

The aim (and style) of this essay is purely pedagogical. It is written at an introductory level for
students beginning a study of Earth science and especially geophysical fluid dynamics. It may be freely
copied and distributed for personal, educational purposes and it may be cited as an unpublished
manuscript available from the web address on the title page. There are four companion Matlab scripts
that can be downloaded from an anonymous ftp site.9 Comments and questions are encouraged and may
be addressed to the author at jprice@whoi.edu.

2 Transformation of vectors into a rotating reference frame.

The analysis in this section shows how to relate a vector seen in a steadily rotating reference frame to
the same vector seen in a stationary reference frame. The stationary reference frame, also dubbed the
’master’ reference frame, is defined by a triad of orthogonal unit vectors, e1, e2, e3, that are
time-independent (Fig. 1). The rotating reference frame is defined by a triad of unit vectors that are
(not surprisingly) rotating with respect to the master frame. The presumption is that position, velocity
and acceleration vectors are given in the master frame and that our task is to find out how the same
vectors will appear when seen from the rotating frame.

2.1 Reference frames, unit vectors and vector components; a brief review

We briefly review how the components of a vector depend upon a reference frame. For example, a point
P can be located by the tip of a position vector X that has Cartesian components xi in the master
reference frame as

X = x1e1 + x2e2 + x3e3. (3)
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Figure 1: A point P is located by the tip of the vector X. The master reference frame has solid unit
vectors that are presumed to be time-independent, and a rotating reference frame has dashed unit vectors.
The reference frames have a common origin, and rotation is about the e3 axis at a rate Ω which is positive
so that the unit vectors of the rotating frame turn counterclockwise.

The same vector can also be represented in a rotated or rotating reference frame by summing a different
set of components and the unit vectors that define that frame as

X = x′
1e

′
1 + x′

2e
′
2 + x′

3e
′
3. (4)

The superscript prime ( )′ is now all important as the indicator of the components and unit vectors of
the rotated reference frame. The position vector X has a physical or objective existence, while the
components x′

i will necessarily vary according to the accidental orientation of the rotated reference
frame. Thus we do not have a vector until we sum the product of the appropriate components and unit
vectors.

To relate the components and unit vectors in the rotated frame to those of the master frame it is
helpful to rewrite Eqs. (3) and (4) using a consistent matrix notation. The unit vectors are
concatenated into a single 3x3 matrix

E =




e1

e2

e3


 , (5)

where the first row of E is the (1x3) row matrix e1 = [ 1 0 0 ], etc. Assuming that the components are
xj in a (3x1) column matrix, then Eqs. (3) and (4) may be written in a way that conforms with the
usual matrix multiplication rules as

X =
∑

i

Eijxj =
∑

i

E′
ijx

′
j (6)
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where j and then i are summed from 1 to 3.

The unit vectors of the rotating frame are shown in Fig. (1) having been rotated an angle θ with
respect to the master reference frame. The unit vectors that define the rotated frame, e′i, are related to
the unit vectors that define the master frame, ei, by

E′
ij = EinDt

nj (7)

where Dt is the transpose of the rotation matrix,10 D,

D =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 , (8)

and thus

Dt =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

This particular rotation matrix corresponds to a rotation about the e3 axis and so leaves the unit vector
in that direction unchanged.

The components of X in the rotated frame, x′
j, are then related to the components in the master

reference frame by
x′

j = Djnxn, (9)

and where the ( )′ is used to indicate a rotated component. Note that Dt = D(−θ) so that the sense of
rotation is reversed in going from D to Dt and thus

DDt = DtD = I, (10)

where I is the identity matrix that leaves vectors unchanged. To recall the important transformation
rule, Eqs. (7) and (9), we need only remember the orthogonality property of D shown by Eq. (10) and
notice that we can insert an identity matrix into Eq. (6) as

X =
∑

i

Eijxj =
∑

i

EijIjnxn =
∑

i

(EinDt
nj)(Djnxn) =

∑

i

E′
ijx

′
j = X, (11)

given the associative law for matrix multiplication.

2.2 When seen from the rotating frame

For our purpose it is essential to know how a position vector and its time derivatives will appear when
seen from the rotating frame.
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Figure 2: (left) A point P is located by the tip of the solid vector X in the master reference frame.
(right) The point P as seen from the rotated frame, and the associated position vector X′ =

∑
i Eijx

′
j . By

indicating that this is the ’rotated ref frame’ we mean that the unit vectors used to construct the vector X′

are fixed; that they are aligned with the page is not relevant. The meaning of X =
∑

i Eijxj =
∑

i E
′
ijx

′
j

is that these two representations of the vector X are identical when the rotated reference frame is plotted
on the master reference frame, as at left.

2.2.1 Position

To construct the position vector as seen from the rotating frame, X′, we use the components x′
i and a

set of unit vectors that are fixed; we may as well use E since we already have it, and so

X′ =
∑

i

Eijx
′
j . (12)

The prime symbol on a vector thus means the primed (rotated) components summed with fixed unit
vectors. For example, in Fig. (2, left), a position vector X is shown making an angle of about 50 degrees
counterclockwise from the e1 axis. The rotated reference frame is presumed to be rotated about 30
degrees counterclockwise from the master frame (these angles are arbitrary). That being so, the position
vector of point P viewed from the rotated reference frame makes an angle of 50 - 30 = 20 degrees to the
e′1 axis, Fig. (2, right).

2.2.2 Velocity

The velocity of point P seen in the master frame is just the time rate of change of the position vector
seen in that frame,

dX
dt

=
d

dt

∑

i

Eijxj =
∑

i

Eij
dxi

dt
,
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since Eij is time-independent. The velocity of point P as seen from the rotating reference frame is
similarly

dX′

dt
=

d

dt

∑

i

Eijx
′
j =

∑

i

Eij
dx′

i

dt
.

This last expression indicates that the time derivatives of the rotated components are going to be very
important in what follows. For the first derivative we find

dx′
i

dt
=

d(Dinxn)
dt

=
dDin

dt
xn + Din

dxn

dt
. (13)

The second term on the right side of Eq. (13) represents the velocity components from the master frame
that have been rotated into the rotated frame. If the rotation angle θ is constant so that D is
independent of time, then the velocity vector would transform exactly as does the position vector, cf.
Eq. (9).

When the rotation angle is time-varying, as we presume it is here, then the first term on the right
side of Eq. (13) is non-zero and represents the effect of the rotation. Specifically, we are going to take
the angle θ to be

θ = θ0 + Ωt

with the rotation rate Ω a constant, an excellent approximation for the rotating Earth. The e3 unit
vector is presumed to be aligned with the axis of rotation and thus Ω = Ωe3. The rotation matrix is
then time-dependent, and its time derivative is just

dD
dt

= Ω




− sin θ(t) cos θ(t) 0
− cos θ(t) − sin θ(t) 0

0 0 0


 . (14)

Notice that this has all the elements of D(θ(t)), but shuffled around. By inspection this matrix can be
factored into the product of D(π/4) and D, where

D(π
4 ) =




0 1 0
−1 0 0
0 0 0


 (15)

represents a rotation of π/4 in the direction opposite Ω (when left multiplied onto a column matrix of
components). Thus the time derivative operating on this rotation matrix brings out the rotation
frequency and shifts the phase by π/4,

dD
dt

= Ω D(π/4)D(θ(t)), (16)

just like the time derivative operating on a scalar sine function. Substitution into Eq. (13) gives the
velocity components in the rotating frame:

dx′
i

dt
= ΩD(π/4)ijD(θ)jnxn + D(θ)in

dxn

dt
. (17)

This can be simplified a little by using the prime notation to indicate rotated components:

dx′
i

dt
= ΩD(π/4)ijx′

j +
(

dxi

dt

)′
. (18)
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An interpretation using vectors can clarify the first term on the right hand side of Eq. (17).
Assume that Ω > 0 so that the rotating frame is turning counterclockwise, and assume that the point P
is stationary in the master reference frame so that dxn/dt = 0. Point P as viewed from the rotating
frame will then appear to move clockwise at a rate that can be calculated from the geometry. Let the
rotation in a time interval δt be given by δθ = Ωδt; in that time interval the tip of the vector will move a
distance given by the magnitude of the vector times δθ, i.e., δX′ = |X′|δθ and in a direction that is
perpendicular to X′ (Fig. 3). The velocity of point P seen from the rotating frame and due solely to the
coordinate system rotation is thus

lim
δt→0

δX′

δt
= −Ω×X′,

which is the vector equivalent of the first term of Eq. (17). If there is a velocity of P relative to the
master frame, then that velocity (suitably rotated) will add to this rotation-induced velocity to give the
velocity of P as seen from the rotating frame and thus

dX′

dt
= −Ω×X′ +

(
dX
dt

)′
, (19)

which is the vector version of Eq. (17). Notice that we could just as well construct this vector from the
components of Eq. (18) and the E unit vectors.

The relation Eq. (19) between the time rate of change of a vector as seen from the rotating frame
and as seen from the master frame holds for all vectors, as the matrix form Eq. (17) shows most
clearly.11 Thus the relationship between the time derivatives may be written as the operator equation

d( )′

dt
= −Ω×( )′ +

(
d( )
dt

)′
. (20)

From left to right the terms of this important equation are 1) the time rate of change of a vector as seen
in the rotating reference frame, 2) the cross product of the rotation vector with the vector, and 3) the
time rate change of the vector as seen in the master frame and then rotated into the rotating frame. If
we are observing or analyzing from a rotating frame, then term 1) is the time rate of change that we
observe directly or that we seek to solve.

2.2.3 Acceleration

Our goal is to relate the accelerations seen in the two frames and so we differentiate Eq. (17) once more
and after rearrangement of the kind used above we find that

d2x′
i

dt2
= 2ΩD(π/4)ij

dx′
j

dt
+ Ω2D(π/2)ijx′

j +
(

d2xi

dt2

)′
. (21)

To calculate the vector version we apply the left and right sides of Eq. (20) to the respective sides of Eq.
(19). Noting that d(A×B)/dt = (dA/dt)×B + A×(dB/dt) and after collecting terms the result is

d2X′

dt2
= − 2Ω×dX′

dt
− Ω×Ω×X′ +

(
d2X
dt2

)′
, (22)
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Figure 3: (left) A view of point P as seen from the rotating reference frame. In this frame the basis
vectors e′ appear to be stationary. (When we write an equation for a vector as seen in the rotating frame,
as Eq. (12), we use E to indicate unit vectors that are time-independent.) Assume that the point P is
stationary in the master frame; in this reference frame P appears to be moving in a clockwise direction.
Over a time interval δt P moves a distance δX′ in a direction that is perpendicular to its position vector
X′ (imagine that δX′ goes to zero). (right) A schematic showing the relationship of a vector A, and
various cross products with a second vector Ω (note the signs). There is no attempt to show a scale since
these vectors may have different units. The vector A is shown with its tail along the axis of the vector Ω.
This helps when we use the right hand rule to visualize the direction of the resulting cross-product, but
is irrelevant mathematically; the vector A could be defined at any point in space and the cross-product
with Ω would be exactly the same. That this is so is, one might say, the trouble with vectors — they are
almost too visual. This is the main reason that the present analysis relies mostly upon matrix methods.
Another way to understand this is to note that a vector in three space is defined by just three numbers
(three components) but when we draw a vector in a three-dimensional diagram like this one we have to
specify six numbers, a start and an end.

which is the vector equivalent of Eq. (21). It is important that you verify the steps leading to Eqs. (21)
and (22).12 From left to right the terms of this equation are 1) the acceleration as seen in the rotating
frame, 2) the Coriolis term, 3) the centrifugal13 term, and 4) the acceleration as seen in the master
frame and then rotated into the rotating frame. As before, term 1) is the acceleration that we directly
observe or seek to analyze when we are working from the rotating reference frame.

2.3 Master ⇒ Inertial; Rotating ⇒ Earth-Attached

Now for the key physical step; we identify the master reference frame as an inertial reference frame
within which the equation of motion is Eq. (1). To make this frame inertial we presume that the unit
vectors ei could in principle be aligned on the distant, fixed stars14. The rotating frame is presumed to
be attached to the rotating Earth, whose rotation rate is then defined by the rate at which the same
fixed stars rotate overhead,

Ω = 7.2921×10−5 rad sec−1.

Earth’s rotation rate is approximately constant, and the axis of rotation maintains a nearly steady
bearing on a point on the celestial sphere near the North Star, Polaris.15
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Assuming that the inertial frame equation of motion is

d2xi

dt2
= Fi/M, (23)

then the rotated form is just

Dij
d2xj

dt2
= DijFj/M, (24)

or using the prime and vector notation,
(

d2xi

dt2

)′
= F ′

i/M and
(

d2X
dt2

)′
= F′/M. (25)

The rotated equation preserves the global conservation and Galilean transformation properties of Eq.
(23).

To find the rotating frame equation of motion we need only use Eqs. (21) and (22) to eliminate the

rotated acceleration, i.e.,
(

d2X
dt2

)′
, and then solve for the acceleration in the rotating frame:

d2x′
i

dt2
= 2ΩD(π/4)ij

dx′
j

dt
+ Ω2D(π/2)ijx′

j + F ′
j/M, (26)

and the vector equivalent

d2X′

dt2
= − 2Ω×dX′

dt
− Ω×Ω×X′ + F′/M. (27)

Thus the transformation of the equation of motion from an inertial to a rotating frame requires two
terms - the Coriolis term, 2Ω×(dX′/dt), and the centrifugal term, Ω×Ω×X′. Much of the rest of this
essay aims to clarify what these terms are, and to understand what they contribute to dynamics seen in
a rotating reference frame.

2.4 How we use and interpret the transformed equation of motion

The origin of the Coriolis and centrifugal terms is the transformation of the acceleration vector into a
steadily rotating frame, and very often these terms are written on the left side of an equation of motion
as if they were going to be regarded as part of the unknown acceleration, i.e.,

d2X′

dt2
+ 2Ω×dX′

dt
+ Ω×Ω×X′ = F′/M. (28)

If we compare the left side here with Eqs. (22) - (27) it is evident that this equation states that the
rotated acceleration is equal to the rotated force/M , i.e.,

(
d2X
dt2

)′
= F′/M (29)

which is well and true (and the same as Eq. 25). However, the left side of Eq. (28) taken all at once is
not the acceleration that we observe or seek to analyze when we use a rotating reference frame — the
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acceleration we observe in a rotating frame is d2X′/dt2, the first term only. Once we solve for d2X′/dt2,
it follows that the Coriolis and centrifugal terms are, figuratively or literally, sent to the right side of the
equation of motion where they are interpreted as if they were forces. Therein lies the fate of the Coriolis
and centrifugal terms and there too is the seed of our possible confusion regarding the nature of these
terms.

When the Coriolis and centrifugal terms are regarded as forces — it seems apt to call them
’apparent forces’ if we don’t have to be concise — they have some peculiar and even slightly troubling
properties. Since the centrifugal and Coriolis forces are exactly proportional to mass, they are inertial
forces, just like gravity (which is fine). They differ from the usual, central forces F, including gravity, in
the crucial respect that there is no physical interaction that causes the Coriolis or centrifugal force and
hence there is no reaction force. Since there is no physical origin for these two forces, neither is there a
physical explanation.16 The origin and the explanation of these terms is the transformation law for
acceleration that we have just worked through, combined with the fact that we seek to observe or
analyze the acceleration seen in the rotating frame. As we will see in the following Section 3, the
Coriolis and centrifugal forces disrupt global momentum and energy conservation that are an implicit
property of the inertial frame equation of motion and central forces. Similarly, we note here only that
the rotating frame equation of motion does not preserve Galilean invariance since the Coriolis force
involves the velocity and not just the velocity derivatives. Thus the velocity V′ has to be regarded as an
absolute velocity with respect to the rotating Earth.17 It is important to be aware of these properties of
the rotating frame equation of motion, and also to be assured that in most practical analysis of
geophysical flows they are of no consequence. What is of real importance is that the rotating frame
equation of motion offers a very significant gain in simplicity compared to the inertial frame equation of
motion, as we will see in Section 4.3.

Once these conceptual questions are put aside, we can see that the Coriolis and centrifugal
(apparent) forces have a simple, direct effect within the momentum equation for a single particle. From
the vector relation Eq. (27) it is evident that the Coriolis force is normal to the rotating frame velocity,
dX′/dt, and to the rotation vector, Ω; the Coriolis force causes the particle velocity to change direction
but not magnitude, and is thus a deflecting force. The centrifugal force is in a direction perpendicular to
and directed away from the axis of rotation; the centrifugal force can have any direction with respect to
the velocity. How these forces effect dynamics in simplified conditions will be considered further in
Sections 3 and 5.

3 A comparison of rotating and inertial reference frames.

The logical path to the rotating frame momentum equation is very direct; if Eq. (23) holds in a given
reference frame, then Eq. (26) holds exactly in a reference frame that rotates at the rate Ω with respect
to the first frame. Thus whenever we use a rotating reference frame we should in principle take account
of the Coriolis and centrifugal terms. However, as we will see in this section, there are common
circumstances in which the error incurred by ignoring these terms will be entirely negligible. For other
problems, and especially those involving the large scale motion of the atmosphere and ocean noted in
the opening paragraph and in Section 5, rotation effects are of qualitative importance.
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To appreciate the content of the transformation rules we will analyze two truly elementary motions;
prescribed motion in a rotating frame, and a projectile problem. These two problems are configured so
that the inertial frame dynamics is very simple and familiar and the only issue is how these motions look
when they are observed from a rotating reference frame. (Readers who find these examples just too
elementary may skip the bulk of this section, but should take a look at the section summary.) The main
point to be made here is that the rotating frame description of a given motion may be remarkably
different from the inertial frame description of the same motion, and yet both descriptions are exactly
self-consistent with the appropriate equation of motion.

3.1 Circular motion and polar coordinates

Many geophysical flows and rotational phenomenon are analyzed most efficiently with cylindrical polar
coordinates reviewed here very briefly. The vertical coordinate is exactly the z or x3 of Cartesian
coordinates, and so we consider only the horizontal position, which can be specified by a distance from
the origin, r, and the angle, θ between the radius vector and (arbitrarily) the x1 axis. The corresponding
unit vectors are given in terms of the time-independent Cartesian unit vectors that define the master
frame by

er = cos(θ)ex + sin(θ)ey and, eθ = −sin(θ)ex + cos(θ)ey.

Notice that these unit vectors are time-dependent since θ is time-dependent. The position vector is

X = rer

and the velocity is
dX
dt

=
dr

dt
er + r

der

dt
=

dr

dt
er + rωeθ,

where ω = dθ/dt. Continuing in a similar way the equation of motion is

d2X
dt2

=
[
d2r

dt2
− rω2

]
er +

[
2ω

dr

dt
+ r

dω

dt

]
eθ =

Fr

M
er +

Fθ

M
eθ, (30)

which, notice, has terms that look just like the centrifugal and Coriolis accelerations (though this
equation holds in the master frame where centrifugal and Coriolis accelerations do not arise). To find
the rotating frame acceleration is particularly simple; the unit vectors are identical in the master and
rotating frames, as is the radius. The only thing different is that the rotation rate is decomposed as

ω = ω′ + Ω,

where Ω is the (constant) rotation rate of the rotating reference frame and ω′ is the relative rotation
rate that we see from the rotating reference frame. Substituting this in Eq. (30) and moving the terms
containing Ω to the right side yields a rather formidable-looking expression that will be useful in the
analysis that follows:

d2X′

dt2
=

[
d2r′

dt2
− r′ω′2

]
e′r +

[
2ω′ dr′

dt
+ r′

dω′

dt

]
e′θ =

[
r′Ω2 + 2Ωω′r′ +

F ′
r

M

]
e′r +

[
−2Ω

dr′

dt
+

F ′
θ

M

]
e′θ. (31)

You should verify the algebra leading to this last result as it shows most clearly how the factor 2 arises
on the Coriolis term during the transformation from inertial to rotating frames.
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3.2 To get a feel for the Coriolis force

The Coriolis force associated with Earth’s rotation is not something that we experience through our own
senses under everyday conditions.1 For example, the Coriolis force on a runner, with V = 5 m sec−1, is
very, very small compared to gravity, 2ΩV M ≈ 10−4gM . On the other hand, the same runner making a
moderately sharp turn, radius R = 15 m, will undoubtedly feel the centrifugal force,
(V 2/R)M ≈ 0.15gM , and will compensate instinctively for the tipping moment by leaning toward the
center of the turn.

It can be very enlightening to experience the Coriolis force in the same immediate way, i.e., to feel
it in your bones, at least once. To accomplish this will require a platform having a rotation rate that
exceeds Earth’s by a factor of O(104). A typical merry-go-round has a rotation rate of Ω = 2π/12 sec−1

= 0.5 rad sec−1 that is just right. We are going to calculate the forces that you would feel while sitting
or walking about on this merry-go-round, and to do that will also need to guess your mass, say M = 75
kg. This analysis of forces is trivial in that all we need to do is evaluate Eqs. (30) and (31). In another
respect it is slightly subtle in so far as very similar looking terms have very different interpretations in
one frame compared with the other. To understand that there is more to the analysis than relabeling
and reinterpreting terms in an arbitrary way, it will be helpful for you to make a sketch of each case and
pay close attention to the acceleration, especially.

3.2.1 Zero relative velocity

To start let’s presume that you are sitting quietly near the outside radius r = 6 m of a merry-go-round
that it is rotating at a steady rate, Ω. How does the momentum balance of your motion depend upon
the reference frame, i.e, whether inertial or rotating, used to describe this motion?

Viewed from an inertial frame outside of the merry-go-round (fixed stars are not required given
the rapid rotation rate), the polar coordinate momentum balance Eq. (30) with ω = Ω and
dr/dt = dω/dt = Fθ = 0 reduces to a two term radial balance,

−rΩ2M = Fr, (32)

in which a centripetal acceleration (×M) is balanced by an inward-directed radial force, Fr. We can
readily evaluate the former and find −rΩ2M = Fr = −112 N, which is quite noticeable (this corresponds
to the weight on a mass of Fr/g = 11.5 kg).

Viewed from the rotating reference frame (your seat on the merry-go-round), you are stationary
and of course not accelerating. To evaluate the rotating frame momentum equation, Eq. 31, we thus set
ω′ = 0, r′ = constant, and are left with a two term radial force balance,

0 = r′Ω2M + F ′
r. (33)

The physical conditions are unchanged and thus F ′
r = Fr = −112 N just as before (recall that r′ = r and

F ′
r = Fr in these coordinates).

What has changed is that the term r′Ω2M is now on the right side of the momentum equation
where we call it the centrifugal force. Within the rotating frame, the evidence for and indeed the reality
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of a centrifugal force is quite vivid; it appears that you are being pushed outwards by a gravity-like force
that is opposed by F ′

r. The centrifugal force acts on every stationary object in your rotating frame with
a magnitude that is proportional to the mass of that object and hence produces a radial acceleration on
every stationary object that depends only upon the radius, r′. For example, a plumb line (a weight
hanging on a string and at rest in this frame) makes an angle to the vertical of asin(r′Ω2/g), where the
vertical direction and g are in the absence of rotation. The centrifugal force thus contributes to the
direction and magnitude of the gravitational acceleration an important point that we will return to in
Section 4.1.

3.2.2 With relative velocity

Most merry-go-rounds have signs posted which insist that riders remain in their seats once the ride
begins. This is a sensible rule, of course, but if your goal is to get a feel for the Coriolis force then you
will have to go for a (very cautious) walk on the merry-go-round. We will presume that the relative
velocity, i.e., your walking velocity, is specified, and then calculate the force that must be exerted by the
merry-go-round upon you as a consequence.

Azimuthal relative velocity: Let’s assume that you walk azimuthally so that r = 6 m and constant.
A reasonable walking pace under the circumstance is about Uw = 1.5 m s−1, which corresponds to a
relative rotation rate ω′ = 0.25 rad sec−1, and recall that Ω = 0.5 rad sec −1. Let’s assume that you
walk in the direction of the merry-go-round rotation so that ω = Ω + ω′ = 0.75 rad sec−1.

From the inertial frame momentum equation (30) we can readily calculate that the
inward-directed radial force required to maintain this greater centripetal acceleration is then

−rω2M = Fr ≈ −253 N,

or roughly twice the force required when you were seated. If you then reverse direction and walk at the
same speed against the rotation of the merry-go-round, Fr is reduced to about -28 N. This pronounced
variation of Fr is a straightforward consequence of the quadratic dependence of centripetal acceleration
upon the rotation rate, ω.

When this is viewed from the rotating frame we distinguish between the rotation rate of the
merry-go-round, Ω, and the relative rotation rate ω′ due to your relative motion (walking speed). The
radial component of the rotating frame momentum equation reduces to

−r′ω′2M = (r′Ω2 + 2r′Ωω′)M + F ′
r. (34)

The term on the left is the comparatively small (relative) centripetal acceleration; the first term on the
right is the usual centrifugal force, and the second term on the right, 2r′Ωω′, is the Coriolis force. In this
circumstance, the Coriolis force could loosely be said to be a (relative)velocity-dependent component of
the centrifugal force. The Coriolis force is quite noticeable, 2r′Ωω′ ± 112 N, with the sign determined by
the direction of your motion relative to Ω. For example, if Ω > 0 and ω′ > 0 then the Coriolis force is
positive (and radial) and hence the Coriolis force is to the right of and normal to the azimuthal relative
velocity.
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Radial relative velocity: If all is well to this point, then a cautious walk in the radial direction might
be attempted. To isolate the effects of radial motion we will presume that your radial speed is constant
at dr′/dt = 1 m s−1 and that you walk along a radial line so that your rotation rate also remains
constant at ω = Ω (in practice this is very difficult to do for more than a few steps). The resulting forces
are then in the azimuthal direction, and their magnitude and sense can most easily be interpreted in
terms of the balance of angular momentum, A = ωr′2M. In this circumstance the rate of change of A

has been fully specified,
dA

dt
= 2Ωr′

dr′

dt
M = r′Fθ,

and must be accompanied by an azimuthal torque, r′Fθ, that is exerted by the merry-go-round upon you.

Viewed from an inertial frame, the azimuthal component of the momentum balance reduces to

2Ω
dr

dt
M = Fθ, (35)

where Fθ ≈ −75 N for the given data. The azimuthal force Fθ has the form of the Coriolis force, but
remember that we are viewing the motion from an inertial frame. If the radial motion is inward so that
dr/dt < 0, then Fθ must be negative, or opposite the direction of the merry-go-round rotation, since the
angular momentum is necessarily becoming less positive. (Be sure that these signs are clear before going
on to consider this motion from the rotating frame.)

In the rotating frame the momentum equation reduces to an azimuthal force balance,

0 = −2Ω
dr′

dt
M + F ′

θ, (36)

where −2Ωdr′

dt M is the Coriolis force, and F ′
θ = Fθ as before. In this circumstance the Coriolis force has

exactly the same interpretation as an apparent force as does the centrifugal force that we considered in
the example of steady, circular motion and Eq. (33). Namely, the force exerted by the merry-go-round,
F ′

θ, appears to be balanced by a gravity-like (though relative-velocity-dependent) inertial force in the
direction opposed to F ′

θ. Thus in the rotating frame (in which the only motion is your radial velocity) it
seems as if you are being pushed up against a stationary merry-go-round. If the radial motion is inward,
dr′

dt ≤ 0, then the Coriolis force, −2Ωdr′

dt M ≥ 0, is again to the right of and normal to the relative velocity.

Be careful! I hope that you will have a chance to do this experiment some day, as you will learn from
firsthand experience whether the Coriolis force is real or just a mathematical device. I also trust that
you will exercise genuine caution; ask permission of the merry-go-round operator before you start
walking around, and maintain a grip on something secure at all times. The Coriolis force is likely to be
surprising, even when you understand all of this analysis.

3.3 An elementary projectile problem

A very simple projectile problem can reveal some other aspects of rotating frame dynamics. Assume
that a projectile is launched at a speed U0 and at an angle to the ground β from a location
[x y] = [0 y0]. The only force presumed to act on the projectile after launch is the downward force of
gravity, −gMe3, which is the same in either reference frame.
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Figure 4: Trajectory of a particle launched with a horizontal velocity in the positive y-direction as seen
from an inertial reference frame (solid line, displaced in the y-direction only), and as seen from a rotating
frame (dashed, curves lines). The upper and lower panels are 3-dimensional and plan views. The dotted
curve is with the Coriolis force only (the motivation for this is in Section 4). This trajectory has the form
of a circle, and if the projectile had not returned to the surface, it would have made a complete loop back
to the starting point.

3.3.1 From the inertial frame

The equations of motion and initial conditions in Cartesian components are linear and uncoupled;

d2x

dt2
= 0; x(0) = 0,

dx

dt
= 0, (37)

d2y

dt2
= 0; y(0) = y0,

dy

dt
= U0 cos β,

d2z

dt2
= −g; z(0) = 0,

dz

dt
= U0 sinβ,

where M has been divided out. The solution

x(t) = 0, (38)

y(t) = y0 + tU0 cos β,

z(t) = t(U0 sinβ − 1
2
gt)

defined on the interval 0 < t < 2U0 sinβ
g requires no comment (Fig. 4).
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3.3.2 From the rotating frame

How would this same motion look when viewed from a rotating reference frame?, and, How could we
compute the motion from within a rotating reference frame?

The first question can be answered very simply by rotating the trajectory Eq. (38) via the rotation
matrix

x′
i = D(Ωt)ijxj, (39)

with the result:
x′(t) = (y0 + tU0 cos β) sin (Ωt), (40)

y′(t) = (y0 + tU0 cos β) cos (Ωt),

z′(t) = z = t(U0 sinβ − 1
2
gt),

and valid over the same time interval as before. Notice that the z component is unchanged in going to
the rotating reference frame and recall that we presumed the rotation axis was aligned with z. This is
quite general; motion that is parallel to the rotation vector Ω is entirely unaffected by rotation. On the
other hand, motion in the (x, y)-plane that is perpendicular to the rotation vector can be altered quite
substantially, depending upon the phase Ωt. In the case shown in Figure (4), the change of phase is 2.0
at the end of the trajectory, so that rotation effects are prominent.18 One important aspect of the
trajectory is not changed, however, and that is the (horizontal) radius,

√
x′2 + y′2 =

√
x2 + y2,

since the coordinate systems have coincident origins (Fig. 5, upper)

How could we compute the trajectory in the rotating frame? The Cartesian component equations in
the rotating frame are a bit awkward (the x-component only):

d2x′

dt2
= 2Ω

dy′

dt
+ Ω2 x′

√
x′2 + y′2

.

An elementary problem in the inertial frame transforms into a pair of coupled, nonlinear equations in
the rotating frame (z′ = z). We can always solve these equations numerically, but we are better off in
this and many problems involving rotation to use cylindrical polar coordinates where we can take
advantage of what we have already learned about the rotating frame solution. We know that

r′ = r = y0 + tU0 cos β,

and that the angle in the inertial frame, θ, is constant in time since the motion is purely radial and for
the specific case considered, θ = π/2. The rotation rates are related by ω′ = −Ω, and thus

θ′ = π/2 − Ωt.

Both the radius and the angle increase linearly in time, and the horizontal trace of the trajectory is
Archimedes spiral (Fig. 4, lower).



3 A COMPARISON OF ROTATING AND INERTIAL REFERENCE FRAMES. 19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

time

d
is

t 
fr

o
m

 o
ri
g

in

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

time

d
is

t 
a

lo
n

g
 p

a
th

Coriolis 

inertial and Coriolis  

rotating 

inertial and rotating

Figure 5: (upper) The distance from the origin in the horizontal plane for the trajectories of Fig. (4).
The distance from the origin is identical for the inertial and rotating trajectories, and reduced for the
Coriolis trajectory. (lower) The distance along the path in the horizontal plane for the same trajectories.
The slope gives the speed of the particle. The inertial and Coriolis frame trajectories retain their initial
speed and are identical; the rotating frame trajectory accelerates due to the centrifugal force.

It is interesting to see how the rotating frame momentum equation is consistent with the rotating
frame trajectory. The projectile is obviously deflected to the right when viewed from the rotating frame,
and from the azimuthal component of Eq. (31) we readily attribute this to the Coriolis force,

2ω′ dr′

dt
M = −2Ω

dr′

dt
M.

Notice that the horizontal speed and thus the kinetic energy increase with time (Fig. 5, lower). The rate
of increase of rotating frame kinetic energy (per unit mass) is

dV′2/2
dt

=
d(U2

0 + r′2Ω2)/2
dt

=
dr′

dt
r′Ω2

where the term on the right side is the work done by the centrifugal force. If the projectile hadn’t
returned to the ground, its speed would have increased without limit so long as the radius increased, a
profoundly unphysical result of the rotating frame dynamics.19

3.4 Summary

This analysis of elementary motions can be summarized with three important points:

1) We can make an exact and self-consistent explanation of forced or free motion observed from a
rotating frame in terms of Coriolis and centrifugal forces plus the usual inertial frame forces, F. The
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complement of this is that there is nothing that occurs in the rotating frame dynamics that can not be
understood in terms of inertial frame dynamics and forces F. Clearly then we can use either reference
frame that best suits the circumstance. The interpretation of geophysical flow phenomenon is usually far
simpler when viewed from an Earth-attached, rotating reference frame, though by design that was not
the case for the two problems discussed in this section (the case for this is made clearer in Section 4.3).

2) Within the rotating frame, the Coriolis force can appear to be just as vivid as the familiar
centrifugal force. In the example of azimuthal relative motion on a merry-go-round (Section 3.2.2) the
magnitude of the Coriolis force can be understood as the relative-velocity dependent component of
centrifugal force (loosely speaking); in the example of radial relative motion it is equal to the force
associated with angular momentum balance. These cases have almost the feeling of a physical
explanation of the Coriolis force, but it is probably more appropriate to regard them as a demonstration.

3) There is no physical agent or interaction that causes the Coriolis force and so there is no object
that is accelerated in the opposite direction by a reaction force. In the same way, there is no source for
the work done by the centrifugal force. Global accounting for momentum and energy thus breaks down
when we interpret the Coriolis and centrifugal accelerations as if they were forces. This emphasizes that
the origin of the Coriolis force is not to be found in a physical process or interaction, but rather in the
kinematic, transformation laws of Section 2, i.e., in motion itself.

4 Application to rotating fluids and to Earth.

The equations of motion appropriate to the atmosphere and ocean differ from that considered up to now
in two significant ways. First, it isn’t just the reference frame that rotates, but the entire Earth, ocean
and atmosphere, aside from the comparatively small (but very important!) relative motion of winds and
ocean currents. One consequence of the solid body rotation of the Earth is that the horizontal
component of the centrifugal force on a particle that is stationary in the rotating frame is canceled by a
component of the gravitational mass attraction. Thus the centrifugal force does not appear in the
rotating frame dynamical equations for the atmosphere and oceans, a welcome simplification (Section
4.1). Second, because the Earth is nearly spherical, the rotation vector is not perpendicular to the plane
of horizontal motions except at the poles. This causes the horizontal component of the Coriolis force to
vary with latitude (Section 4.2). Finally, in this section we also make the case that the rotating frame
equations of motion are indeed simpler than the inertial frame equations when applied to geophysical
flows. (Section 4.3).

4.1 Cancelation of the centrifugal force

To understand how the centrifugal force is canceled we consider briefly the balance of gravitational mass
attraction and centrifugal forces on a rotating Earth. If Earth was a perfect, homogeneous sphere, the
gravitational mass attraction at the surface, g∗, would be directed towards the center (Fig. 6). Because
the Earth is rotating, every particle on the surface is subject also to a centrifugal force of magnitude
Ω2R sin θ, where R is the nominal radius and θ is the colatitude (π/2 - latitude). This centrifugal force
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has a component parallel to the surface (a shear stress)

Cθ = Ω2R sin θ cos θ (41)

that is directed towards the equator. Cθ is not large compared to g∗, Cθ/g∗ ≈ 0.002 at most, but it is
extremely persistent, having been present since the Earth’s formation. A fluid can not sustain a shear
stress without deforming, and over geological time this holds as well for the Earth’s interior and crust.
Thus it is highly plausible that the Earth long ago settled into an equilibrium configuration in which
this Cθ is exactly balanced by a component of the gravitational (mass) attraction that is parallel to the
displaced surface and poleward. If we continue to assume that the gravitational mass attraction is that
of a sphere, then the required meridional slope of the displaced surface, η, is given by

g∗
R

dη

dθ
= Cθ. (42)

This can be integrated over latitude to yield the displacement

η(θ) =
∫ θ

0

Ω2R2

g∗ sin θ cos θdθ =
Ω2R2

2g∗ sin θ2 + constant, (43)

which when added on to a sphere gives an oblate (flattened) spheroid, (Fig. 6), consistent with the
observed shape of the Earth. If cut on a plane through the rotation vector, the result is an ellipse. Eq.
(43) indicates a pole-to-equator rise of η by about 11 km; precise measurements20 show that Earth’s
equatorial radius Re = 6378.2 is greater than the polar radius Rp = 6356.7 km by about 21.5 km or
roughly twice as much as the estimate given by Eq. (42).21 A convenient measure of flattening is
F = (Re − Rp)/Re; for Earth, F = 0.0033. F varies considerably among the planets due to variations in
density and rotation rate.22

Closely related is the notion of ’vertical’. When we measure vertical we do so by means of a plumb
bob that hangs in the direction of the gravitational acceleration, also called the plumb line, and that by
definition is vertical. Following the discussion above we know that the gravitational acceleration is made
up of two contributions, the first and by far the largest being mass attraction, g∗, with a much smaller
contribution due to the centrifugal acceleration associated with the Earth’s rotation, C, Fig. (6). Just
as on the merry-go-round, this centrifugal acceleration adds with the gravitational mass attraction to
give the net acceleration, g = g∗ + C, a vector (field) whose direction and magnitude we can measure
with a plumb bob and by observing the period of a simple pendulum. A surface that is normal to the
gravitational acceleration vector is said to be a level surface, and is given by the surface of a water body
that is at rest (in the rotating frame), since a fluid at rest can sustain only normal stresses, i.e., pressure.
Thus the measurements of vertical or level that we can readily make necessarily include the centrifugal
force.23 (The detailed shape of the Earth is thus a bit of a red-herring for the central purpose here,
albeit an interesting one that is of great importance in other phenomenon.) The upshot of all of this is
that the rotating frame equation of motion applied in an Earth-attached reference frame, Eq. (2), does
not include a centrifugal force associated with Earth’s rotation, and of course neither does it show the
balancing, tangential component of the gravitational mass attraction.



4 APPLICATION TO ROTATING FLUIDS AND TO EARTH. 22

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

g* 
g 

c 

sphere 
ellipse 

Ω

0 10 20 30 40 50 60 70 80 90
0

1

2

3
x 10

4

colatitude, degrees

d
is

p
la

c
e

m
e

n
t,
 k

m
Figure 6: (left) The gravitational acceleration due to mass attraction is shown as the vector g∗ that points
to the center of a spherical, homogeneous planet. The centrifugal acceleration, C, associated with the
planet’s rotation is directed normal to and away from the rotation axis. The combined gravitational and
centrifugal acceleration is shown as the heavier vector, g. This vector is in the direction of a plumb line,
and defines vertical. A surface that is normal to g similarly defines a level surface, and has the approximate
shape of an oblate spheroid (the solid curve). The ellipse of this diagram has a flatness F = 0.1 that
approximates Saturn. Earth’s flatness is much less, only about 0.0033, but highly significant. (right)
The displacement of Earth’s surface that is required to give a horizontal component of gravitational mass
attraction that just balances the horizontal component of centrifugal force due to Earth’s rotation. This
displacement added onto a sphere gives an excellent approximation to the actual shape of the Earth,
nearly an oblate spheroid (this displacement is the distance between the sphere and the ellipse at left).
The displacement at the equator (colatitude = 90 degrees) shown here, 21.5 km, is taken from observations
and the integration constant of Eq. (43) was set to zero at the pole.

4.2 Coriolis force for motions in a thin, spherical shell

The application of the Coriolis formalism to geophysical flows requires a further small elaboration
because the rotation vector makes a considerable angle to the vertical except at the poles. An
Earth-attached coordinate system is usually envisioned to have ex in the east direction, ey in the north
direction, and ez in the radial direction. The rotation vector Ω thus makes an angle φ with respect to
the local horizontal x′, y′ plane, where φ is the latitude of the coordinate system and thus

Ω = 2Ωcos (φ)ey + 2Ω sin (φ)ez.

If V′ = U ′ex + V ′ey + W ′ez, then the Coriolis force is

2Ω×V′ =

(2Ω cos (φ)W ′ − 2Ω sin (φ)V ′)ex + (2Ω sin (φ)U ′ − 2Ω cos (φ)W ′)ey + 2ΩU ′ sin (φ)ez. (44)

Large scale geophysical flows are very flat in the sense that the horizontal components of wind or
current are very much larger than the vertical component, U ′ ∝ V ′ � W ′, simply because the oceans



4 APPLICATION TO ROTATING FLUIDS AND TO EARTH. 23

and the atmosphere are quite thin, having a depth to width ratio of about 0.001. The ocean and
atmosphere are stably stratified in the vertical, which still further inhibits the vertical component of
motion. For these large scale (in the horizontal) flows, the Coriolis terms multiplying W ′ in the x and y

component equations are thus very much smaller than the terms multiplied by U ′ or V ′ and as an
excellent approximation may be ignored. The Coriolis terms that remain are those having the sine of
the latitude, and the important combination

f = 2Ω sin φ (45)

is dubbed the Coriolis parameter. In the vertical component of the momentum equation the Coriolis
term is usually much smaller than the gravitational acceleration, and so it too is usually dropped. The
result is the thin fluid approximation of the Coriolis force,

2Ω×V′ ≈ f×V′ = fV ′ex + fU ′ey, (46)

in which only the horizontal components due to horizontal motions have been retained (f is f times the
local vertical unit vector). Notice that the Coriolis parameter f varies with the sine of the latitude,
having a zero at the equator and maxima at the poles; f < 0 for southern latitudes.24 For problems that
involve particle displacements, L, that are very small compared to the radius of the Earth, R, a
simplification of f is often appropriate. The Coriolis parameter may be expanded in a Taylor series
about a central latitude, y0,

f(y) = f(y0) + (y − y0)
df

dy
|y0 +HOT (47)

and if the second term is demonstrably much smaller than the first term, which follows if L � R, then
the second and higher terms may be dropped to leave f = f(y0), a constant. Under this so-called
f -plane approximation25 the period of inertial motions, P = 2π/f , is just a little bit less than 12 hrs at
the poles, a little less than 24 hrs at 30 N or S, and infinite at the equator (recall the discussion of
sidereal and solar days in Ref. 15). The period of inertial motions is sometimes said to be half of a
’pendulum day’, the time required for a Foucault pendulum to precess through 2π radians.26

4.3 Why do we insist on the rotating frame equations?

We have emphasized that the rotating frame equation of motion has some inherent awkwardness,
namely the Coriolis force and the loss of Galilean invariance. However, the gain in simplicity when
analyzing the motions of the atmosphere and ocean more than compensates. The reasons are several,
but primarily that the inertial frame velocity consists of the solid body rotation plus the relative
velocity,27 V = VΩ + V′, with the former being very much larger than the latter;
VΩ = ΩRecos(latitude), where Re is earth’s radius, 6350 km, and thus VΩ ≈ O(500) m s−1 near the
equator. This very large velocity is accelerated centripetally, and is balanced by a centripetal force
associated with the ellipsoidal shape of the Earth discussed in Section 4.1. This centripetal force is
larger than the Coriolis force in the ratio VΩ/V ′ that is O(10) or more. The inertial frame equations
have to account for all of this explicitly and yet our interest is almost always the small relative motions
of the atmosphere and ocean, since it is the relative motion that transports heat and mass over the
Earth. In that important regard, the velocity associated with the solid body rotation of the Earth,
atmosphere and ocean is invisible, no matter how large it is. As well, when we observe the winds and
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ocean currents we almost always do so from a reference frame that is fixed to the Earth. Given that our
goal is to solve for or observe the relative velocity, then the rotating frame equations are generally much
simpler and more appropriate than are the inertial frame equations. In this section we will analyze the
free oscillations, also called inertial oscillations, to help make this point. The domain is presumed to be
a small region centered on the pole so that latitude = 90 degrees, and the domain is, in effect, flat.

The inertial and rotating frame momentum equations are listed again for convenience using velocity
in place of the previous time rate change of position,

dV
dt

= F/M (48)

dV′

dt
= −2Ω×V′ − Ω×Ω×X′ + F′/M. (49)

Now we are going to assume the result from Section 4.1 that there is a force F due to a tangential
component of gravitational mass attraction that exactly balances the centrifugal force due to Earth’s
rotation, i.e.,

F/M = Ω×Ω×X, (50)

and similarly for the rotating frame. Gravity is otherwise normal to the vertical, and does not effect the
horizontal motions of interest here. All other forces (Coriolis aside) are presumed to vanish. The
momentum equations for the horizontal component of motion are then

dV
dt

= Ω×Ω×X (51)

and
dV′

dt
= − 2Ω×V′. (52)

Thus Eq. (52) is the rotating frame equivalent of Eq. (51) and contains no new physics given that VΩ is
known. The difference in the two equations can be appreciated as we solve for free oscillations under the
realistic condition that V′ � VΩ.

4.3.1 Inertial motions from an inertial frame

Since the motion is almost circular it is appropriate to use the cylindrical coordinate inertial frame
momentum equation, Eq. (30) (horizontal only and dividing out the constant M):

d2r

dt2
− rω2 = −Ω2r, (53)

2ω
dr

dt
+ r

dω

dt
= 0.

The initial condition is presumed to be a small radial perturbation away from a balanced state given by
the solid body velocity, r = Ro, and ω = Ω. Since there is no tangential force, the angular momentum,

A = ωr2 = ΩR2
o
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Figure 7: The terms of the right side of Eq. (55) shown as a function of r. These are proportional to the
force on the particle as it is displaced away from its equilibrium position, δ = 0. The force is restoring,
and nearly linear in the displacement. Small displacements follow a linear oscillator equation having a
frequency twice that given by the centripetal force, −Ω2r, alone.

is a conserved quantity, and can be used to eliminate ω from the radial component equation,

d2r

dt2
− A2

r3
= −Ω2r. (54)

When we solve this equation for r we implicitly move the centripetal acceleration term A2/r3 to the
right side where it becomes a centrifugal force,

d2r

dt2
=

A2

r3
− Ω2r. (55)

This is exactly the kind of manipulation that we used to derive the rotating frame equation of motion
(Section 2.5) but here it seems that we are on the verge of a faux pas - speaking of centrifugal force in an
inertial frame analysis. Indeed, we are, because it is convenient to solve for d2r/dt2 rather than the
radial acceleration per se (the left side of Eq. 54).

As it stands, Eq. (55) is a nonlinear oscillator equation. Our interest is in the case of small
displacements δ away from the balanced state, r = Ro, which leads to a significant simplification.
Substitution of r = Ro + δ into Eq. (54) and expansion in the small parameter δ/Ro shows that small
displacements are governed by the linear equation (Fig. 7)

d2δ

dt2
≈ −4Ω2δ, (56)

which indicates a simple harmonic oscillation at a frequency 2Ω. Of the factor four on the right hand
side, three fourths came from the angular momentum constraint and the remainder from the linear
r-dependence of the radial force.28

If the perturbation is a small radial impulse that gives a velocity V0 then the solution for the radius
is just

r(t) = Ro + δ0 sin (2Ωt), (57)
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where δ0 = V0/2Ω. The corresponding angular rotation rate can be found by using Eq. (57) together
with the angular momentum conservation relation

ω(t) = Ω
R2

o

(R + δ0 sin (2Ωt))2
≈ Ω(1 − 2

δ0

Ro
sin (2Ωt)). (58)

When graphed, these show that the particle moves in an ellipsoidal orbit, Fig. (8, left), that crosses the
(balanced) radius r = Ro four times per complete orbit. The rotating frame turns through 180 degrees
just as the particle returns to r = Ro the second time, after completing a full cycle of the oscillation.
Over the next cycle the rotating frame turns through another 180 degrees. Thus when viewed from the
rotating frame (Fig. 8, right), the particle appears to be going around in a circle with a frequency of
twice Ω29. Had we taken the initial condition to be a small impulse in the azimuthal direction, the result
would have been an altered phase of the oscillation, but all else the same.

4.3.2 Inertial motion from the rotating frame

How does this motion look when viewed from the rotating reference frame? It is convenient to expand
the rotating frame momentum equation in Cartesian coordinates, and since we have resticted the
analysis above to small displacements we can utilize the f-plane approximation that takes f as a
constant, and thus

du′

dt
= fv′ (59)

dv′

dt
= −fu′.

Given that the initial condition is an impulse V0 in the y-direction then the solution is just

u′ = V0 sin (ft), v′ = V0 cos (ft), (60)

x′ = δ0(1 − cos (ft)), y′ = δ0 sin (ft).

These correspond exactly to the result found in the inertial frame analysis (cf. Fig. 8, right), but were
much simpler to obtain in large part because we did not have to deal with the solid body rotation but
only the relative velocity that was of interest. The velocity of the particle seen from the rotating frame
makes a clockwise rotation at a rate of f in a direction that is opposite the rotation Ω. From the
rotating frame perspective, the rotation of the velocity vector is attributable to deflection by the Coriolis
force. This kind of motion, termed an inertial oscillation,30,31 is frequently observed in the upper ocean,
especially, and will be seen again in Section 5.

5 Adjustment to gravity, rotation and friction.

The last problem we consider gives some insight into the establishment of a geostrophic momentum
balance, which, as noted in the opening section, is the defining characteristic of large scale flows of the
atmosphere and ocean. We will model the motion of a single particle32 on a rotating Earth (so there is
no centrifugal force) and that is subjected to a force that is suddenly turned on at t = 0. This force
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Figure 8: The two-dimensional trajectory of a particle subject to a centripetal force, −rΩ2 (as if it were
on a frictionless parabolic surface). The initial velocity was a solid body rotation in balance with the
centripetal force, and a small radial impulse was then superimposed. In this case the ratio V ′/VΩ ≈ 0.2,
which is far larger than actually occurs. The left column shows the resulting ellipsoidal trajectory as seen
from an inertial frame, along with the circular trajectory that is seen from a rotating frame (indicated by
the rotating, solid unit vectors). The right column shows the trajectory as seen from the rotating frame
only, along with the solution computed in the rotating frame shown as green dots. These latter lie exactly
on top of the ’observed’ trajectory and are very difficult to discern in this figure. See instead the script
Coriolis.m4 that includes this and a number of other cases.
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could be a wind stress, a pressure gradient, or the buoyancy force on a relatively dense particle sitting
on a sloping sea floor. This latter has the advantage of being similar to the gravitational force due to a
tilted Earth’s surface (Section 4.1), and so we will take the force to be buoyancy, b = g δρ

ρo
times the

bottom slope ∇h = αey, with δρ the density anomaly of the particle with respect to its surroundings
(assumed constant), h the bottom depth and α the slope of the bottom. The depth h is presumed to
vary linearly in y only and hence this buoyancy force will appear in the y-component equation only. If
the particle is in contact with a sloping bottom, then it is plausible that the momentum balance should
include a frictional term due to bottom drag. The task of estimating an accurate bottom drag for a
specific case is beyond the scope here, and so we will represent bottom drag by the simplest linear33 (or
Rayleigh) drag law in which the drag is presumed to be proportional to and antiparallel to the velocity
difference between the current and the bottom, i.e., bottom drag = −k(V −Vbot). Of course the ocean
bottom is at rest in the rotating frame and so Vbot = 0 and is omitted from here on. From observations
of ocean currents we can infer that a reasonable value of k for a density-driven current on a continental
shelf is k = 1/10 days−1. Thus k is roughly an order of magnitude smaller than a typical mid-latitude
value of f . Since k appears in the momentum equations in the same way that f does, we can anticipate
that rotational effects will be dominant over frictional effects. The momentum equations from a rotating
frame are then:

dU

dt
= fV − kU, (61)

dV

dt
= −fU − kV + bα,

and we assume initial conditions U(0) = 0, V (0) = 0. The depth of the particle can be computed
diagnostically from the y position and the known slope. Notice that we have dropped the superscript
prime that had previously been used to indicate the rotating frame variables and we have used the thin
fluid approximation for the Coriolis terms. We also use the f−plane approximation that f = constant
since typical particle displacements are very small compared to the Earth’s radius. The solutions of this
linear model are not complex,

U(t) =
bα

k2 + f2
[f − exp (−tk)(f cos (ft) − k sin (ft))] , (62)

V (t) =
bα

k2 + f2
[k − exp (−tk)(f sin (ft) + k cos (ft))]

though they do contain three parameters along with the time, and hence represent a fairly large
parameter space. We are not interested in any one solution as much as we are in understanding the
qualitative effects of rotation and friction upon the entire family of solutions. How can we display the
solution to this end?

One approach of great generality is to rewrite the governing equations or the solution using
nondimensional variables. This will serve to reduce the number of parameters to the fewest possible. To
define these nondimensional variables we begin by noting that there are three external parameters in the
problem (external in that they do not vary with a dependent variable): the buoyancy and bottom slope,
bα, which always occur in this combination, the Coriolis parameter, f , an inverse time scale, and the
bottom friction coefficient, k, also an inverse time scale. To form a nondimensional velocity,
U∗ = U/Ugeo, we have to make an estimate of the velocity scale as the product of the acceleration and
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the time scale f−1 as Ugeo = (bα)/f and thus U∗ = U/(bα/f) and similarly for the V component. To
define a nondimensional time we need an external time scale and choose the inverse of the Coriolis
parameter, t∗ = tf , rather than k−1, since we expect that rotational effects will dominate frictional
effects in most cases of interest. Rewriting the governing equations in terms of these nondimensional
variables gives

dU∗

dt∗
= V ∗ − EU∗, (63)

dV ∗

dt∗
= −U∗ − EV ∗ + 1, (64)

and initial conditions U∗(0) = 0, V ∗(0) = 0. The solution

U∗(t∗) =
1

1 + E2
[1 − exp (−Et∗)(cos (t∗) − E sin (t∗))] , (65)

V ∗(t∗) =
1

1 + E2
[E − exp (−Et∗)(sin (t∗) + E cos (t∗))] ,

U∗ =
U

bα/f
, t∗ = tf, and E = k/f,

shows explicitly that the single nondimensional parameter E = k/f serves to define the parameter space
of this problem.34 E, often termed the Ekman number, is the ratio of frictional to rotational forces on
the particle. Thus we probably shouldn’t speak of large friction or large rotation, but rather of large or
small E.

5.1 Inertial and geostrophic motion

The solution is made up of two modes: a time-dependent, oscillatory part, ∝ cos (t∗), sin (t∗), which is
the now familiar inertial oscillation.35 These oscillations are the consequence of starting from rest (or
not in a steady balance), and decay with an e-folding time of E−1 (the dimensional period of the
oscillation is f/2π and the e-folding is in 1/E of these periods). If we had ignored bottom friction the
inertial oscillations would persist. There is also a steady (or time mean) mode ∝ [1, E]. If E is small,
then the long term displacement of the particle is in a direction almost perpendicular to the applied
force, Fig. (9). If the applied force is due to a pressure gradient or buoyancy force, the time-mean
velocity is said to be geostrophic, and is the first approximation to the momentum balance of most large
scale currents and winds (tides being an exception). The effect of drag on the time-mean motion is to
cause a down-slope component of order E compared to the along slope component, and thus a particle
will cross isobaths toward greater depth at an angle (Fig. 9 (right)) given by the Ekman number,

V ∗
U∗ = E.

In this linear model the amplitude of the response is directly proportional to the forcing,
Ugeo = bα/f . For a dense water particle on a typical continental slope rough values are
b = g(δρ)/ρ0 ≈ g1.0/1000 = 10−2 m sec−2, α = 5×10−3, and f at 45 degrees latitude = 1.0×10−4 sec−1,
and thus a typical geostrophic density current has a speed Ugeo = 0.5 m sec−1.
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Figure 9: (left) Trajectories of dense particles released from rest onto a sloping bottom. The buoyancy
force is toward positive y. The Ekman number, E, has the value shown. Notice that for values of E
small compared to 1 the long term displacement is nearly at right angles to the imposed force, indicative
of geostrophic balance. (right) A plan view of the slope with vectors indicating the force balance (solid
arrows) and the time-mean motion (the dashed vector) for the time-mean of the case E = 0.2. The angle
of the velocity with respect to the isobaths is E = k/f , the Ekman number. The Coriolis force is labeled
−f ×V where f is f times a vertical unit vector.

5.2 Energy budget

The energy budget for the particle makes an interesting diagnostic. To find the energy budget (per unit
mass) we simply multiply the x-component momentum equation by U and the y-component equation by
V and add:

d(U2 + V 2)/2
dt

= −g̃αV − k(U2 + V 2) (66)

and then integrate with time to calculate the energy changes and net work;

(U2 + V 2)/2 = −g̃∆h −
∫ t
o k(U2 + V 2)dt

KE = ∆PE − FW

(67)

with FW the net frictional work (Fig. 10). The Coriolis force drops out of the energy budget since it is
normal to the current and hence does no work. Nevertheless, the Coriolis force has a profound effect on
the energy budget overall, as can be appreciated by noting that if f = 0, the particle would descend the
gradient of the topography, releasing potential energy much faster than shown here, and of course also
causing much greater frictional work. Thus, rotation has the effect of slowing the rate of potential
energy release. If friction were zero, then the time-averaged motion would be perpendicular to the
applied force and the particle would simply coast along with no energy exchanges. This is the single
particle analog of geostrophic motion noted in the opening paragraph of Section 1.37
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Figure 10: The energy budget for the trajectory of Fig. (9) having E = 0.04. These data are plotted in
nondimensional form.

6 Summary and closing remarks.

This essay has been a rather slow and careful journey from Eq. (1) to Eq. (2)38, with the goal being to
understand better the dynamics of a rotating reference frame, and especially the Coriolis force that
results. The first and essential step was to transform an acceleration defined in an inertial frame into a
steadily rotating frame. The transformation law defined by Eqs. (26) or (27) can be derived without the
need for approximation, and shows that there are two terms required in the transformation — the
Coriolis term, 2Ω×V′, and the centrifugal term, Ω×Ω×V′. In the special case of an Earth-attached
reference frame, the centrifugal term is exactly canceled by a component of the gravitational mass
attraction, and so drops out of the equation of motion, leaving only the Coriolis force. For small scale
motions or motions strongly affected by friction, the Coriolis force may be entirely negligible. For the
large scale motions of the atmosphere and ocean the effects of Earth’s rotation are of qualitative
importance. There are two important modes of motion that are directly attributable to rotation:
inertial oscillations result when there is a balance between the time rate of change and the Coriolis force,
and geostrophic flow results when a pressure gradient balances the Coriolis force. A geostrophic
momentum balance is perhaps the distinguishing characteristic of the major wind and current systems
of Earth’s atmosphere and ocean outside of equatorial regions.

To close we will try to summarize a response to the last and most important of the questions raised
in Section 1.2 — What is the Coriolis force, and what should we call it? Before we respond to this we
should recognize that if we had the ability to compute trajectories in an inertial frame, we could then
transform those trajectories into the rotating frame and would never have to consider the Coriolis force.
An example of this procedure was shown in Section 3.2. However, inertial frame solutions are almost
never attempted for oceanic and atmospheric flows, which in practice are much better analyzed from an
Earth-attached rotating frame. Once we decide to use a rotating reference frame, then the centrifugal
and Coriolis forces are exact consequences of the transformation of the equation of motion to a steadily
rotating frame; there is nothing ad hoc or discretionary about the centrifugal and Coriolis force.4

What we call the Coriolis term, i.e., whether an acceleration or a force, is a matter of choice,
though our usage should be consistent with our interpretation. The former is sensible in so far as the
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Coriolis term arises from the transformation of acceleration, and too because it is independent of the
mass of the particle. However, when we use an Earth-attached, rotating reference frame we seek to
analyze (and necessarily observe) the acceleration seen in the rotating frame, d2X′/dt2, and not the
rotated acceleration (Section 2.5). If we reserve the phrase acceleration to mean the unknown that we
solve in a momentum equation, then all the other terms, including the Coriolis term, are perforce,
considered to be forces. Thus when we ascribe a direction to the Coriolis term it is almost always in the
sense of a force, rather than an acceleration (e.g., as in the force balance of Fig. 9). These last
considerations favor the usage ’Coriolis force’, that we have followed here.

The Coriolis and centrifugal forces arise solely from the rotation of a reference frame, rather than as
the result of a two-way interaction between physical objects, and this leads to some peculiar behavior.
Recall the rotating frame, elementary trajectory of Section 3.2; the Coriolis force was deemed to deflect
the particle, but we couldn’t point to anything in the environment that revealed the corresponding
reaction force. Even more alarming, the centrifugal force seemed to be an infinite source of work on the
particle, at no cost. The rotating frame equation of motion thus does not support a global energy and
momentum balance and neither does it preserve invariance to Galilean transformations. In that respect
the Coriolis and centrifugal forces are clearly different from gravity or friction, say, and so it is also
appropriate to call the Coriolis an ’apparent’ force to acknowledge its origin in kinematics and in our use
of an Earth-attached reference frame.
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of highly relevant geophysical and astrophysical phenomenon.

[6] Textbooks on geophysical fluid dynamics emphasize mainly the consequences of Earth’s rotation. A.
E. Gill, Atmosphere-Ocean Dynamics (Academic Press, NY, 1982), J. R. Holton, An Introduction to
Dynamic Meteorology, 3rd Ed. (Academic Press, San Diego, 1992). A particularly thorough account
of the Coriolis force, including examples not emphasized here, is by B. Cushman-Roisin,
Introduction to Geophysical Fluid Dynamics (Prentice Hall, Engelwood Cliffs, New Jersey, 1994).

[7] There are engineering and industrial applications of the Coriolis force as well. For example, the
Coriolis force is exploited by transducers that measure angular velocity required for vehicle control
systems, http://www.siliconsensing.com, and to measure mass transport in fluid flow,
http://micromotion.com.

[8] There are several essays or articles that, like this one, aim to clarify the Coriolis force. A fine
treatment in great depth is by H. M. Stommel and D. W. Moore, An Introduction to the Coriolis
Force (Columbia Univ. Press, 1989). A detailed treatment of particle motion including the still
unresolved matter of the southerly deflection of dropped particles is by M. S. Tiersten and H.
Soodak, ’Dropped objects and other motions relative to a noninertial earth’, Am. J. Phys., 68(2),
129–142 (2000). Another is by D. H. McIntyre, ”Using great circles to understand motion on a
rotating sphere,” Am. J. Phys., 68(12), 1097–1105 (2000). This last article has an accompanying
web page, http://www.physics.orst.edu/∼mcintyre/coriolis/

[9] The text is meant to be accompanied by four Matlab scripts — rotation.m, Coriolis.m,
Coriolis-forced.m and partslope.m — that can be recovered from the Mathworks File Central
archive, where the file name is Coriolis in the Earth Science section, or from the author’s
anonymous ftp site: http://www.whoi.edu/science/PO/people/jprice/misc/welcome.html

[10] This brief review of reference frame rotation serves mainly to introduce notation. If the idea of the
rotation matrix is not already familiar, then see, e.g., Ch. 3 of M. L. Boas, Mathematical methods in
the physical sciences, 2nd edition, John Wiley and Sons (1983), an excellent reference for
undergraduate-level applied mathematics. Also, take the time to verify Eqs. (6) through (11) by
direct experimentation; if these equations do not have a concrete meaning for you, then the
remainder of this important section will be for naught.

[11] To see that this holds for all vectors, imaging taping vectors (paper arrows) onto a turntable —
some in the middle, some on the outside, and with random orientations. Once the turntable is set
into rotation, all of the vectors will necessarily rotate at the same rate, Ω, regardless of their
position or orientation (assuming that they are all parallel to the plane of the turntable). If instead
we orient the vectors so that they are normal to the plane of the turntable, then rotation will have
no effect upon their amplitude or direction.
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[12] To warm up for this, compute the second time derivative of sin(θ)a(t), where θ = const + Ωt and
a(t) is some differentiable function of time and compare to Eq. (21). Now suppose that θ is an
arbitrary function of time. The new term proportional to the acceleration of angular position is
sometimes referred to as the Euler force when it appears in a momentum equation.

[13] Centrifugal and centripetal mean center-fleeing and center-seeking, respectively, and may be used
indicate the sign of a radial force, for example. However, these phrases are very commonly used to
mean the specific term ω2r, i.e., centrifugal force when it is on the right side of an equation of
motion and centripetal acceleration when it is on the left side.

[14] This phrase, ’fixed stars’, sounds archaic but has a real significance in this context. The distant,
fixed stars are presumed to be a proxy for the spatially-averaged mass of the universe, which, so far
as is known, define an inertial reference frame. This grand idea was expressed by the German
philosopher/physicist Ernst Mach, who insisted that only relative position or motion was
meaningful, and that acceleration (linear or rotational) relative to the mass of the entire universe
would give rise to inertia (see, e.g., M. Born, Einstein’s Theory of Relativity, Dover Publications
(1962)).

[15] The Earth’s motion through space is much more complex than a spin around the polar axis. Among
other things the Earth orbits the sun in a counterclockwise direction with a rotation rate of 1.9910
×10−7 sec−1. This is only about 0.3% of the rotation rate Ω, but the question we pose here is does
this orbital motion enter the Coriolis force, or otherwise effect the dynamics of the atmosphere and
oceans? The short answer is no and yes. We have already fully accounted for the rotation of the
Earth when we measured the rotation rate with respect to the fixed stars and found
Ω = 7.2921×10−5 sec−1. Whether this rotation is due to a spin about an axis centered on the Earth
or due to a solid body rotation about some displaced center is not relevant for the Coriolis force per
se. However, since Earth’s polar axis is tilted significantly from normal to the plane of the Earth’s
orbit, and since the polar axis remains nearly aligned on the North Star throughout an orbit, we
can ascribe the rotation Ω to spin alone.
The orbital motion about the sun gives rise to tidal forces, which are small but important spatial
variations of the centrifugal/gravitational balance that holds for the Earth and Sun as a whole (see,
e.g., French5).
The inverse of Earth’s rotation rate defines a period called the sidereal day, 2π/Ω = 23 hrs, 56 min
and 9 sec, the time interval between the meridian transit of a given, fixed star. Because the Earth’s
orbit is leisurely compared with its rotation rate, the duration of the sidereal day is within about
0.3% of the usual (solar) day, and the two are sometimes not distinguished. For rough numerical
estimates that may be acceptable, but for our purpose the sidereal and solar days are qualitatively
different, and it is the former that measures the Earth’s rotation rate with respect to the mass of
the universe (rather than with respect to the Sun only).
What is the rotation rate of the Moon? Hint - make a sketch of the Earth-Moon orbital system and
consider what we observe of the Moon from Earth.
Earth’s rotation rate varies slightly but detectably along with the Earth’s moment of inertia, due in
part to changes in the atmosphere and ocean circulation and mass distribution within the
cryosphere, see B. F. Chao and C. M. Cox, ”Detection of a large-scale mass redistribution in the
terrestrial system since 1998,” Science, 297, 831–833 (2002), and R. M. Ponte and D. Stammer,
”Role of ocean currents and bottom pressure variability on seasonal polar motion,” J. Geophys.
Res., 104, 23393–23409 (1999). The inclination of Earth’s axis of rotation varies by a few degrees
on a time scale of several tens of thousands of years and the direction of the rotation axis precesses
on a similar time scale due to gravitational interactions between the Earth, the Moon and the
nearest planets. These small variations of the Earth’s orbital parameters appear to be an important
element of Earth’s climate since they give rise to long-time scale variations in the amplitude of
seasonality, see, e.g., J. A. Rial, ”Pacemaking the ice ages by frequency modulation of Earth’s
orbital eccentricity,” Science, 285, 564–568 (1999).
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[16] Other authors, and notably Stommel and Moore,8 indicate that there is a possible ”physical”
understanding of the Coriolis force, and so perhaps this is a matter of what we call things, rather
than what they are, since we all agree on Eq. (2). There is a positive point to be made here,
however, and that is to emphasize the fundamental importance of the kinematics developed in
Section 2.

[17] The steady linear translation of a reference frame has no effect upon the (Newtonian) dynamics
observed from that reference frame. This is also called Galilean invariance. By contrast, a steady
rotation rate renders a reference frame non-inertial, the departure depending upon the magnitude
of the rotation rate as measured by the angular velocity of fixed (very distant) stars. Rotation of a
reference frame is thus qualitatively different from the translation of a reference frame. This
crucially important point is discussed further by J. Schwinger, Einstein’s Legacy, Dover
Publications (1986) and Born14, both of which are highly recommended.

[18] A well-thrown baseball travels at about 45 m s−1. How much will it be deflected as it travels over a
distance of 30 m? Use the nominal Earth’s rotation rate (as we will see in Section 4.2 this is
appropriate for the north pole). A long-range artillery shell has an initial speed of about 700 m s−1.
Assuming the shell is launched at angle to the ground of 30 degrees, how much will it be deflected
over its trajectory (ignoring air resistance)?

[19] Imagine riding along on the projectile. After launch (and before returning to the ground) the
projectile is in free fall and is a zero-g or weightless environment. This is the same whether the
reference frame rotates or not. On the other hand, the view out the window would be quite
surprising if the reference frame were rotating.

[20] A comprehensive source for physical data on the planets is by C. F. Yoder, ”Astrometric and
geodetic data on Earth and the solar system,” Ch. 1, pp 1–32, of A Handbook of Physical
Constants: Global Earth Physics (Vol. 1). American Geophysical Union (1995).

[21] This model underestimates the actual displacement by almost a factor of 2. The reason is mainly
that the mass displaced from the pole towards the equator causes the gravitational mass attraction
to differ from that of a perfect sphere (assumed in writing Eq. 42) by having a small equatorward
component. The mathematics required to account for this change in the mass distribution take us
far afield from our main topic; see Ch. 9 of Stommel and Moore.8

[22] The flatness of a rotating planet is F = (Re − Rp)/Re ≈ Ω2Re/g. If the gravitational acceleration g
is written in terms of the planet’s mean density, ρ and the mean radius then

F =
Ω2

4
3πGρ

,

where G = 6.67×1011 m3 kg−1 s−2 is the universal gravitational constant. The rotation rate and
the density vary a good deal among the planets, and consequently so does the flatness. The most
extreme case is that of the gas giant, Saturn, which has a rotation rate a little more than twice that
of Earth and a very low mean density, about one eighth of Earth’s. Saturn’s flatness is large
enough, F ≈ 0.10 that it can be discerned through a good backyard telescope (Fig. 6).

[23] This important point may be easier to appreciate in a simpler geometry. Linear, Accelerated
Motion. Imagine a tank containing a fluid that is subjected to a constant, linear horizontal
acceleration of magnitude βg, where g is the nominal gravitational acceleration. To an observer in
the frame of the accelerating tank, the entire effect of this constant acceleration is as if gravity has
changed direction and magnitude. The new vertical direction can be observed by a plumb bob.
Once the transients die away and the fluid settles into a state of rest in the frame of the accelerating
tank, this new vertical direction will be perpendicular to the free surface of the fluid and surfaces of
constant hydrostatic pressure will be parallel to the tilted free surface. The magnitude of the new g

will be greater than the nominal value by the factor
√

1 + β2. To an observer outside of the tank, a
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fluid parcel will appear to be accelerating (horizontally) at a rate βg due to the hydrostatic pressure
gradient set up by the tilted free surface. Circular Motion. Now imagine that the tank is rotating
steadily at a rate Ω about the center. When the fluid reaches a steady (solid body) rotation the free
surface will assume a parabolic displacement, η = Ω2r2/2g, so that the resulting hydrostatic radial
pressure gradient provides the centripetal force required to balance the centripetal acceleration. The
remarks above regarding an observer who is within the rotating tank applies here as well.

[24] Consider motion that is either horizontal or vertical; can you relate the dependence of f upon
latitude to the orientation of vectors on a turntable noted in Ref. (11)?

[25] The next approximation to Eq. (47) is to retain the first order term, with the symbol β often used
to denote the first derivative, viz., f = f0 + (y − y0)β, the beta-plane approximation. A profound
change in dynamics follows on this seemingly small change in the Coriolis parameter (see Refs. 6).

[26] The effect of Earth’s rotation on the motion of a simple (one bob) pendulum, called a Foucault
pendulum in this context, is treated in detail in many physics texts by e.g., Marion,5 and will not
be repeated here. Here are a few questions, however. Can you calculate the Foucault pendulum
motion by rotating the inertial frame solution? How does the time required for precession through
360 degrees depend upon latitude? What happens when the pendulum’s natural frequency (in the
absence of Earth’s rotation) equals the Earth’s rotation rate? Given the rotated trajectory, can you
show that the acceleration for very short times is consistent with the rotating frame equations of
motion?
A Foucault pendulum can be easily made and used to make relevant observations. There are two
properties of the pendulum that require some attention: First, the decay rate must be sufficiently
slow that the pendulum will maintain most of its energy for a time of at least 20-30 min. This is
most easily achieved by using a dense, smooth and symmetric bob having a weight of about half a
kilogram or more, and suspended on a fine, smooth monofilament line. It is helpful if the length can
be made several meters or more. Second, the pendulum should not interact appreciably with its
mounting and certainly should not be turned by the mounting. This is hard to evaluate, but
generally requires a very rigid support, and a bearing that can not exert torque, for example a
needle bearing of some kind.
You should plan to bring a simple and rugged pocket pendulum with you on your merry-go-round
ride (Section 3.2), where rotational effects are not the least bit subtle. How do these observations
(even if qualitative) compare with your solution for a Foucault pendulum?

[27] This ignores other, even larger motions of the Earth, the orbital motion around the Sun (noted
already in Ref. 15), the motion of our Solar System within the Milky Way Galaxy, and the motion
of the local galaxy cluster (and see French5). These very large velocities are not associated with
strong accelerations, and so are not relevant to our purpose here.

[28] Throughout this essay we consider exclusively the case of solid body rotation since that’s what
coordinate system rotation amounts to. It is possible to have other kinds of rotation that might
describe, say, the radial dependence of the azimuthal velocity in a fluid vortex (a circular motion).
There too the solid body rotation is an important case, but other kinds of vortices are also quite
common. For example, the vortex that forms in a drain or that spills off of the edges of a paddle
that has been pushed through water will have an azimuthal velocity that goes like

Uθ ∝ r−1,

(except very near the center and at great distances from the center). This kind of vortex is known
as an irrotational or free vortex. It would be useful for you to carry through the kind of calculation
we did for a solid body rotation to find the frequency of small perturbations to that kind of vortex
flow. Now a more general problem - under what circumstances would a perturbation grow rather
than oscillate, as we found above? A suggestion - consider simple power law velocity profiles, i.e.
Uθ ∝ rn, and find the circumstance (the n) that causes the frequency to become real so that a
perturbation grows exponentially in time.
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[29] Can you derive the inertial motion trajectory by rotating the inertial frame trajectory that
corresponds to Eq. (51)? Assume the simplest initial conditions. Given the rotating frame
trajectory, can you verify that the acceleration is indeed consistent with the rotating frame
momentum equation?

[30] The name ’inertial oscillation’ is very widely accepted but is not highly descriptive of the dynamics
in either the inertial or rotating reference frame. For the rotating frame, ’Coriolis oscillation’ might
be more appropriate, and see D. R. Durran, ”Is the Coriolis force really responsible for the inertial
oscillation?” Bull. Am. Met. Soc., 74(11), 2179–2184 (1993).

[31] We noted in Section 1.1 that the rotating frame equations of motion do not satisfy a global
momentum conservation or Galilean invariance. The former can be seen by noting that if all forces
except Coriolis were zero, and the initial condition included a velocity, then that velocity would be
continually deflected and change direction (as an inertial oscillation) with nothing else showing a
reaction force; i.e., global momentum would not be conserved. The failure is, however, a soft one in
the sense that the Coriolis force is not a source of momentum or energy. And, when a ’real’ force F
produces a change of momentum, the corresponding reaction force −F generates the
complementary change of momentum that would then undergo a compensating Coriolis deflection.

[32] The applicability of our single-particle model to the interpretation of geostrophic adjustment of a
fluid continuum is, admittedly, unclear. I will make the following claim on behalf of the
single-particle model: everything that happens in the single-particle model occurs as well in the
fluid model. The converse is certainly not true, however, and once you understand this
single-particle model you should continue on with a study of a fluid model. To experiment with a
simple fluid model of geostrophic adjustment you might try the Matlab script geoadjPE.m, also
available from the author’s web page4.

[33] A linear drag law of this sort is most appropriate as a model of viscous drag in a laminar boundary
layer within which τ = µ∂U

∂z , where µ is the viscosity of the fluid. The boundary layer above a rough
ocean bottom is almost always fully turbulent above a very thin, O(10−3 m), laminar sublayer. If
the velocity used to estimate drag is measured or analyzed at a depth in the fully turbulent
boundary layer then the appropriate drag law can be approximated as being independent of the
viscosity and so is quadratic in the velocity, τ ∝ ρU2.

[34] This use of nondimensional variables, though highly economic of parameters, does add an
additional layer of abstraction to the analysis, and an occasional reminder of the dimensional
variables can be very helpful. We also have to remind the reader of our nondimensional scheme, as
there are usually several plausible ways to accomplish the same thing. For example, in this case we
could have plausibly used 1/k to nondimensionalize the time. How would this change the result?

[35] The Coriolis force is identical in form to the Lorentz force, F = qV×B, on a moving, charged
particle in a magnetic field B. Aside from the bottom drag, the motion of a dense particle on a
slope is analogous to that of a charged particle that is accelerated in a uniform electric field and a
perpendicular magnetic field. For example, if the particle is moving through a uniform magnetic
field only, it will move in a circular orbit with the cyclotron frequency, qB/M , analogous to an
inertial oscillation at the frequency 2Ω sin(latitude).

[36] How would geostrophic adjustment look if viewed from an inertial frame, as in Fig. 8? Consider that
there is an initial, balanced solid body rotation, and then impose a small radial or azimuthal force.
Compare your (qualitative) result with the solution computed by the script Coriolis-forced.m.9

[37] This solution of the single particle model might give the impression that a geostrophic balance is
almost inevitable on a rotating Earth, but there are three restrictions that limit this result mainly
to motions of the ocean and atmosphere (including on planets other than Earth) that are free, large
scale, and extratropical. Our single particle model gives a clear and relevant indication of only the
first of these. Free Motions. Frictional drag must be very small in an absolute sense, and more to
the point, small compared to the rotation rate as measured by the Ekman number. This holds well
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for the atmosphere and ocean outside of bottom boundary layers, often termed the free atmosphere
(or ocean). Large Scale Motions. A second restriction is that the external force must persist for
at least a significant fraction of an inertial period, and the domain must be large enough that
boundaries do not block the motion over at least similar time scales. In the case of a dense water
particle sliding down a continental slope this requires that the slope have a width and length of at
least several tens of kilometers, which is quite common. On the other hand, the flow in a river is
both strongly braked by friction and strongly constrained by river banks. Rotational effects may be
very important (see A. Einstein, The cause of the formation of meanders in the courses of rivers
and of the so-called Baer’s law, In Ideas and Opinions, 249-253. Wings Books, NY, 1954) but a
river flow is usually nowhere near being in geostrophic balance. Extratropical. The third
restriction is to latitudes outside of the tropics, and here our little single particle model could be
positively misleading in that it gives an answer that is qualitatively correct but happens to be
irrelevant. For a given k, E will become very large as the latitude goes to zero and hence we would
conclude that friction will dominate the dynamics within some narrow equatorial zone. This is true
enough for the single particle model, but something quite different holds in the atmosphere or
ocean. The horizontal component of the Coriolis force vanishes on the equator, and so a mass
anomaly generated in the upper ocean by changing winds can not adjust to a geostrophic state.
Friction is not especially important, however. Instead, an equatorial mass anomaly will rather
quickly disperse into large scale gravity waves that then propagate for thousands of kilometers
along the equator. This rapid and far reaching response within a few degrees of the equator is a key
element of the El Nino phenomenon (see Refs. 6) that could not have been anticipated from the
single particle model considered here.

[38] T. S. Eliot could have had the Coriolis force in mind when he wrote (Little Gidding, 1942):

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we began
And to know the place for the first time.


