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Figure 1: This essay is an introduction to dimensional analysis, one of the most valuable tools of ap-

plied mathematics. The essential idea is a change the variables from the usual dimensional variables

to nondimensional variables that are formed from scales natural to the phenomenon. An immediate

benefit, illustrated here, is that the nondimensional variables will be fewer in number than the dimen-

sional variables. These data are tension in the line of a simple pendulum computed during 16 numeri-

cal experiments. In the upper panel, these data are shown in dimensional coordinates, time in seconds

and tension in Newtons. In the lower panel, the same data are shown in nondimensional coordinates

defined from natural scales of a pendulum: time is scaled by (nondimensionalized by) the reduced pe-

riod of small amplitude oscillation,
√

L/g, and tension is scaled by the weight of the bob, Mg. With

these choices, the 16 distinct dimensional solutions collapse into two solutions that differ only by their

initial angular displacement, φo, large or small amplitude (red or blue lines). These graphs present

the same data, but the nondimensional version is far more legible. Better still, it applies to all similar

simple pendulums (similar in this case means the same φo).
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Summary. Dimensional analysis may be applied with advantage to virtually every quantitative

model and data set. In rare but important cases the result of a dimensional analysis will be a nearly

complete solution. More often the result will be a partial solution, an efficient way to display a

large data set, or reliable guidance for simplifying model equations.

A method for performing a dimensional analysis proceeds in three steps. The first step is to

list the dependent variable and all of the independent variables and parameters that are thought to

be significant. The premise of dimensional analysis is that a complete equation made from this list

of variables and parameters, dubbed a VPlist, is best written in nondimensional variables that are

independent of the choice of units, i.e., whether SI or Imperial. The outcome of a dimensional

analysis will be most useful when the VPlist is concise, while also including the most important

variables that define the phenomenon. This requires a compromise that can best be achieved with

reference to observations or numerical solutions.

The second step is calculation of a null space basis of the corresponding dimensional matrix.

Each vector of the null space basis corresponds to a nondimensional variable, the number of which

is less than the number of dimensional variables. This reduction in the number of variables is a key

result of dimensional analysis. The nondimensional variables may themselves be viewed as a basis

set, and in most cases their form will not be determined fully by dimensional analysis alone.

The third and artful step is to choose a form of the nondimensional variables that will

maximize utility and insight. The properties of a null space basis facilitate this process. The most

important choice is the scale used to nondimensionalize the dependent variable. A good strategy is

to compute this scale from a physically motivated even if highly simplified, zero order model for

the dependent variable. The remaining nondimensional variables can then be formed in ways that

define the geometry of the problem or that correspond to the ratios of terms in a model equation,

e.g., the Reynolds number that arises often in models of fluid dynamics.

When applied to data sets, dimensional analysis can help find efficient ways to display a large

data set and thus help find correlations. Aerodynamic drag on a moving object is an important

example. For a given object, i.e. a sphere or a cylinder, a zero order solution for drag can represent

inertial or viscous processes. Either way, the resulting nondimensional drag, often called the drag

coefficient, will depend upon a Reynolds number, Re, alone. The choice of the zero order solution

(inertial or viscous) can be made to minimize the Re-dependence within a subrange of Re.

When applied to model equations, dimensional analysis can help simplify equations by

reducing the number of parameters. If, in addition, the choice of the scales considers magnitude,

then the comparative magnitude of terms in an equation will be evidenced by their nondimensional

coefficients. This scaling analysis sets the stage for simplifications and further analysis.
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1 LEARNING DIMENSIONAL ANALYSIS 5

1 Learning dimensional analysis

This is an introduction to dimensional analysis, one of the most widely useful and rewarding

methods of applied mathematics. It may be applied fruitfully to almost any quantitative model or

data set on topics ranging from dinosaurs1 to donuts2

author and DALL·E 2

and the most fundamental theories of physics.3

Dimensional analysis is most useful, sometimes indispensable, for

problems that have no solvable theory. Dimensional analysis can always

make a little progress towards a solution, and some of these, e.g., the

universal spectrum of inertial-range turbulence and the log-layer profile

of a turbulent boundary layer, are landmarks in fluid mechanics. More

often, the result of dimensional analysis will be a broad hint at the form

of a solution or a more efficient way to display a large data set. The

pendulum data of Fig. (1) are an example: the nondimensional version

of the data is far more legible than is the dimensional version, and

it is far more useful in that it applies to all similar, simple pendulums.

Dimensional analysis can lead to insights that would have been hard to discover in a mass of

dimensional data. The maximum tension in the line of a simple pendulum is found to be

proportional to the mass of the bob, M (not surprising) and independent of the line length, L,

which is not so obvious, Fig. (1), lower. The maximum tension increases significantly with the

amplitude of the motion, set by φo. These results are typical of those coming from dimensional

analysis — seldom complete if taken alone, but nevertheless an important step toward improved

understanding in many investigations.

1.1 The goal and the plan for this essay

The goal is to help you learn a systematic and partially automated method of dimensional analysis

that you will be able to apply to your own research. The key to learning is motivation — why

should you devote your time and energy to this task? With that question in mind, the concepts and

advantages of dimensional analysis are developed in Sec. 2 by treating a familiar problem, the

oscillations of a simple pendulum, using an informal method of dimensional analysis. A more

rigorous and partially automated method of dimensional analysis is described in Sec. 3. This

method is applied to more advanced applications and topics including a damped, viscous pendulum

in Sec. 4, a similarity solution for diffusion in one dimension in Sec. 5, and scaling analysis of

1 Dinosaurs: J. R. Hutchinson and M. Garcia, 2002, ’Tyrannosaurus was not a fast runner’, Nature 415, 1018–1022.
2 Donuts: Delaplace, G., K. Loubire, F. Ducept and R. Jeantet, 2015, Dimensional Analysis of Food Processes, Elsevier,

ISBN : 9781785480409, http://www.iste.co.uk/book.php?id=876.
3 Physics: Wilczek, F., 1999, ’Getting its from bits,’ Nature 397, 303–306 and https://cds.cern.ch/record/403150/
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projectile motion in variable gravity in Sec. 6. Additional applications and homework projects are

in Sec. 7.

1.2 A method of dimensional analysis

The method of dimensional analysis espoused here can be envisioned in three steps, previewed

below and described in detail in Sec. 3.

1. Definition of a problem. The first step is to define a problem by making a list of the relevant

variables. The list starts with one dependent variable, and continues with the independent variables

and parameters that are thought to be important for determining that dependent variable. This list

of Variables and Parameters is dubbed the VPlist (Sec. 2). That something useful could follow

from such a minimal specification is at the heart of what makes dimensional analysis so widely

applicable,4 and also a bit mysterious. The premise of dimensional analysis is that a complete

equation is best written in a form that is invariant to the arbitrary choice of units, i.e., whether SI

or Imperial, or any other. When that constraint is implemented by a dimensional analysis, the

dimensional variables that make up the VPlist will appear in combinations that are

nondimensionalized (normalized or divided) by scales that are natural to the problem.

2. Calculating a basis set of nondimensional variables. The usual method of finding the

nondimensional variables relies upon the long-running Buckingham Pi theorem to define the

number of required nondimensional variables, followed by inspection.5 That works well for small

problems such as the simple pendulum of Sec. 2. For larger problems, e.g., the damped pendulum

of Sec. 4, it can be helpful to compute the nondimensional variables from the null space basis set

of the dimensional matrix that characterizes the VPlist.6 This calculation (Sec. 3) leads

immediately to a complete, orthogonal set (a basis set) of nondimensional variables.

4 E. S. Taylor said this regarding dimensional analysis: ’For the amount of time and effort required to understand it and

use it, dimensional analysis offers unusually great rewards and it therefore should become a part of the tool kit of every

engineer...’. I agree wholeheartedly, and would include physical scientists, data scientists and applied mathematicians

among those who will benefit. Taylor, E. S. , 1974, Dimensional analysis for engineers, Clarendon Press.
5An introduction to dimensional analysis can be found in most comprehensive fluid mechanics textbooks. Recent ex-

amples include P. K. Kundu and I. C. Cohen, 2001, Fluid Mechanics, Academic Press, and B. R. Munson, D. F. Young,

and T. H. Okiishi, 1998, Fundamentals of Fluid Mechanics, John Wiley and Sons, 3rd ed. An older but still very use-

ful reference is by H. Rouse, 1946, Elementary Mechanics of Fluids, Dover Publications, NY. A particularly good dis-

cussion of the relationship between dimensional analysis and other analysis methods is by C. C. Lin and L. A. Segel,

1974, Mathematics Applied to Deterministic Problems in the Natural Sciences MacMillan Pub. Also Bender, E. A.,

1977, ’An Introduction to Mathematical Modelling’, Dover Publications. A very appealing source available online is

https://ocw.mit.edu/courses/6-055j-the-art-of-approximation-in-science-and-engineering-spring-2008/
6 Price, J. F., 2006, ’Dimensional analysis of models and data sets’, Am. J. Phys., 71(5), 437-447.
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3. Constructing a preferred basis set. More important than the calculation per se is that the

properties of a null space basis provide very useful guidance for the third, and artful step of an

analysis — the reordering, as necessary, of the initial basis set of nondimensional variables into a

form that maximizes utility and insight. This is emphasized in the examples of Secs. 4, 6 and 7.

The most important choice is the scale7 used to nondimensionalize the dependent variable. A good

choice for this scale is likely to come from a highly simplified, zero order model of the dependent

variable. From that perspective, dimensional analysis develops into scaling analysis discussed in

Sec. 6.

1.3 About this essay

This essay has been written for students who are at the level of a first or second course in classical

physics or applied mathematics, e.g., fluid dynamics or partial differential equations. The intent is

to provide a resource that is suitable for self-study. A first edition was published online in 2006.

The present 2024 edition aims for improved clarity and offers a wider range of homework projects.

Copying and distribution for educational purposes is encouraged, consistent with the Creative

Commons license CC BY-NC-SA. It may be cited by the web address on the Massachusetts

Institute of Technology OpenCourseWare — Price, James F., 12.808 Supplemental Material, Topics

in Fluid Dynamics: Lagrangian and Eulerian Representations, a Coriolis tutorial, and Dimensional

Analysis of Models and Data Sets,

https://ocw.mit.edu/courses/res-12-001-topics-in-fluid-dynamics-fall-2023 (date accessed).

The author was supported by the Seward Johnson Chair in Physical Oceanography,

MIT/WHOI Joint Program in Oceanography, and by the U.S. Office of Naval Research. My thanks

to Sidney Batchelder of WHOI for the Python scripts linked in Sec. 3.4, and to Jack Whitehead of

WHOI for his thoughtful comments on a draft manuscript.

7 The word ’scale’ is used here as a noun and a verb, and alongside ’normalize’ and ’nondimensionalize’. The present us-

age is standard, but merits a brief explanation. When used as a noun, scale refers to a quantity used to measure a variable

via normalization, i.e., division. For example, a standard meter is a length scale that may be divided into some variable

length, L. The result is nondimensional, a length/length, but typically reported in the units of the normalization, ’L = xx

meters’. In place of a standard length, a length scale may also be formed from variables that are intrinsic to a problem, and

then the scale is said to be a ’natural scale’. This is an important aspect of dimensional analysis. In that case, the result of

a normalization is again nondimensional, but the units are generally not attached directly and so must be explained else-

where. When ’scale’ is used as a verb or an adjective, as in ’scaling analysis’, it usually means to perform a normalization

in a way that considers also the magnitude of the scale.
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2 An informal dimensional analysis of a simple pendulum

The first problem taken up in some depth involves the oscillatory motion of a tabletop-size, simple

pendulum, Fig. (2).8 A significant appeal of a simple pendulum is that it can be made and

observed with very inexpensive materials. The bob position is defined by the angular displacement

away from vertical, φ. The amplitude of the displacement, Φ, may be readily estimated from the

measured cord, c, at the endpoint of the arc as Φ = sin−1(c/L), and the period of an oscillation

easily measured with a stopwatch, uncertain to about 0.3%. These data will be referred to as

’observed’ in later Fig. (4). What was not measured was the time-dependent displacement, φ(t),

and the tension in the line. These observations are primitive compared to those made in some other

studies9 but they nevertheless serve an imporrant purpose, viz., to help ensure that the analysis

methods discussed here — theoretical, numerical, and dimensional analysis — are relevant to a

real, physical system.

The motion of such a pendulum is only lightly damped by drag with the surrounding air and

can be characterized by two distinct time scales – a very regular, fast time-scale oscillation having

a period, P , of a few seconds, and a slow, more-or-less exponential decay of the amplitude having

a time-scale, Γ−1 � P , of tens of minutes. This Sec. 2 will study the fast, oscillatory motion,

idealized as if energy conserving. The aim is to show how dimensional analysis can help us

understand how the oscillatory motion depends upon the properties of the pendulum, e.g., the

length of the line, mass of the bob, etc. Sec. 4 will take up the more complex dynamics associated

with damping.

2.1 Mathematical models of a simple, inviscid pendulum

Dimensional analysis is especially valuable when dealing with problems that do not admit a known

or solvable mathematical model. That is not the case for a simple pendulum, for which

mathematical models are well-known and very useful for generating data sets including the tension

in the line, Fig. (1), and angular displacement, Fig. (3).

8 A simple pendulum is a common starting point for discussion of dimensional analysis including the classic text by P.

W. Bridgman, 1937, Dimensional Analysis, 2nd ed., Yale Univ. Press, New Haven, CT, which will always be an excellent

introduction to this topic. More advanced is Sedov, L. I., 1959, Similarity and Dimensional Methods in Mechanics, Aca-

demic Press, NY.
9 Mathevet, R. N. Lamrani, P Ferrand, J.P. Castro, P. Marchou and C. M. Fabre, 2022, ’Quantitative analysis of a

smartphone pendulum beyond linear approximation: A lockdown practical homework’, Am. J. Phys., 90, 344 - 350.

https://doi.org/10.1119/10.0010073
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Figure 2: A simple (one bob) pendulum. In the exam-

ple of the real pendulum observed here, the line is a

thin monofilament of length L = 1 m. In models, the

line is idealized as a rigid, massless rod. The bob is a

small, spherical lead fishing weight having a mass of

20 grams. The distance of the bob above the lowest

point of the arc is h. Not indicated here are the diame-

ter of the line, Dl, and the density and viscosity of the

air through which the pendulum swings.

The mathematical models considered here in Sec. 2 are appropriate to an undamped,

energy-conserving simple pendulum. The basis is conservation of angular momentum: the angular

momentum of the swinging bob, M VφL = M L2 dφ/dt, is presumed to change only by virtue of

the torque associated with the downward force of gravity acting on the bob,10

ML2
d2φ

dt2
= − MLg sinφ, (1)

and after minor rearrangement,
d2φ

dt2
= − g

L
sin φ. (2)

This will be referred to as the equation of motion. For comparison with the available observations,

it is preferable to release the bob from a state of rest at a known displacement, φo, and so the

initial conditions are

φ = φ0 and
dφ

dt
= 0 at t = 0. (3)

Energy in this system is the sum of gravitational potential energy and kinetic energy

E = Ep + Ek. (4)

The potential energy referenced to the lowest point in the arc, φ = 0, is

Ep = Mgh = MgL(1 − cos φ), (5)

10 https://en.wikipedia.org/wiki/Pendulum and follow the link to mechanics.
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Figure 3: Numerical solutions for the angular displacement φ(t) of a simple pendulum. These are the
same 16 solutions used to calculate the tension in the line of Fig. (1). (upper) Displacement plotted
in dimensional units. The mathematical model of φ, Eqs. (2) and (3), does not depend upon M , and
so there are eight distinct solutions here. (lower) The displacement data plotted in nondimensional
units that will be discussed in Sec. 2.3. The eight distinct solutions shown above collapse to just two
solutions that vary by the initial displacement, φo, a considerable simplification.

and the kinetic energy is

Ek =
1

2
M(L

dφ

dt
)2. (6)

When the bob is released from rest it has zero kinetic energy, and the total energy is then the initial

potential energy,

Eo = MgL(1 − cos φo) = constant = Ep + Ek, (7)

which is conserved (ignoring damping), and so from Eqs. (4) - (7),

MgL(1 − cos φ) +
1

2
M(L

dφ

dt
)2 = MgL(1 − cos φo) (8)

or
1

2
(L

dφ

dt
)2 = gL(cos φ − cosφo), (9)

a useful relation for dφ
dt

(φ).

Tension in the line, T , appears in the radial equation of motion,

M
d2L

dt2
= − T + M g cosφ + ML(

dφ

dt
)2.
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The line is presumed to be inextensible, dL/dt = 0, and so the tension may be diagnosed from a

known φ(t) and

T = M g cos φ + ML(
dφ

dt
)2. (10)

2.1.1 Analytic solutions

The solution method for Eqs. (2) and (3) depends upon the initial angle, φ0. If φ0 is restricted to

small amplitude, values less than about 0.1 radian, then sinφ in Eq. (2) can be approximated well

enough for many purposes by φ. The resulting linear model is that of a simple harmonic oscillator

having the well-known solution

φ(t) = φ0 cos(
t

√

L/g
), (11)

and hence the period of small amplitude oscillation is

P = 2π
√

L/g. (12)

It is convenient to refer to the reduced period, P/2π, which is
√

L/g.

In the general case that φ0 may take any value from −π to π, a solution for the period cannot

be written in elementary functions. However, the period can be calculated using the first integral

provided by energy conservation (9) to find dφ/dt as a function of φ(t). Then, separate the

variables φ and t, and integrate over one quarter of an oscillation, φ from φo to 0, and t from 0 to

P/4, to arrive at an elliptic integral called ’theory’ in Fig. (4),

P = 4

√

L

2g

∫ φ0

0

dφ√
cos φ − cosφo

. (13)

2.1.2 Numerical solutions.

The equations of motion (2) and (3) are straightforward ODEs that may be solved by elementary

finite difference methods for any value of φo. An ensemble of 16 numerical solutions was

generated for two values each of line length, L = (1, 1.8), mass of the bob, M = (1, 2) kg, the

acceleration of gravity, g = (9.8, 6) m2 s−1, and the initial angle, φ0 = (0.2, 1.0) radians, Figs. (1)

and (3).

These numerical solutions occupy an important middle ground between the observations made

on a real pendulum and the solutions of a solvable theory. The mathematical model that underlies

the numerical solutions is known, and the numerical solutions for this problem can be very precise.

However, all that we get from a numerical solution is the answer, the φ(t), for one specific case.
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Developing insight for the parameter dependence and for the dynamics of a system will usually

require an ensemble of solutions and further (dimensional?) analysis.

2.2 A VPlist of the most important Variables and Parameters

The starting point of a dimensional analysis is the assertion that there exists a solution for the

angular displacement, φ(t),

φ = F (t, g, M, L, φo), (14)

where F is for now an unknown function (and F will be used repeatedly in that role). A solution

is a relation between the dependent variable, φ, and the independent variables, here just the time, t,

and the pendulum properties, or parameters, that we expect will define the displacement.11 Several

properties of a simple pendulum would seem to be important and so are listed as parameters in the

argument of F — the acceleration of gravity, g, the mass of the bob, M , and the length of the

supporting line, L. To account for why there is motion at all, the initial displacement, φ0, is also

necessary. Parameters are variables that are constant during a particular realization — g, M , L and

φ0 in this list — but that vary over some range that defines the family of pendulums and

environments that are of interest.

The Variables and Parameters that enter (14) will be compiled into a list, dubbed the VPlist,

that defines a problem. A VPlist12 includes the physical dimensions of each variable; the

acceleration of gravity, g, has physical dimensions length time−2, that is written here as a row

vector whose components are the powers on [ mass length time ], and hence g
.
= [ 0 1 − 2 ].

Following (14), the VPlist for φ(t) is

(15)
• A preliminary VPlist for the oscillatory motion of a simple pendulum:

1. the angular displacement, φ
.
= [ 0 0 0 ], the one and only dependent variable,

2. time, t
.
= [ 0 0 1 ], an independent variable,

3. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter,

4. mass of the bob, M
.
= [ 1 0 0 ], a parameter,

5. length of the line, L
.
= [ 0 1 0 ], a parameter,

6. the initial angle, φ0

.
= [ 0 0 0 ], a parameter.

11 The (putative) solution (14) is written as an explicit function for φ. This has been done to keep some focus on the de-

pendent variable, but is not essential in what follows; we could just as well presume F (φ, t, g, M, L, φo) = 0.
12 Why this made-up word? In most of the literature, including my previous work, this list of variables is referred to as a

’physical model’. A list of variables is some sort of model, but to call it a ’physical’ model began to seem like an overuse

of the term physical.
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A VPlist of this kind is the entire specification required for the dimensional analysis of a

simple pendulum. This can be turned around: in effect, this VPlist defines what is meant by

’simple pendulum’. Notice that there isn’t much here: the meaningful, quantitative part of a VPlist

is the collection of physical dimension vectors, in this case six vectors having three components,

the powers of [ mass length time ]. Of the 18 components, 13 are zero, and the rest are small

integers. The variable names that we associate with these vectors carry an important meaning for

us, but play no part in the analysis.

What is most important is the assertion that the VPlist is complete, meaning that it includes all

of the variables required to construct a mathematical model that could in principle yield a solution

(14). If the corresponding mathematical model is not known, then an assertion of completeness can

only be a hypothesis. It is highly desirable that the VPlist be as concise as possible, i.e., that it

includes only those variables that have a significant effect upon the dependent variable. The

selection of variables for a VPlist thus requires considerable judgment and will often entail trial

and error that is best guided by reference to experimental or numerical data.

The VPlist (15) makes no mention of the viscosity or density of air, as if the pendulum was

swinging in a vacuum. The same is true of the mathematical models of Sec. 2.1, and thus the

numerical integrations that are made with those equations. We can be confident that this airless,

energy conserving VPlist is consistent with those models and solutions. Whether these omissions

are acceptable as a model of the real, observed pendulum of Fig. (2) is a different matter that will

be decided by comparison to observations.

2.3 The premise of dimensional analysis — invariance to a change of units

It is taken for granted that every valid equation must be dimensionally consistent, or homogeneous:

if the left side of an equation defines a length, then the right side had better be a length as well, or

otherwise there has been an error.13 This is the most basic application of dimensional analysis and

is of considerable utility when checking complex expressions.

13A thoughtful, in-depth discussion of measurement and dimensional analysis is by A. A. Sonin, 2001, The physical basis

of dimensional analysis, MIT. https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2024/04/AASonin.pdf

and Sonin, A. A., 2004, ’A generalization of the Π-theorem and dimensional analysis’. Proc. Nat. Acad. Sci., 101, No.

23, 8525 - 8526.
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Now consider the units used to measure mass, length and time. Shall we measure a length by

comparison to the standard meter, or by comparison to the standard foot?14 If this seems to you to

be a rather empty question, then you will be sympathetic to

The premise of dimensional analysis: The relationship expressed by a
complete equation is best written in nondimensional variables that are
invariant to the arbitrary choice of units.

The key word here is ’best’, and an important goal for this section is to show what that means.

Dimensional analysis is a systematic procedure for learning the form that the variables can

take in an equation that satisfies units invariance. Angles are relevant here, and a good example.

An angle is the ratio of two lengths, an arc length divided by the radius, and is thus inherently

nondimensional. If the arc length and the radius are measured in units of meters, we will get a

certain number. If units of feet are used to measure the same lengths, we will get precisely the

same number for their ratio, that is, the same angle. Thus the left side of Eq. (14) is invariant to a

change in the units of length. Consider the right hand side, which has two variables with

fundamental dimension length, L and g. For the same invariance to the choice of units to hold also

on the right hand side, the length and the acceleration of gravity must appear in the ratio L/g, or

any power of the ratio, for example, (L/g)1/2 or (L/g)2 or (L/g)−1. Otherwise a change in the

units of length would almost certainly change the argument and hence the value of the (unknown)

function F on the right hand side of Eq. (14). From these simple considerations we already know

something useful about the units-invariant form of Eq. (14).

Consider the mass, M . A change in the units of mass should also leave F unchanged, and yet

it is impossible to see how that could hold since M is the only variable in the VPlist having

dimensions of mass. This informal dimensional analysis leads to the conclusion that a solution for

φ that is invariant to a change of units cannot depend upon the mass of the bob only. Either there

must be another parameter having a dimension mass that was omitted from the VPlist, or, the mass

should be excluded from the list of relevant parameters. This is an immediate result also in the

mathematical models (Eqs. (2) and (3)) where it follows from the equivalence of gravitational mass

and inertial mass. The same result can be deduced by dimensional analysis in the absence of a

mathematical model (provided that there is just one mass in the VPlist, and not distinct inertial and

gravitational masses).

A similar consideration of the units used to measure time indicates that t, L, and g must also

appear together in a nondimensional variable, say t/
√

L/g, or just as well t2/(L/g), since any

power of this ratio is equally suitable. Absent some reason otherwise, we may as well leave the

independent variable t to the first power and so choose the former, t/
√

L/g.

14 The standard meter was first defined in terms of Earth’s circumference, which was exceedingly cumbersome and not

precise. The meter is now defined in terms of universal constants, the speed of light divided by the transition frequency

between two hyperfine ground states of cesium. The standard foot was once defined by an average of actual human feet,

convenient but not precise. It is now defined as a fixed fraction of a meter.
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The upshot of this informal dimensional analysis is that the variables and parameters that

appear in a units-invariant form of Eq. (14) will appear in combinations that are nondimensional,

i.e., nondimensional variables. The simplest, but not the only possible version is

the nondimensional form, φ = F (
t

√

L/g
, φ0). (16)

This may be compared to the starting point, Eq. (14), repeated here,

the dimensional form, φ = F (t, g, M, L, φo). (17)

2.3.1 How many nondimensional variables?

The nondimensional version (16) represents significant progress. In place of a dependence upon

one independent dimensional variable and four parameters as in (17), the nondimensional version

(16) has a dependence upon one nondimensional independent variable, t/
√

L/g, and just one

nondimensional parameter, φo. This is the kind of result that can be expected generally, and is

important enough to state as a corollary to the premise,

Corollary 1: The number of nondimensional variables will be fewer than
the number of corresponding dimensional variables.

The significance of this becomes evident when the data from an ensemble of numerical solutions is

plotted using a nondimensional format in Figs. (1) and (3). The 16 (or 8) distinct dimensional

solutions collapse into two nondimensional solutions that depend upon a nondimensional time and

just one parameter, the initial displacement, φo, consistent with (16).

It is important to be able to anticipate the number of nondimensional variables, K, that is

required to have a complete nondimensional form like (16). A useful rule of thumb: K is generally

equal to the number of variables in the VPlist minus the number of fundamental dimensions in

those variables. In the case of (15), there are six dimensional variables having three fundamental

dimensions, mass, length and time, and so we can expect K = 3 nondimensional variables:

φ, t/
√

L/g, and φo. Be cautioned, though, that while this informal estimate of K is correct in

most practical problems, it is not fool proof. A better, rigorous calculation of K will be coming in

Sec. 3.2.

2.3.2 Nondimensional variables formed with the natural scales of a VPlist

Nondimensional variables have a second inherent advantage over their dimensional cousins when,

as here, they are formed with scales that are natural (or intrinsic) to the problem at hand. For
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example, the natural time scale of a simple pendulum is, as you might guess, the reduced period of

small amplitude oscillation, which has been used as the scale to form a nondimensional time,

t∗ =
t

P/2π
=

t
√

L/g
. (18)

The variable t∗ is a pure number that has the same numerical value regardless of the units used to

measure t, g, and L, a hint that there might be something useful in this.

Nondimensional time may sound a bit esoteric, but amounts to nothing more than measuring

time in units of the reduced, linear period while taking explicit account of the
√

L/g dependence

of the period. If the analysis was to consider one pendulum only, then the whole exercise would

amount to dividing the time by a constant. But if the scope of the investigation is all possible

pendulums, i.e., all possible L and g, then there is considerable merit to measuring time in these

natural units, including that the linear (small amplitude) period of the oscillation is 2π for all

simple pendulums, Sec. 2.4.1 and Fig. (4).

This second and in some ways deeper benefit of nondimensional variables may be stated as

Corollary 2: Nondimensional variables that are formed with natural
scales will often have a physical significance that the dimensional
variables, scaled in the arbitrary units of kilograms, meters and seconds,
do not.

The advantage extends to model equations: a time derivative transforms as dt = dt∗
√

(L/g),

and the equation of motion, Eq. (2), becomes

d2φ

dt∗2
= − sinφ , (19)

with the initial conditions (ICs) as before, Eq. (3). The solution will be of the form

φ = F (t∗, φ0) , (20)

which is just like Eq. (16). If the amplitude of the motion is small in the sense that sinφ ≈ φ in

Eq. (19), then the solution to the linearized Eq. (19) with (3) is

φ = φ0 cos t∗. (21)

The dependence upon L and g has not been omitted, but rather has been subsumed into the

nondimensional time, t∗, so that Eq. (21) suffices for all L and g. This new equation (19) has the

small advantage that it is simpler notationally, and it may be easier to recognize a canonical form.

However, a switch to nondimensional units will preclude the prospect of catching algebraic errors

that could be detected easily in a dimensional equation as a dimensional inhomogeneity.
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Figure 4: Observations and solutions for the period and the tension in the line of a simple pendulum
as a function of the initial angle, φo. The flexible line of the real, observed pendulum and the initial
condition dφ/dt = 0 limit the initial angle to the range φ0 < π/2. In the mathematical models of Sec.
2.1, the line was idealized as a rigid, massless rod, and so all initial angles were possible, including
φ0 → π. (upper) The period in nondimensional coordinates. The data are from three sources: obser-
vations (red crosses), the period diagnosed from an ensemble of numerical solutions (blue dots), and
as computed from theory, Eq. (13) (the black line). From dimensional analysis it is expected that the
similarity function F (φ0) evident here will hold for all simple pendulums that are consistent with the
VPlist (15). (lower) The nondimensional minimum and maximum tension in the line. Data are from
an ensemble of numerical solutions (the alternating red and blue dots are length L = 1 m or L = 1.8
m, and are indistinguishable), and from theory (the black line). Negative values of tension indicate
that the line (massless rod) is in compression. There are no observations of tension.
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Recall that the linear pendulum has the solution φ = φ0 cos(t/
√

L/g), Eq. (12), and note

that the argument of the cosine is the same nondimensional time — it was there all along.15

Evidently the difference between Eqs. (11) and (21) is in how you look at them: do you see the

dimensional time, t, as the independent variable, or do you see instead the nondimensional time,

t∗ = t/
√

L/g ? The answer will probably depend on both the stage of an investigation and upon

your familiarity with dimensional analysis. Experimental data will generally be recorded in

dimensional units (or the native units of the instruments), and it may also be preferable to carry out

a numerical integration in dimensional units, if the magnitude of intermediate results is more

familiar in those units. But when it comes time to report and interpret a collection of data from an

ensemble of experiments, there can be a significant advantage to the use of nondimensional

variables, evidenced in Figs. (1) and (3).16

2.4 Other dependent variables of a simple pendulum

2.4.1 Period of the oscillation

The most characteristic property of a pendulum is its period of oscillation, P . To observe the

period, we simply measure the time interval between two extremes of the displacement. What can

dimensional analysis tell us? The period does not vary with the dependent variable time, t, which

should therefore be omitted from

(22)• A VPlist for the period of oscillation of a simple pendulum:

1. the period, P
.
= [ 0 0 1 ], the dependent variable,

2. acceleration of gravity, g
.
= [ 0 1 -2], a parameter,

3. length of the line, L
.
= [ 0 1 0 ], a parameter,

4. the initial angle, φ0

.
= [ 0 0 0 ], a parameter.

Compared with Eq. (14), this VPlist also omits the mass of the bob, which we learned just above.

Following the same reasoning that led to (16), and expecting that there will be K = 4 − 2 = 2

nondimensional variables,
P

√

L/g
= F (φ0). (23)

For a given φo, the (dimensional) period of a simple pendulum is expected to increase in

proportion to the square root of the length of the supporting line and is independent of the mass.

These are among the truly fundamental results of mechanics, deduced from observations and

experiments by Galileo Galilei, Fig. (5), near the beginning of the Scientific Revolution, ca., 1600.

15 The arguments of trigonometric, exponential and logarithmic functions are always nondimensional.
16 A far more profound example of natural units comes in Sec. 7.1 which considers Planck units that are thought to be

universal — literally the same throughout the universe. However, for all of their considerable appeal, Planck units are

remarkably awkward size-wise for the day-to-day phenomena encountered here on Earth.
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Figure 5: Galileo Galilei began a lifelong study of kinemat-

ics as a medical student observing chandeliers swinging in

the breeze of a Pisa cathedral, ca. 1580. Clocks were then

very primitive and Galileo timed their oscillations by count-

ing his pulse. He reached several important conclusions: 1)

every simple pendulum has a characteristic period of oscil-

lation that is proportional to the square root of the length

of the supporting line, 2) the period is independent of the

mass of the bob, and, 3) the period of the oscillation is inde-

pendent of the amplitude of the oscillation (now known to

hold only for small amplitude motion.) These properties of

a simple pendulum must have been noticed by many other

cathedral-goers, but it was Galileo who quantified and re-

ported the isochronicity property 3) of simple pendulums,

a key concept that led to the later development of practical,

accurate clocks.

Dimensional analysis has taken us part of the way to a solution in the form of Eq. (23), but

not to the finish; the function F (φo) remains undefined and is not accessible to the methods of

dimensional analysis alone. A function of the sort F (φo) will be referred to as a ’similarity

function’, in the sense that two simple pendulums having the same φo will have the same

nondimensional period; the dimensional period will depend upon L and g as P ∝
√

L/g. The

similarity function F (φo) might be determined by observations, the red crosses of Fig. (4), upper.

A key contribution of dimensional analysis is that we can expect that the F (φo) inferred from

observations made on our little table-top size pendulum will apply for all simple pendulums that

are described by the VPlist (25). In this case we also have numerical and theoretical solutions that

are consistent with the observations, and which are able to access the full range of φo.

The similarity function F (φo) of a simple pendulum has an important limit as the amplitude

approaches zero; the similarity function approaches a constant value, F (φo → 0) → 2π. From

dimensional analysis, we can expect that this will hold for all simple pendulums that are described

by the VPlist (22).
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2.4.2 Tension in the line

For the tension, T , a force, we could write

T = F (t, M, L, g, φ0) , (24)

which at this stage is not different from (14) (aside from the dependent variable).

(25)• A VPlist for the tension in the line of a simple pendulum:

1. the tension, T
.
= [ 1 1 -2 ], the one and only dependent variable,

2. time, t
.
= [ 0 0 1 ], the independent variable,

3. mass of the bob, M
.
= [ 1 0 0 ], a parameter,

4. length of the line, L
.
= [ 0 1 0 ], a parameter,

5. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter,

6. the initial angle, φ0

.
= [ 0 0 0 ], a parameter.

The mathematical model for tension, Eq. (10), includes the angular velocity squared, (dφ/dt)2,

which is proportional to the centrifugal acceleration. Even if we knew that, dφ/dt should be

omitted from Eq. (25), since including dφ/dt would amount to having a second dependent variable

that must itself depend upon t, M , L, g, and φ0.

An informal analysis of this VPlist is much the same as that for φ(t) and leads quickly to

K = 6 − 3 = 3 nondimensional variables,

T

Mg
= F (

t
√

L/g
, φo), (26)

the form used in Fig. (1), lower. The mass of the bob, M , does make an appearance in the

nondimensional tension, since the dependent variable, T , is a force that has a dimension of mass.

That the mass must appear is evident since the tension in the line will equal the weight of the bob,

Mg, in the absence of motion, which is an important, limiting case. The maximum tension in the

line of a swinging bob will exceed the weight of the bob by a factor that increases with the

amplitude of the motion defined by φo.
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The tension may also be characterized by a time-independent value, say T̂ , for example the

minimum or maximum value during an oscillation, Tmin and Tmax, and so

(27)• A VPlist for a time-independent tension:

1. a time-independent tension, T̂
.
= [ 1 1 -2 ], the dependent variable,

2. the mass of the bob, M
.
= [ 1 0 0 ], a parameter,

3. length of the line, L
.
= [ 0 1 0 ], a parameter,

4. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter,

5. the initial angle, φ0

.
= [ 0 0 0 ], a parameter.

The rule of thumb estimate of the number of nondimensional variables is K = 5 − 3 = 2, or one

less than required for the time-dependent tension, and they are related by

T̂

Mg
= F (φo). (28)

This leads to a legible format of the numerical solutions, Fig. (4), lower. Notice that the length, L,

has dropped out going from (26) to (28).

But which T̂ is this, Tmin or Tmax? Evidently (27) and (28) are adequate for either, though of

course there is a different similarity function F (φo) for Tmin and Tmax. This illustrates an

important and perhaps unexpected property of VPlists generally: VPlists are likely to encompass a

greater range of phenomena i.e., they are likely to be much less specific, than the phenomenon you

intend to describe and analyze. And thus the VPlist (27) will suffice just as well for the

time-averaged tension as it does for the minimum and maximum values. This is consistent with the

comment made following Eq. (15) that a VPlist generally makes a rather spare description of a

problem.

2.5 Parameters

One of the interesting aspects of dimensional analysis is that it treats parameters on an equal

footing with dependent and independent variables. (The algorithms implemented here in Sec. 3 put

the dependent and independent variables in a special place, just for convenience.)

Unnecessary parameters. Dimensional analysis has revealed that the period of a simple,

inviscid pendulum does not depend upon the mass of the bob, M . This result might seem to

suggest that the inclusion of extra or superfluous variables in a VPlist will not spoil the result.

However, in most cases an extra variable will not be detected by a dimensional analysis, and will

lead to an extra or at least an unnecessary nondimensional variable. For example, if we had

included the bob diameter, Db, in the VPlist (15), it would have been carried through to a

nondimensional variable, Db/L. Access to experimental data would soon show that Db/L was of
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no great significance in determining the period of a nearly conservative pendulum, and so it would

have been dropped from the final result.

Omitted parameters. Will the omission of a relevant variable be detected? Yes, but rarely, and

only if the omission makes it impossible to nondimensionalize the dependent variable. For example,

if we analyzed tension under the assumption that the mass of the bob M would be irrelevant (as it

was for the oscillation period) then it would be impossible to construct a nondimensional tension.

That would be a clear signal that something important had been left out of the VPlist. However, if

the dependent variable can be nondimensionalized with the variables that are included, and in

practice that is much more likely, then the purely formal procedure of dimensional analysis will not

be able to identify an incomplete VPlist.

Locally and globally constant parameters. In the discussion of a simple pendulum, it was

implicit that our interest included all possible values of the initial displacement, −π ≤ φo ≤ π.

In that event, the parameter φo would be deemed a ’locally constant’ parameter, meaning that it is

constant for a given experiment or realization, but that it may vary from one realization to the next.

This is the default meaning of ’parameter’.

Suppose instead that the scope of a study is limited to a single value of the initial

displacement, say φo = β, and no other values are relevant. In that case, φo will be termed a

’globally constant’ parameter, meaning that it is the same for every realization. The similarity

function F (φo) would then be a constant specific to that β, say F (φo = β) = βC . The

dependence of φ(t/
√

L/g) upon nondimensional parameters that are made up solely from

parameters that are constants (common examples could be heat capacity, fluid density and other

thermodynamic parameters) may thus be ascribed to the similarity constant, and so

φ(t/
√

L/g) = βC

would suffice in this case. The globally constant nondimensional parameter φo may then be

dropped from the list of nondimensional variables, though it leaves a mark on the similarity

constant. If there are two such globally constant nondimensional parameters, say φo = β and

φ1 = γ, then this may be extended,

φ(t/
√

L/g) = β, γC

and φo and φ1 both dropped. The happy result13 is that the number of relevant (or active)

nondimensional parameters may be less than the number of nondimensional parameters that first

appears.
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2.6 Summary: Why use nondimensional variables?

The informal dimensional analysis of this section has shown two significant benefits that you can

expect to follow from the use of nondimensional variables.

More efficient representation. There will be a reduced number of nondimensional variables

compared with dimensional variables. This will often lead to a more legible presentation of

complex data sets, as in Figs. (1) and (3). It will also streamline model equations.

Physical interpretation. When dimensional variables are scaled (nondimensionalized) with the

natural scales of a phenomenon, as they will be during a dimensional analysis, they are likely to

have a significant physical interpretation. For example, the nondimensional reduced period of a

simple pendulum oscillation is found to be
√

L/g for all simple pendulums in small amplitude

motion. This kind of result could come from a mathematical model, if it is available, or from

dimensional analysis, even if not.

A different and wider perspective. There is a third possible benefit of dimensional analysis that is

not as immediate, but that you may come to appreciate with time and experience. The method and

the goals of dimensional analysis are quite different from the intensely focussed analysis methods

that characterize most research, e.g., solving an equation of motion as in Sec. 2.1. The change in

perspective that comes with dimensional analysis, e.g., thinking about the range of the relevant

parameters of a problem, may help you develop insights on your problem that wouldn’t necessarily

come as readily from a more focussed approach to problem solving.

2.7 Pendulum problems

1) Compare the tension and the angular displacement of Figs. (1) and (3). Why is the frequency of
oscillation different for these two variables? Notice that the range of the (nondimensional) maximum
tension seen in Fig. 4, lower, is 1 to 5, while the minimum tension has a range -1 to 1. Can you
explain these values using energy conservation and the radial equation of motion, Eqs. (9) and (10) of
Sec. 2.1?

2) The approximate isochronism of simple pendulums in small amplitude motion is an important
result going all the way back to Galileo’s systematic investigations. It is not immediately obvious why
this should hold for simple pendulums, and indeed, it does not hold at large amplitudes. From what
you can see in Fig. (4), how would you characterize the limit P (φo → 0)? Can you explain the
approximate isochronicity at low amplitudes? Why is the departure at larger amplitude towards longer
period oscillations? (Hint: What does this imply about the restoring force?) What is the similarity
constant for φo = 0.01, 0.1, 1.0 and π radians?

3) The simple-minded observational methods used here did not include a means to measure the
angular velocity, ω = dφ/dt, and so the initial ω was taken to be zero. The effect of this is to exclude
an entire family of simple pendulums. What new phenomenon and nondimensional variables would
appear if the scope of the study had included an initial ω?
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4) It is amusing to think of making pendulum measurements on Mars or the Moon where gravity is
different from Earth’s, but it is likely that our pendulum experiments will remain Earthbound. If that
is so, then is it really necessary to carry along a constant parameter g in the dimensional analysis, as
in Eq. (23)? Whether g is viewed as a locally or globally constant parameter must depend upon the
application and the required precision. Can you envision exploiting the g-dependence of the
pendulum period to measure the rather small, O(10−3), variations of g along Earth’s surface? 17

5) Lead is an appropriate material for the bob of a pendulum18 since its comparatively high density
results in less drag with the air. However, lead can be toxic if handled carelessly, and so instead of a
lead bob, consider a wooden bob or perhaps a foam rubber bob. Should the density of such a bob
appear in the VPlist? Why did we ever leave it out? Would the similarity constant 2π of the small
amplitude period then change?

6) In the analysis of tension in the line, Sec. 2.4.2, it was noticed that the line length L dropped out
when going from the time-dependent tension to the time-independent tension, Eqs. (26) to (28). Can
you explain why or how this happened?

7) Free fall in constant gravity is closely related to the (constrained) motion of a simple pendulum.
Suppose the dependent variable is the vertical coordinate, z, and that the equation of motion is just

d2z

dt2
= − g. (29)

The ICs are

z = zo(t = 0) and
dz

dt
= 0 at t = 0. (30)

What is the dimensional analysis version of this problem? How does your dimensional analysis result
for z(t) compare to the result from integrating (29) and (30)?

17 An interesting discussion of applications is by https://microglacoste.com/product/fg5-x-absolute-gravimeter/
18 Lead’s chemical symbol is Pb, from the Latin plumbum, from which is derived ’plumb bob’, a lead ball suspended on

a string and used to observe the direction of gravitational acceleration, i.e., the vertical. If the bob is set into motion, the

plum bob is a simple pendulum that may be used to infer the magnitude of the gravitational acceleration.
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3 A basis set of nondimensional variables

Once a VPlist has been defined, the second and mathematical step of a dimensional analysis is to

find a complete set of nondimensional variables for that VPlist. With a little experience and for

small problems such as the simple pendulum of Sec. 2, the nondimensional variables can be

constructed by inspection. For larger problems it may be helpful to use a computational method

described in Sec. 3.2 that has its roots in linear algebra.6 This method differs from most others5 in

that it does not rely on the Buckingham Pi theorem, although it comes to the same result, and

instead computes the null space basis of the dimensional matrix (defined below) to find a basis set

of nondimensional variables. The value of this method lies less in the calculation, which is

straightforward, but in the perspective it provides on the result.

3.1 The mathematical problem

How to calculate a set of nondimensional variables from a VPlist? The nondimensional variables,

called Pi variables, Π, are presumed to be the products of the dimensional variables, say X1, X2

and X3 that are raised to some power,

Π = XS1

1
×XS2

2
×XS3

3
, (31)

where the exponents S1, S2, S3 are unknowns. This is consistent with the nondimensional variables

found by the informal analyses of Sec. 2. For a very abbreviated example consider

(32)• A VPlist for the period of a simple pendulum in small amplitude motion:

1. period, P
.
= [ 0 0 1 ], the dependent variable,

2. length of the line, L
.
= [ 0 1 0 ], a parameter,

3. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter.

A Π variable formed as the product Eq. (31) will then have physical dimensions

Π
.
= S1 [ 0 0 1 ] + S2[ 0 1 0 ] + S3[ 0 1 − 2 ] (33)

and will be nondimensional

Π
.
= [ 0 0 0 ]

if the exponents satisfy

S2 + S3 = 0, and S1 − 2S3 = 0. (34)

This is two independent equations in three unknowns, and so this system is underdetermined. We

may as well choose S1 = 1 so that P will appear to the first power, and then S3 = 1/2 and



3 A BASIS SET OF NONDIMENSIONAL VARIABLES 26

S2 = −1/2. Since this system is linear and homogeneous, S1 = α and then S2 = −α/2 and

S3 = α/2 with α real is also a solution. In this case (and assuming α = 1) there is just one

nondimensional variable,

Π1 = P S1 × LS2 × gS3 = P 1 × L−1/2 × g1/2 = P/
√

L/g, = constant.

From experimental or theoretical analysis (Fig. 4) we know that this constant = 2π provided that

the amplitude of the motion is not relevant (and not included in the VPlist (32)).

3.2 Computing the null space

These are the kind of solutions we are looking for. However, we need all of the possible solutions

and for systems that may be much larger (more variables). These complete solutions will come

from solving

D S = 0, (35)

where D is the dimension matrix, and S is the matrix of solution vectors that constitute the null

space of D. This is the matrix equivalent of Eqs. (31) - (33) (Problem 1 below).

D may be read directly from the VPlist. For the VPlist of the simple pendulum, Eq. (15), the

dimension matrix is

D =

m

l

t

φ t M L g φ0




0 0 1 0 0 0

0 0 0 1 1 0

0 1 0 0 −2 0



 .
(36)

The columns of D correspond to the dimensional variables. The order of including the dimensional

variables is noteworthy only insofar as the algorithm will seek to make the first few dimensional

variables appear in the nondimensional variables with an exponent = 1. Hence it is helpful to have

the dependent variable φ come first, the independent variable t come next, and after that there is no

obvious, preferred ordering. The rows of D correspond to the physical dimension of those

variables: row 1 is mass, row 2 is length and row 3 is time. This order is arbitrary, but has to be

maintained once chosen.19 Thus for the acceleration of gravity, which is the fifth dimensional

variable in the VPlist, g
.
= [ 0 1 − 2 ] and so the 5th column of D is D1 5 = 0, D2 5 = 1, and

D3 5 = −2.

The matrix S contains the unknown exponents. It is convenient to think of the columns of S as

19 Within the main text the physical dimensions on a variable are written as a row vector to save space. These data are the

column vectors of the matrix D.
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vectors, S,

S1 =



















S11

S21

S31

S41

S51

S61



















, S2 =



















S12

S22

S32

S42

S52

S62



















and ....... SK =



















S1K

S2K

S3K

S4K

S5K

S6K



















,

to which nondimensional variables will correspond one-to-one.

The system of equations (35) is underdetermined in the usual case that there are more

unknown exponents (the number of dimensional variables) than there are independent equations

(usually the number of physical dimensions and also the number of rows of D). However, it can be

less (see Problem 4 of Sec. 3.5). The number of columns in S, and thus the number of vectors, S,

is K, and is found as a part of the calculation of the null space. To represent or span the null space

requires a basis set of K vectors, from which any solution vector can be constructed (more on this

below). This K has the same important interpretation as the K of Sec. 2.3.1; viz., K is the number

of nondimensional variables in a basis set.

The calculation of a null space basis proceeds along the lines of Eqs. (31) to (34); not

difficult, but tedious if done by hand. The calculation of a null space basis is readily automated, as

will be assumed from here on. Links to relevant scripts are in Sec. 3.4.

3.2.1 A basis set of nondimensional variables of the angular displacement

The null space basis for the time-dependent and finite amplitude angular displacement defined by

the D of Eq. (36) has K = 3 solution vectors,

S1 =



















1

0

0

0

0

0



















, S2 =



















0

1

0

−1/2

1/2

0



















, and S3 =



















0

0

0

0

0

1



















.

The elements of S are required to be rational numbers. Here and typically, they are small rational

numbers.

The corresponding basis set of K nondimensional variables is constructed from the solution
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vectors as

Π1 = X
S1 = φ1 t0 M0 L0 g0 φ0

0
, = φ (37)

Π2 = X
S2 = φ0 t1 M0 L−1/2 g1/2 φ0

0
= t/

√

L/g, (38)

Π3 = X
S3 = φ0 t0 M0 L0 g0 φ1

0
= φ0, (39)

where notice that the elements of the S vectors are exponents on the elements of the X vectors.

The dependent variable φ appears in the first nondimensional variable only, and to the first power, a

convenient property built in to the algorithm.

The functional relationship among the nondimensional Πs may be written as

Π1 = F (Π2, Π3),

or, once again,

φ(t) = F (
t

√

L/g
, φ0) . (40)

Since the maximum of φ(t) will be equal to φo, it makes sense to normalize φ as

φ(t)

φo
= F (

t
√

L/g
, φ0).

This amounts to dividing Π1 by Π3, which is allowed by properties of the null space (discussed in

Sec. 3.3). But we can not then omit φo from the righthand side of (40) as that would reduce the

basis set of nondimensional variables.

The mass M has an exponent of zero in all of the solution vectors, Eqs. (37) to (39),

consistent with the informal analysis of Sec. 2 which showed that there was no way to construct a

nondimensional variable from a single parameter having physical dimensions of mass. To say it a

little differently, for the mass of the bob to be retained, there would have to be another parameter

with dimension mass in the VPlist (as there will be in the more comprehensive models of Sec. 4).

Notice that the angles φ and φ0 sailed into the basis set of nondimensional variables untouched,

since they were already nondimensional.

3.2.2 A basis set for tension in the line

Tension can be analyzed in the same manner, starting with the dimensional matrix read from the

VPlist, (25),

D =

m

l

t

T t M L g φ0




1 0 1 0 0 0

1 0 0 1 1 0

−2 1 0 0 −2 0



 .
(41)
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The null space basis vectors are

S1 =



















1

0

−1

0

−1

0



















, S2 =



















0

1

0

−1/2

1/2

0



















, and S3 =



















0

0

0

0

0

1



















.

A basis set of nondimensional variables is thus

Π1 = X
S1 = T 1 t0 M−1 L0 g−1 φ0

0
= T/Mg (42)

Π2 = X
S2 = T 0 t1 M0 L−1/2 g1/2 φ0

0
= t/

√

L/g, (43)

Π3 = X
S3 = T 0 t0 M0 L0 g0 φ1

0
= φ0. (44)

The second and third of these are identical to Π2 and Π3 of the displacement noted above. The

functional relationship for the time-dependent tension can then be written

T

Mg
= F (

t
√

L/g
, φ0). (45)

Notice that the dependent variable T has been scaled by the weight of the bob, Mg, a fairly

obvious natural scale in this problem.

A time-independent tension, say the minimum or the maximum during a complete oscillation,

can be analyzed by omitting the time, t, to find

Tmin

Mg
= F (φ0), and

Tmax

Mg
= F (φ0), (46)

the forms used in Fig. (4), lower. Notice that the line length, L, has disappeared going from (45) to

(46). It is a little jarring to see F (φo) on the right side of two different equations in (46), but keep

in mind that this F is merely holding a place for a similarity function that has to be determined by

some method beyond dimensional analysis.

3.3 Properties of a null space basis

It is important to understand the properties of a null space basis, and especially that a given null

space basis is generally not a unique solution to the underdetermined problem of the sort Eq. (35)

encountered in dimensional analysis. There are usually many possible solutions, and just as many

null space bases. In fact, the specific null space basis that comes from a solution algorithm will
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depend upon the order in which the dimensional variables are listed in the dimensional matrix. The

construction of the best (most useful, most insightful) basis set of nondimensional variables is

facilitated by the following three properties of a null space basis.

Property 1, P1: The number of solution vectors in a null space basis is
K = I − R, where I is the number of dimensional variables and R is
the rank of the dimensional matrix, D.

It is highly desirable to have the smallest possible K. However, the rank, R, is determined strictly

by the dimension matrix D and thus by the VPlist; there is nothing that can be done to change K,

except to amend the VPlist.20

P2: Nondimensional variables correspond one-to-one with solution
vectors of the null space, and are K in number. These nondimensional
variables are themselves a basis set for the problem defined by the VPlist.

The K is the same for all basis sets and in that important regard, all basis sets are equally efficient,

i.e., they all achieve the same reduction in the number of variables. Nevertheless, one particular

basis set may be more useful than the others. A transformation from one basis set to another is

readily accomplished because

P3: The vectors of a null space basis are linearly independent and they
span the null space. Any vector that is a solution of the homogeneous
system can thus be formed as a linear combination of the vectors that
make up any basis set.

For example, if S1 and S2 are vectors in a null space basis, then their linear combination, say

S3 = a1S1 + a2S2, with a1 and a2 any real number, is also a vector in the null space, and hence

S3 is also a solution. Let the nondimensional variable corresponding to this new vector be Π3. If

Π3 and Π1 are preferred over the initial Π1 and Π2, then a revised basis set can be taken as Π1 and

Π3, while omitting Π2. The revised basis set has the same number of vectors and nondimensional

variables as the initial basis set, and will also span the null space.

20 The rank, R, of the dimension matrix is computed and reported as part of the automated calculation. It is useful to

know how R may change. In brief, the rank of a matrix is the number of linearly independent rows or columns (the same

for either). Suppose that a VPlist and thus the corresponding D includes a time scale, ω1, and now add another time scale,

ω2. The number of dimensional variables increases by 1, but the rank of D does not increase because the new column

associated with ω2 is identical to the column that represents ω1 and already present. The number K of nondimensional

variables in the null space basis thus goes up by 1 with the inclusion of ω2 in the VPlist. A special case considered in

Problem 4) below is D = 0, the zero matrix, which has rank of zero. For much more on the rank of a matrix and on the

null space generally, see https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/ and G. Strang, 1998, Introduction

to Linear Algebra, Wellesley-Cambridge Press, Wellesley, MA.
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Given these three properties of a null space basis, the initial basis set of nondimensional

variables that comes directly from a calculation may be transformed to some other preferred basis

set by multiplying or dividing the Πs in any order. Defining a preferred basis set of

nondimensional variables by this kind of transformation is the third step of a dimensional analysis

that will be emphasized in Secs. 4, 6 and 7.

3.4 Automated calculation

The calculation of a null space basis is best done by machine, say with Matlab

https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2024/06/DanalysisA2.zip

or Python,

https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2024/10/DA2Python.zip

To use the Matlab, unpack a script, DanalysisA2.m, and three functions, Dclear.m, Din.m and

Dnullspace.m, and enter the text below in red into a command window. The blue text is returned

by Matlab.

DanalysisA2 starts a script that will run several cases automatically. You will be asked to reply to

two questions that may be defaulted with n. To define a new problem, either edit this script, or, call

the functions that make up the algorithm.

To use the functions, first declare the following variables to be global:

global D VPname nVP S Pi, where

D is the dimension matrix,
VPname is the name of a variable in the VPlist (character data),
nVP is the number of variables and parameters in the VPlist,
S is the null space vectors that we seek, and
Pi is a symbolic math representation of the nondimensional variables.

Dclear should be called at the start of a problem to reset these global variables.

Then enter the data that define the VPlist by a sequence of calls to Din(’text’, [ mass length

time ]), once for each variable in the VPlist. The ’text’ is the name of the variable, and the row

vector defines the physical dimensions of ’text’ as [ mass length time ]. Enter the single dependent

variable first, then the independent variables, then the parameters, e.g., for the VPlist Eq. (15),

Din(’phi’, [ 0 0 0 ]) angular displacement, the single dependent variable

Din(’t’, [ 0 0 1 ]) time, an independent variable
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Din(’M’, [ 1 0 0 ]) mass of the bob

Din(’L’, [ 0 1 0 ]) length of the line

Din(’g’, [ 0 1 -2 ]) acceleration of gravity

Din(’phio’, [ 0 0 0 ]) the initial angle.

That completes the VPlist for the oscillations of a simple pendulum.

And now the calculation,

Dnullspace

The number of dimensional variables, I = 6

The rank of the dimension matrix, D, is R = 3

The number of non-d variables is K = I - R = 3

The dimensional variables and solution vectors (exponents) that

make one possible basis set of non-d variables are:

phi t M L g phio

1 0 0 0 0 0

0 1 0 -0.5 0.5 0

0 0 0 0 0 1

A basis set of non-dimensional variables is thus:

( phi, t * sqrt(g) / sqrt(L), phio )

This is consistent with Eq. (40), though written in an implicit form.11

3.5 Null space problems

1) Use the null space basis method to analyze the period of a simple pendulum given the VPlist (32).
How many nondimensional variables are there? What does this imply for the similarity function, or is
it a similarity constant? Given that there is only solution vector, verify by direct substitution that the
matrix relation Eq. (35) is equivalent to Eqs. (31) - (33). What if an angle, say φo, is included in the
analysis above? To add a new variable to an existing VPlist you need only call Din(’phio’, [ 0 0 0 ]),
and then call Dnullspace to see the new result. What happens if a second length, L2 is also included?

2) Suppose that you scramble the order of the VPlist of Eq. (15)? How about changing the order of
the physical dimensions, i.e., in place of [ mass length time ] used here, how about [ length mass
time ]?
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3) In most problems the number of nondimensional variables, K, can be estimated by the rule of
thumb noted in Sec. 2.3.1, K = the number of variables in the VPlist minus the number of
fundamental units. But that doesn’t always work, as the following example, which is contrived but not
impossible, shows. Suppose that a VPlist consists of four velocities. The simple rule of thumb: there
are two fundamental units, length and time, and so the expectation is K = 4 − 2 = 2 nondimensional
variables. However, an application of the null space method indicates 3 nondimensional variables
because the dimension matrix has rank R = 1 (the minimum, aside from the special case of a zero
matrix; discussed below) since the variables all have the same dimensionality. Some questions for
you: What are the nondimensional variables in this case, and which estimate of their number is
correct? Suppose a fifth variable having dimension length, L

.
= [ 0 1 0 ] is added into the VPlist; what

changes? Suppose a sixth variable having dimension time is added?

4) A good check on a model or algorithm is that it behaves appropriately at the limits of its domain. In
this context, an interesting limit is a case in which all of the variables of a VPlist are nondimensional,
as if the output of a null space calculation was used as the input of a second calculation. The
corresponding dimension matrix is the zero matrix, D = 0, i.e., all entries are zero, and which is the
only matrix that has a rank R = 0.20 What do you expect from a null space calculation? Form a
hypothesis, and then run such a calculation beginning with a VPlist comprising three angles, say.

5) The dimensional analysis of tension in the line, Sec. 2.4.2, and Eq. (46), concluded that the
time-independent tension, i.e., the minimum or maximum over an oscillation, is independent of the
line length, L. This was suggested by a handful of numerical experiments seen in Fig. (1), and
dimensional analysis assures that this holds rigorously for the VPlist that describes the most important
properties of a simple pendulum. Something for you to think about: does dimensional analysis
provide a satisfactory explanation of this (small and singular) fact?
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4 Damping a simple pendulum

The motion of a free-running pendulum will decay in time as energy is dissipated into the

surrounding air.21 This section will analyze the mechanisms that cause this damping.

4.1 Observations of the decaying amplitude

The amplitude of the oscillation, Φ(t), was observed by measuring the maximum of the cord length

at intervals of 30 seconds to 2 minutes. To minimize the measurement noise associated with the

rather coarse least count on the measured cord, 10−3 m, it was found helpful to study a longer

pendulum, L = 3.70 m, than used before. The line was smooth monofilament having a diameter

Dl = 0.40 × 10−3 m, and the bob was a nearly spherical, smooth lead fishing sinker with a

diameter Db = 0.0211 m and mass M = 0.055 kg. The line was supported on a needle bearing (a

fishhook with the point impinging on a hard, metal surface) to minimize interactions between the

swinging pendulum and its support.

The observed amplitude, Φ(t), (the red crosses of Fig. (6), upper) was found to be highly

repeatable, and can be characterized roughly as an e-folding in about 10 minutes. During this time

the pendulum made hundreds of oscillations, and hence the damping of this pendulum is weak in

comparison to gravity; more on this below.

The decay rate of the oscillation amplitude is defined by

Γ =
1

Φ

dΦ

dt
, (47)

where Φ is the amplitude of the angular displacement (and φ(t) is the time-dependent,

instantaneous angle). This Γ is an inverse time. It is expected that Γ will itself be

amplitude-dependent and thus time-dependent.

4.2 A preliminary VPlist for the decay rate of a simple pendulum

The primary damping process is presumed to be aerodynamic drag between the swinging pendulum

and the surrounding, viscous air.22 If that is the case, then the diameter of the bob, Db, and of the

21 A pendulum-based clock requires an escapement mechanism to couple the pendulum into the clock mechanism, and,

to do a very small positive work on each swing of the pendulum to offset frictional losses. One of the first successful

mechanisms for a pendulum clock was designed by Galileo Galilei, late in life and after he had lost his sight. Pendulum-

based clocks were later developed into the most precise means of time-keeping available for almost three centuries.

https://en.wikipedia.org/wiki/Galileo escapement
22 An excellent introduction to viscosity in fluid flow is by http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/

and see the chapter on Fluids. The pioneering work on this topic (and much else) is the remarkable study by Stokes, G. G.,
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Figure 6: (upper) Observations of the amplitude, Φ, of a simple pendulum at intervals of 30 seconds
to 2 minutes (the red crosses). Also shown here is a numerical solution for φ(t) (the thin, solid blue
line), described in Sec. 4.4.1. (lower) The decay rate computed directly from Eq. (47) with data from
three repetitions of the experiment (the red crosses), and from a numerical solution (blue, solid line).
An approximate analytic solution, Eq. (70), is the blue, dashed line. Drag that is linear in the angular
velocity produces exponential decay of the amplitude in time and thus a constant nondimensional
decay rate. Drag that is quadratic in the angular velocity produces a nondimensional decay rate that
decreases with decreasing amplitude, Φ. Most of what can be seen here is the latter.
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line, Dl, would seem to be relevant, along with the density and kinematic viscosity of air, ρ and ν.

(48)• A preliminary VPlist for the decay rate of a simple pendulum with viscosity:

1. the decay rate, Γ
.
= [ 0 0 -1 ], the dependent variable;

2. mass of the bob, M
.
= [ 1 0 0 ], a parameter,

3. length of the line, L
.
= [ 0 1 0 ], a parameter,

4. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter,

5. the amplitude of the motion, φo
.
= [ 0 0 0 ], a parameter,

6. diameter of the line, Dl
.
= [ 0 1 0 ], a parameter,

7. diameter of the bob, Db
.
= [ 0 1 0 ], a parameter,

8. density of air, ρ
.
= [ 1 -3 0 ], a parameter (1.2 kg m−3, nominal),

9. kinematic viscosity of air, ν
.
= [ 0 2 -1 ], a parameter (1.5×10−5 m2 s−1, nominal).

Dimensional analysis via the method of Sec. 3.2 (from here on omitting all of the intermediate

steps) indicates a basis set of K = 9 − 3 = 6 nondimensional variables,

Γ
√

L/g = F (φo,
Db

L
,

Dl

L
,

ρD3

b

M
,

g1/2L3/2

ν
). (49)

The dependent variable, Γ is scaled with the fast, oscillatory time scale, ∝
√

L/g, the natural time

scale of a simple pendulum, and is O(10−3) for the nearly conservative pendulum observed here,

Fig. (6). This is the sense in which this pendulum is weakly damped. The first nondimensional

parameter, φo, is familiar as the amplitude of the motion. The next two nondimensional parameters

have straightforward geometric interpretations, the third parameter is proportional to the buoyancy

force on the bob (not significant since the density of lead is much greater than the density of air).

The last nondimensional parameter involving the viscosity can be recast as a Reynolds number,

which has an important physical interpretation discussed below. While the nondimensional

variables and parameters are interpretable individually, we are not ready to make use of such a

comprehensive model.23 We may still be thinking of the nearly conservative pendulum of Sec. 2.1,

but this nine-variable VPlist includes all simple pendulums and fluid mediums, including bobs that

float and fluid that is sufficiently viscous that there is no oscillation. Before we can expect a useful

result from dimensional analysis we will have to first identify the most relevant parameters for the

kind of nearly conservative (weakly damped) pendulum described in Sec. 4.1.

1851, ’On the effect of the internal friction of fluids on the motion of pendulums’. Trans. of the Cambridge Philosophical

Soc., Ninth Vol., No. 10, pp. 8 - 106. Bibcode: 1851TCaPS...9....8S More recent is P. T. Squire, 1986, ’Pendulum damp-

ing’, Am. J. Phys. 54, 984–991, and R. A. Nelson, and M. G. Olsson, 1985, ’The pendulum: Rich physics from a simple

system’, Am. J. Phys. 54, 112–121.
23 This looks like a big problem compared to those encountered up to here. However, it is small compared to the problems

that arise in some real-world applications, e.g., food processing.2
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4.3 Aerodynamic drag on a moving sphere and cylinder

A piecewise approach is tried next. Consider in isolation the aerodynamic drag on a smooth sphere

(the bob) that is in steady motion through a viscous fluid (air) that is at rest. Despite the idealized

configuration of this problem, it is challenging to compute the drag from first principles in the

common case that the flow around the sphere is turbulent. However, dimensional analysis

combined with laboratory measurement leads to a useful result.

(50)• A VPlist for drag on a sphere moving steadily through viscous fluid:

1. drag (a force), H
.
= [ 1 1 -2 ], the dependent variable,

2. speed of the sphere, U
.
= [ 0 1 -1 ], a parameter,

3. diameter of the sphere, Db
.
= [ 0 1 0 ], a parameter,

4. density of the fluid, ρ
.
= [ 1 -3 0 ], a parameter,

5. kinematic viscosity of the fluid, ν
.
= [ 0 2 -1 ], a parameter.

There are five variables and parameters having three physical dimensions and hence there are two

nondimensional variables in the preliminary basis set,

Π1 =
H

ρD2

b U2
and Π2 =

ν

U Db

. (51)

This Π2 is the inverse of a very widely occurring nondimensional variable called the Reynolds

number,

Re =
U Db

ν
, (52)

which is preferred. From P2 of the null space (Sec. 3.3) we know that the Π1 and Π2 of Eq. (51)

are not uniquely determined by dimensional analysis, and that we are free to reform the initial

basis set by adding or subtracting the solution vectors to one another in any order, which amounts

to multiplying or dividing the Πs in any order. The first change will be to simply invert the initial

Π2 of Eq. (51), and use instead the conventional Reynolds number,

Π2 =
U Db

ν
.

Thus to here we have the slightly revised basis set,

Π1 =
H

ρD2

b U2
, Π2 = Re =

U Db

ν
, (53)

and so
H

ρD2

b U2
= C(Re), (54)
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which is close to a useful result. Notice that in place of the F used to indicate an unknown

similarity function in Secs. 2 and 3, this Eq. (54) and the rest of this section will use instead C ,

which is said to be a ’drag coefficient’.

The drag coefficient on an immersed object is generally defined to be

Cd =
H

1

2
ρA U2

, (55)

with A the frontal area, A = πD2/4 for a sphere. The factor 1/2 in the denominator of (55) is

almost always included. With these numerical factors acknowledged, the basis set (54) becomes24

Π1 =
H

(π/8) ρD2

b U2
and Π2 = Re =

UDb

ν
. (56)

Before accepting (56) as final, we should consider other possibilities, and specifically that Π1

may also be multiplied by some power of the Reynolds number, Π2. A somewhat general basis set

is then
H

(π/8) ρD2

b U2
Re

n = Cn(Re), (57)

where n is any real number. This assumes that H and Π2 = Re may as well remain to the first

power. The subscript n on Cn is to acknowledge that the drag coefficient (the similarity function in

this problem), will be dependent upon n. In this case, the criterion for deciding the best n will be

the n that yields the least variable drag coefficient, Cn(Re).

Regardless of the n finally chosen, an essential result from Eq. (57) is that the nondimensional

drag, the left side of (57), is expected to be a function of Re alone. Laboratory measurements of

drag, speed, etc., can thus be used to define a similarity function Cn(Re) that should hold for all

steadily moving spheres or cylinders, just the way that the function F (φ0) (Sec. 2.4) sufficed to

define the period for all inviscid, simple pendulums. What is most important is that drag

coefficients estimated from experiments conducted over a very wide range of speeds and through

different Newtonian viscous fluids do indeed collapse to a well-defined, though not necessarily

simple function of the Reynolds number alone, just as dimensional analysis had lead us to expect.

Experimental estimates for spheres are in Fig. (7), left, and the result for cylinders is Fig. (7),

right.

This is a result, characteristic of dimensional analysis, that is at once profound and trivial.

One might say trivial because, after all, dimensional analysis told us that the drag coefficient

24 The inclusion of these two numerical factors doesn’t change anything fundamental about the drag coefficient (54).

However, if we want to make contact with the huge body of historical studies on aerodynamic drag, then we should ac-

count for them. The factor 1/2 that multiplies ρU2 can be viewed as the dynamic pressure of the Bernoulli equation,

Pd = 1

2
ρU2, where U is the free stream velocity brought to zero on the surface of an object that is immersed in the flow.

Dynamic pressure is the immediate mechanism of inertial drag, and can be measured directly.
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Figure 7: Experimental estimates of the conventional drag coefficient, Cd = H/1

2
ρAU2, of a smooth

sphere (left) and a cylinder (right) moving steadily through a viscous, Newtonian fluid, air, water and

various oils. This is a representative subset of experimental data extracted from Rouse (1946) Sec. 4.5

should depend upon Re alone. From that perspective, an effective collapse of the experimental data

to a single curve C(Re) merely verifies that carefully controlled laboratory conditions can

approximate the idealized VPlist (50). But it is also profound in that dimensional analysis has

shown the way to a portable, useful result, the C(Re) of Fig. (8), where there would otherwise

have been be an unwieldy mass of highly specific data, as in going from Fig. (1), upper to lower.

4.3.1 A zero order solution as a scale for the dependent variable

The most important (and in this case the only) choice is how to nondimensionalize, or scale, the

dependent variable, H, which then defines Π1. The null space basis method has framed the issue in

a convenient way, but the next step requires that something be added. One strategy is to choose a

scale that reflects a physically meaningful ’zero order’ solution for the dependent variable. A zero

order solution is a highly simplified, approximate solution that has a physically plausible behavior

in an appropriate limit (examples coming just below). If such a zero order solution can be found,

then the corresponding nondimensional variable, Π1, should have a magnitude of O(1) in that limit.

Constructing a zero order solution requires some sense of the physics of the problem. Visual

observations of the flow around a steadily moving sphere suggest that drag can arise from two

distinct processes.
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Figure 8: Empirical drag coefficients for a sphere, (left), and a cylinder, (right), moving at a steady
speed U through a Newtonian viscous fluid. Two forms of a drag coefficient are shown here, the iner-
tial drag coefficient denoted by Ci (the blue lines), and the so-called viscous drag coefficient denoted
by Cv (the green lines). The inertial drag coefficients were read from Munson et al. (1998)5, Fig. (7.7)
and Rouse (1946),5 Figs. (125) and (126) and the viscous drag coefficients were then computed by Eq.
(57) with n = 1. Note that sCv and cCv are O(1) if Re is small, Re ≤ 1, and that sCi and cCi are O(1)
if the Reynolds number is much larger, Re ≥ 1000. The dashed red lines are approximate fits to the
drag coefficients in the Re range appropriate to the bob, Eq. (62), at left, or the line, Eq. (60), at right.
The dotted red line at left and very small Re is Stokes’ solution for creeping flow discussed in Sec.
4.5, Problem 1.

Viscous drag. If the sphere is moving very slowly so that the flow around the sphere is laminar

and symmetric fore and aft with little or no wake, then the drag will be mainly viscous stress

acting on the surface of the sphere. In the common case of a Newtonian fluid, the viscous, surface

drag is proportional to the dynamic viscosity of the fluid, ρ ν, times the shear of the flow around

the sphere, ρνU/Db . Assuming that this viscous stress acts over a surface area proportional to D2

b ,

then a zero order solution for drag on the sphere is H ∝ ρνDbU . If this viscous, surface drag is the

dominant drag-producing process, then it would be appropriate to nondimensionalize (scale) the

aerodynamic drag as

viscous drag coefficient for a sphere:
H

ρνDbU
= sCv(Re), (58)

on the expectation that the Re-dependence of sCv would then be minimized compared to other

choices. This is the n = 1 version of Eq. (57). This form of a drag coefficient will be used to

estimate drag on the line of the pendulum in Sec. 4.4.
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Inertial drag. Even if the fluid was nearly inviscid,25 there would still be drag on a moving

sphere because the fluid that is displaced by a moving object must be accelerated up to a speed

∝ U . If the displaced fluid forms a turbulent wake, as is observed behind a rapidly moving sphere,

then the drag would be expected to be roughly proportional to the rate of change of the momentum

of the displaced fluid, ∝ ρU , times the rate of change of the volume of the wake, frontal area

A = πD2

b/4 times the speed, U . Thus the drag would be estimated as H ∝ ρAU2. The drag

coefficient that corresponds to this inertial drag process, often called ’form drag’, is

inertial drag coefficient for a sphere:
H

1

2
ρAU2

= sCi(Re), (59)

which is the n = 0 version of Eq. (57). This is the form of the drag coefficient that is almost

always encountered, as in Fig. (7), and is usually written Cd and said to be the ’drag coefficient’

without mentioning inertial. The Re-dependence of sCi shows the departures from inertial drag due

to viscous effects, presumably. Either form of the drag coefficient effectively conveys the laboratory

data and in that respect they are equally useful (consistent with P1 and P2 of a basis set, Sec. 3.2).

However, if the range of the relevant Re is restricted, then it would be appropriate to use the form

of the drag coefficient – inertial or viscous, n = 0 or n = 1 – that has the least variation over

that subrange of Re. In this case, the inertial drag coefficient for a sphere will be used to estimate

the aerodynamic drag on the bob.

4.3.2 Nondimensional parameters; the Reynolds number

Once the form of the dependent nondimensional variable, Π1, has been set, the remaining

nondimensional variables can be formed in ways that define the geometry of the problem, or that

reflect a balance of terms in a governing equation, or that follow the established norms of your

field. This is necessarily vague because the possibilities are almost limitless. However the task is

eased by the null space basis method which ensures that you start with a complete basis set of

nondimensional variables. All that you have to do (!) is rearrange the basis set to make the most

useful basis set for your purpose.

In the example of aerodynamic drag on a moving sphere, there is only one remaining

nondimensional variable, the Reynolds number, Re = UD
ν

(or any power of the Reynolds number),

where U is the speed of the current, usually in a free-stream or undisturbed region, D is the spatial

scale over which U changes by O(1), and ν is the kinematic viscosity of the fluid. The Reynolds

number is the ratio of advective to viscous terms in the Navier-Stokes momentum balance and

arises very often in problems of fluid mechanics.

Recall that for the purpose of modeling drag, a slowly moving sphere has a nearly

25 If the fluid is a superfluid having literally zero viscosity, then the viscous drag will vanish. Such superfluids are in ef-

fect a new state of matter for which quantum physics supplants classical physics.
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undisturbed, laminar wake. Observational evidence shows that laminar flow occurs when Re is

small, Re ≤ 1, regardless of speed per se; a small diameter or large viscosity are equally

important to Re. Dimensional analysis tells us as much in that the drag coefficient of a given class

of object (e.g., spheres or cylinders) depends only upon Re. The small Re range is that of a small

bug swimming through water, or the thin line of a pendulum swinging slowly through air. In the

small Re range, the viscous drag coefficient sCv is O(1), both numerically and in the sense that
sCv is nearly independent of Re for Re ≤ 1 (Fig. 8).

For creatures and objects anywhere near our size, e.g., golf balls, bikers or automobiles,

Reynolds numbers of O(104) and greater are the norm, and inertial drag (form drag) is generally

more important than is viscous drag. Notice that for moderately large Re, Re ≥ 103, the inertial

drag coefficient Ci is O(1) in magnitude and very roughly constant within subranges of Re

(Fig. 8).26

The pendulum studied here has Reynolds numbers for the line and the bob that fall in an

intermediate range in which both viscous and inertial drag are likely to be important, discussed

further in the next section, 4.4.

4.3.3 Three-dimensional flow effects upon drag

Before leaving the subject of aerodynamic drag, it should be noted explicitly that the drag on an

immersed object depends very sensitively upon the three-dimensional flow from front to back

around the object, and not just the frontal area, which is the only geometric property accounted for

in the drag coefficients (58) and (59). For example, a flat disk of a given area that is face-on to a

flow will have a drag coefficient of about 2 at large Re. A tear-drop-shaped, streamlined object

having the same frontal area may have a drag coefficient as low as 0.04, or a factor 50 less at the

same Re.27 As a consequence of this sensitive dependence of drag upon the three-dimensional flow

around an object, each distinct shape will require its own drag coefficient denoted by a superscript,

here a sphere or a cylinder, sC or cC in Fig. (8), left and right. (For a more ambitious approach to

this, see Problem 6 in Sec. 4.5 below.)

26 However, even at a very large Re it does not follow that viscosity is entirely irrelevant. Significant changes in the drag

coefficient of a sphere or a cylinder occur in the vicinity Re ≈ 4 × 105 due to changes in the boundary layer flow around

the object and the width of the turbulent wake (sometimes referred to as the ’drag crisis’). This is the Re range of a well-

hit golf ball or tennis ball, and is consistent with the observation that aerodynamic drag on these objects has a surprising

sensitivity to small scale surface roughness and to spin. For more on these phenomena see S. Vogel, 1994, Life in Moving

Fluids, Princeton Univ. Press, and P. Timmerman, and J. P van der Weele, 1999, ’On the rise and fall of a ball with linear

and quadratic drag’, Am. J. Phys., 67, 538–546.
27 An especially clear illustration of the flow around such objects is Plate XVIII of Rouse (1946)5
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4.4 Evaluating models of a damped pendulum

4.4.1 A numerical solution

To model the decay process requires including the aerodynamic drag on the line and bob in the

angular momentum balance (1). Drag will be estimated by means of the steady drag laws discussed

above, and so it is assumed implicitly that the instantaneous speed of the bob or line gives the

same drag as would a steady motion of the same speed. Whether this assumption is appropriate

remains to be seen.

The main task is to account for the Re-dependence of the drag coefficients. Because the line

is comparatively thin, Dl = 0.4 × 10−3m, the Reynolds numbers of the line Rel = UDl/ν are

comparatively small, Rel ≤ 20, where U = rdφ/dt, r is the distance from the pivot and an a

priori estimate of dφ/dt is φo/
√

L/g. In that small Re range the viscous drag coefficient on a

cylinder may be approximated by

cCv(Rel) = 1.3 +
Rel

2
, (60)

(the short red dashed line of Fig. 7, right). The drag per unit length of the line, δ = dr, can then be

computed by the drag law corresponding to Eq. (58) as

H = π ρ ν cCv(Rel)U dr

and the (dimensional) torque due to drag over the length of the line is

τl =

∫ L

0

r H dr = ρ

(

1.3
π

2
νL3 +

1

12
DlL

4 | dφ

dt
|
)

dφ

dt
. (61)

The absolute value operator ensures that the drag opposes the motion.

The bob has a comparatively large diameter, Db = 0.021 m, and thus a much larger Reynolds

number; Reb = Ldφ
dt

Db/ν is O(1000). In this range of Re, a convenient fit to the inertial drag

coefficient of a sphere is26

sCi(Reb) =
24

Reb
+

6

1 +
√

Reb

+ 0.4, (62)

the dashed red line of Fig. 7, left. The drag-induced torque on the bob is then estimated as

τb =
πρ

8
sCi(Reb)D2

b L3 | dφ

dt
| dφ

dt
, (63)

where Reb and sCi are evaluated at each time step of the numerical integration (with care to avoid

division by zero when evaluating (62)).
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The revised angular momentum balance is (in dimensional variables),

d2φ

dt2
= −

(

g

L
sin(φ) +

τl + τb

L2M

)

. (64)

Together with Eqs. (60) - (63) and the initial condition Eq. (3), this makes a complete if inelegant

model that can be integrated numerically. With these drag terms included, the period of the

oscillation is nearly unchanged, but the amplitude decays with an e-folding in about 10 minutes

(Fig. 6, upper, the envelope of the thin blue line). The amplitude simulated by the numerical model

looks plausible when compared with the observations, suggesting that this application of the steady

drag laws for a sphere and cylinder is appropriate.

4.4.2 An approximate model of the decay rate

Numerical solutions are not revealing of parameter dependence, but given two modest

approximations we can go on to deduce a model of the viscous pendulum that has transparent

solutions. First, the angle φ is small enough in the case shown in Fig. (6), upper, that sinφ of Eq.

(55) can be approximated as φ. Second, the torque is due mostly, ≈ 80%, to the line, and so it

should be acceptable to make the approximation that the inertial drag coefficient for the bob is a

constant, Ci = 0.7, an average for the high Reb range of the bob where most of the drag occurs.

With these approximations, a solvable model for the simple, viscous pendulum (now in

nondimensional variables)

d2φ

dt∗2
= −

(

φ + a
dφ

dt∗
+ b | dφ

dt∗
| dφ

dt∗

)

, (65)

where the coefficient in the linear drag term is

a =
π

2

ρ ν L3/2

M g1/2
(66)

and the coefficient in the quadratic term is

b =
ρ

8M
(0.7D2

b L +
2π

3
Dl L

2). (67)

The linear term ∝ a comes from the low Re limit of viscous drag on the line, and the quadratic

term ∝ b comes from the higher Re approximations of inertial drag on the line and the bob.

Approximate solutions for small damping are given by Timmerman and van der Weele.26

Linear drag causes the amplitude to decay at a nondimensional rate

1

Φ

dΦ

dt∗
= − a

2
(68)
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Figure 9: (left) The drag-induced torque on the line and the bob (blue and red lines) nondimension-
alized with the gravitational-induced torque on the bob (which is much larger). The drag-induced
torque on the line contributes about 80% of the total drag-induced torque. (right) The torque on the
line due to quadratic and linear terms of Eqs. (65) - (67) (black and green lines; the envelope only is
shown here). The sum is equal to the total shown as the blue line at left. For short times, when the
amplitude of the displacement is largest, the torque on the line is due mainly to the quadratic term,
and thus the inertial drag process. For longer time and smaller amplitude, the torque on the line is due
about equally to the quadratic and linear terms, and thus about equally to inertial and viscous drag.

and the quadratic term causes decay at a rate

1

Φ

dΦ

dt∗
= − 8 b

6π
Φ . (69)

For small damping, these two may be added together, and when evaluated for the specific

pendulum observed here (Sec. 4.1),

Γ
√

L/g =
1

Φ

dΦ

dt∗
≈ −

(

5.2 × 10−4 + 1.6 × 10−2Φ
)

(70)

shown as the blue, dashed line (theory) of Fig. (6), lower. This approximate solution gives a good

account of the damping found in numerical simulations even for much stronger damping, e.g., by

imposing a larger viscosity. It also shows clearly how the decay rate is expected to vary with the

parameters that characterize the pendulum and the surrounding fluid. All of the pieces of this

model were present in the first attempt at dimensional analysis of a damped, viscous pendulum,

Eq. (49), though we were not prepared to interpret them at that time.

The decay rate, Γ = Φ−1dΦ/dt, can be estimated from the observations and from the

numerical solution by first differencing the observed and model-simulated amplitudes, Fig. (6),
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lower. This makes a much more sensitive test of the drag formulations than does a comparison of

the amplitude cf., Fig. (6), upper. The first thing to note is that the decay is not a simple

exponential in time as it first appears on inspection of Φ(t). Instead, there is a significant

dependence of the decay rate upon amplitude, with a greater decay at the beginning of an

experiment when the amplitude was largest, Φ ≥ 0.1 radians, than at long times when the

amplitude was small, ≤ 0.05 radians.

Within the numerical solution, the drag-induced torque on the pendulum was due mainly to

drag on the line rather than drag on the bob. The drag on the line was due mainly to inertial drag

at short times, when the amplitude of the motion was larger, and then due mainly to viscous drag

at long times, when the amplitude was small, Φ ≤ 0.05 radians, cf. Figs. (6) and (9).

4.5 Damped pendulum problems

1) Stokes’ landmark 1851 study of viscous fluid flow22 included the detailed calculation of drag on a
smooth sphere moving at a steady speed, U , through a viscous fluid. The speed was presumed to be
slow enough that the flow remained laminar (no turbulence and no inertial effects). Such a slow flow
is sometimes called ’creeping flow’, and in practice requires that the Reynolds number must be very
small, Re = UR/ν ≤ O(1). Stokes found that the viscous drag on a sphere of radius R is then

H = 6π ν R U. (71)

How does this compare with the inferred (empirical) viscous drag coefficient of Fig. (8), left, at very
low Re? And how about the inertial drag coefficient of Fig. (7), left, the dashed black line, 24/Re?

2) Under the plausible assumption that the terminal (steady) velocity, U , of a dense sphere falling
through viscous fluid reflects a balance of the viscous drag from (71) and buoyancy force, ∝ R3 gδρ,
show that the Stokes settling velocity, Uset, is

Uset =
2

9

g δρ

ν
R2, (72)

where δρ is the density difference ρsphere − ρfluid. This has proven to be an accurate and widely
useful estimate of the settling velocity of small particles in air and water (dust and sediment). When
the velocity may be observed and the density and radius of the particle are known, then (72) is a
handy means for estimating the viscosity of the surrounding fluid. Now suppose that you do not know
(72), but that you do know the VPlist for the corresponding dimensional analysis of velocity. What
can you infer about the dependence of settling velocity Uset upon δρ and particle radius?

3) The decay rate (Fig. 6, lower) decreases significantly as the amplitude of the pendulum’s motion
dies away. At very small amplitude, Φ ≤ 0.05 radians, the visual observations of cord length made
here were rather noisy (poor resolution). However, an extrapolation of the observed and modeled
decay rates to Φ → 0 looks plausible. How does the inferred decay rate compare with the analytic
solution for linear drag, Eq. (68)? It is surprising that (68) does not depend upon the line diameter, Dl.
Can you explain why this model of linear, viscous drag-induced torque does not depend upon Dl,
while the (generally more important) quadratic, inertial drag and torque do?
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4) The empirical formula for the inertial drag coefficient Ci(Re) Eq. (62) has terms that are

proportional to Re−1, Re−1/2, and Re0, and that are important at low, medium and high Re. We have
considered the low Re limit in Problem 1 above, and now consider the high(er) Re limit. What does
dimensional analysis tell us about the drag coefficient in the limit that Re is very large, say because
ν → 0? (We won’t know the value of Ci in that limit without help from laboratory data or
sophisticated and intensive numerical computations, but we might expect it to be O(1), as indeed it is.)

5) Looking back at the first try at dimensional analysis for a damped pendulum, Sec. 4.1, it seems that
the scope of the initial VPlist (48) was too broad. Let’s try the opposite: narrow the scope to the one
specific pendulum that was observed. Thus while L, Dl, Db, and M are all relevant to the damping
rate, they can also be declared ’globally constant’ parameters (Sec. 2.7), if we choose to narrow the
scope to just one specific pendulum. The same holds for g and the viscosity of air, ν. What are we left
with? How does the new, greatly pared-down analysis compare with Fig. (6), lower?

6) Aerodynamic drag on an object is a property of the three-dimensional flow around the object, and
not just its frontal area as the usual drag coefficient allows (7). Consider objects that are azimuthally
symmetric in the direction parallel to the flow, e.g., a disk or a sphere or an ellipse, and suppose that
we allow in just one length to define the object’s geometry: the length from front to back, B. The ratio
of this length compared to the diameter of the object is sometimes called fineness; B/D → 0 for a
thin disk, B/D = 1 for a sphere, and so on. Would you prefer a drag coefficient that varies with both
Re and B/D, and so encompasses the entire family of azimuthally symmetric objects, or, would you
prefer a separate drag coefficient for each shape, i.e., a Cd for each specific B/D. Discuss this in
terms of locally and globally constant parameters, Sec. 2.7. Qualitatively, how would you expect the
viscous drag coefficient to vary with B/D? How about the inertial drag coefficient?

7) It is surprising that the formulations for steady state flow and drag give accurate estimates of the
aerodynamic drag on the bob and line of an oscillating, time-dependent pendulum. A possible
rationalization: presume that the line interacts with the surrounding air on the scale of the line width,
Dl. Can you show that the velocity change on this space scale is O(Dl/L) ∝ 10−3, i.e., very small?
Hence, the flow around the line is quasi-steady. Where is this in the first try at dimensional analysis of
a viscous pendulum, Eq. (48)?
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5 A similarity solution for diffusion in one dimension

Dimensional analysis can help simplify and reduce a model system and help find solutions that

might otherwise have been missed. A good example is afforded by Stokes’ first problem (also

called the Rayleigh boundary layer problem) in which a fluid column of uniform density is driven

from rest by a speed, Vo, imposed on a boundary, here the upper boundary, z = 0, Fig. (10). The

problem is to find the resulting current, U(z, t). A key physical assumption is that the momentum

supplied at the boundary will diffuse into the fluid at a rate set by the kinematic viscosity of the

fluid, ν, times the velocity shear,

τ = ν
∂U

∂z
, (73)

which is characteristic of Newtonian fluids (air and water). The quantity τ is proportional to the

diffusive flux of momentum, and, it may also be interpreted as a shear stress, a horizontal force per

unit area exerted by the fluid on a boundary or an adjacent fluid parcel. The kinematic viscosity is

presumed to be a given constant, and not dependent upon the flow. In that case the governing

equation for the current, U(z, t), is the elementary one-dimensional diffusion equation,

∂U

∂t
=

∂τ

∂z
= ν

∂2U

∂z2
, (74)

a partial differential equation (PDE) in z and t. The initial condition is a state of rest,

U(z, t = 0) = 0. (75)

The boundary conditions are that the fluid sticks to an upper surface that is set into motion with

the speed V o at t = 0, and the fluid also sticks to a lower boundary at z = −L that remains at rest.

(Stokes first problem presumes that L → ∞, discussed more below.) The two required boundary

conditions on U are then

U(z = 0, t ≥ 0) = V o, and U(z = −L, t) = 0. (76)

This linear PDE system is not difficult to solve; Fourier transform leads to an infinite sine series

that can be summed to high accuracy, and numerical integration is straightforward (Fig. 10, left).28

5.1 Dimensional analysis to simplify or reduce a model system

Dimensional analysis can help point the way to yet another possibility, a similarity solution, that

may yield more insight than is likely to come from an infinite series or from numerical data. As

usual, a start can be made with a straightforward list of the important variables and parameters,

(77)
28 Matlab code: https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2024/08/Stokes1.txt
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Figure 10: Numerical solution of the elementary diffusion model, Eqs. (74) - (76). (left) The solution
in dimensional coordinates. The parameters are those of an upper ocean boundary layer over shal-
low water, ν = 10−2 m2 s−1 and L = 50 m. Current profiles are plotted at intervals of 104 seconds.
(right) The solution in nondimensional coordinates (blue lines) and the similarity solution, Eq. (86),
(red line). The similarity solution presumes an infinitely deep fluid and does not recognize the no-slip
boundary condition at z = −L = −50 m imposed here. For small time, only about the first three
profiles, the numerical solutions are coincident with the similarity solution. At longer times the ef-
fect of finite depth and the no-slip lower boundary condition becomes appreciable, and the numerical
solution departs from the similarity form.

• A VPlist for one-dimensional diffusion:

1. current, U
.
= [ 0 1 -1 ], the dependent variable,

2. time, t
.
= [ 0 0 1 ], an independent variable,

3. depth, z
.
= [ 0 1 0 ], a second independent variable,

4. surface boundary value, V o
.
= [ 0 1 -1 ], a parameter,

5. the kinematic viscosity, ν
.
= [ 0 2 -1 ], a parameter,

6. the depth of the fluid column, L
.
= [ 0 1 0 ], a parameter.

Given this VPlist, a basis set of nondimensional variables has four members, and a relation among

them may be written
U

V o
= F (

zV o

ν
,

tV o2

ν
,

z

L
), (78)

as one possibility.
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5.2 Tuning the VPlist

The model equations, (74) - (76), are linear. In consequence, the numerical solutions show that the

current at a given depth and time is directly proportional to the boundary value, V o. Thus, the sole

effect of changing V o is to change the current in direct proportion. This important property has not

been built into the VPlist, nor is it reflected in the initial basis set of nondimensional variables, Eq.

(65). Instead, this VPlist includes a much more general problem in which V o appears in the

nondimensional variables combined with z and t as if V o affected the diffusion process. In general,

it does! On physical grounds, this can be expected to hold when the diffusion process results from

turbulence generated by the boundary forcing rather than by (the implicitly laminar) diffusion

process represented by ν. Whether the flow is turbulent or laminar depends upon the distance from

the boundary, the current speed, and the fluid viscosity, i.e., a Reynolds number, zV o/ν.

If we insist that the diffusion process must be represented by a constant viscosity (what is

meant by elementary diffusion) then we are implicitly limiting the analysis to small Reynolds

number flows that are laminar, and the dynamics are identical to the diffusion of heat in a solid. To

assert this idealization in the VPlist requires a small but significant change — retain the dependent

variable U/V o, but remove V o from the list of parameters. A basis set for this revised VPlist is

found to be
U

V o
= F (

z√
tν

,
z

L
), (79)

which has one fewer variables than the initial basis set, Eq. (78), a significant change.

One step further — suppose that L is very large compared to the depth that diffusion has

reached up to the time, t. This will be plausible if the fluid is very deep, or, the time very short. In

that case the depth L will be irrelevant, and the current at a given depth (z << L) will depend only

upon time, depth, and the kinematic viscosity that are combined into the single independent,

nondimensional variable, η,

η =
z√
tν

, (80)

and thus (79) may be written
U

V o
= F (η). (81)

The variable η is said to be a ’similarity’ variable, and the function F (η) is a similarity function,

something we have encountered before in Sec. 4 as the Reynolds number and drag coefficients. If

Eq. (81) is relevant, then the current profiles at various times will have a similar shape, being more

or less stretched out in z depending upon η = z/
√

tν, Fig. (6), right.

It has been noted on other occasions that the power of nondimensional analysis comes in large

part from a reduction in the number of variables that is required to define a solution. Often the

variables that are compacted are parameters, but on this occasion they are the independent

variables, z and t. Dimensional analysis per se doesn’t recognize the difference between a
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parameter and an independent variable or even the dependent variable. The implementation of the

null space method suggested here (Sec. 3.3) strives to keep the dependent variable to the first

power, but beyond that, independent variables and parameters are treated as equal.

5.3 When there is only one independent, nondimensional variable

The analysis above suggests that the original governing equation (a partial differential equation in z

and t) might be transformable into an ordinary differential equation in the single independent

variable η. To see if this holds, substitute U = VoF (η) into the governing equation (74). The

partial time derivative becomes

∂U

∂t
= V o

∂F

∂η

∂η

∂t
= − V oF ′ η

2t
, (82)

where F ′ = dF/dη, and the second derivative with respect to z becomes

∂2U

∂z2
= V oF ′′ 1

tν
. (83)

Substitution into the governing equation and noting that z and t appear only in the combination

z/
√

t shows that the second order, linear partial differential equation (74) may indeed be

transformed into the second order, linear ordinary differential equation (ODE),

F ′′ +
1

2
ηF ′ = 0. (84)

Substitution of η into the upper and lower boundary conditions gives

F (η = 0) = 1, and F (η = −∞) = 0. (85)

So far as the current is concerned, small time and large z are equivalent, and the initial condition is

identical to the lower boundary condition. The ODE model equations (84) and (85) may be

integrated by an approach much like that used with the finite amplitude pendulum, Eq. (13). First,

let G(η) = F ′ and substitute into (84). Separate variables, G and η, and integrate to find F ′(η).

Then separate F and η, and integrate using (85) to find the similarity solution

U(η)

V o
= 1 − 2√

π

∫ η/2

0

exp(−y2)dy. (86)

The integral at right is the error function, and this can be considered a closed solution.

A similarity solution (86) is valuable in at least two ways. Because it is exact, it can serve as

a precise test of numerical or numerically evaluated solutions whose accuracy might be hard to

assess a priori. Because it is more or less transparent, there are qualitative features evident in this
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the numerical solution of Fig. 10.
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erwise.

similarity solution that might have been missed in a mass of numerical data. In particular, note

from (81) and (80) that a given value of η, say ηg , and thus a given value of U/V o = F (ηg),

moves downward with time as

zg = ηg

√
t ν. (87)

Thus the thickness of the layer that is directly affected by the boundary condition, i.e., the

boundary layer, grows like the square root of time, Fig. (11), a characteristic of 1-dimensional

elementary diffusion and random processes alike. This result can be turned around; the time tg

needed to diffuse a distance zg away from the boundary is

tg =
z2

g

ν η2
g

,

which forms a natural time scale for a one-dimensional diffusion problem.29

If the model domain includes a lower boundary at say z = −L as here, then the similarity

solution has the built-in limitation that it holds only for a limited, intermediate time interval. The

elapsed time has to be long enough that the growing boundary layer does not retain the detailed

imprint of the startup, which could never be a literal step function in time as is assumed. In a

numerical model, the boundary layer must be thick enough that the current profile is not too

strongly dependent upon the finite grid resolution. Judging from the curves of Fig. (10), this

requires a time of about t/(L2/ν) ≥ 5 × 10−4, in this numerical solution. However, the time can

29 When we say that diffusion reaches a certain distance we mean that a given fraction of the boundary value amplitude is

found at that distance from the boundary. The continuous diffusion equation has the unphysical property that every point

in the domain is affected by the boundary condition instantaneously. If the point is very far away from the boundary in the

sense that η is large, then the boundary effect will be correspondingly very small, though not zero.
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not be too long either, or else diffusion will have caused an appreciable current near the lower

boundary at z = −L. Once the current becomes appreciable near the lower boundary, judging from

Fig. (10), t/(L2/ν) ≥ 10−1, the similarity solution will no longer hold accurately, and a more

general solution of the form (79) will be required.

5.4 An oscillating upper boundary; Stokes second problem

Now consider another important diffusion problem that is in some respects the complement to the

start-up problem discussed above. Suppose that the fluid is infinitely deep, so that there is no L to

contend with, and that the upper boundary oscillates in time as Vocos(ωt). If this has been going

on for a very long time, the flow will become statistically steady though time-dependent, oscillating

with the frequency ω imposed by the boundary. In this problem there is an important external time

scale, ω, (an inverse time) that we cannot dispose of. Hence, there is no similarity solution, as in

the case when the depth of the lower boundary was relevant, an imposed, external length scale.
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Figure 12: A solution for the time-dependent current under an imposed, oscillating surface current.
(left) Time series of the current at six depths. (right) Eight profiles over one period of the surface
current oscillation. The first profile is red, and successive profiles trend toward blue.
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What to do? How about analyzing

(88)
• A VPlist for one-dimensional diffusion driven by an oscillating boundary:

1. current, U/V o
.
= [ 0 0 0 ], the dependent variable,

2. depth, z
.
= [ 0 1 0 ], an independent variable,

3. time, t
.
= [ 0 0 1 ], an independent variable,

4. kinematic viscosity, ν
.
= [ 0 2 -1 ], a parameter,

5. oscillation frequency of the boundary, ω
.
= [ 0 0 -1 ], a parameter.

A basis set of nondimensional variables for this problem is then

U

Vo

= F (
z

√

ν/ω
, ωt). (89)

This problem has a natural time scale, ∝ ω−1, as well as a natural length scale, ∝
√

(ν/ω), which

depends upon the viscosity and the frequency, ω.

The solution can be presumed to be separable in depth and time,

U(z, t) = Real [A(z) exp iωt] .

The depth dependence has to be a decay with increasing depth, and the time dependence will be an

oscillation at the frequency ω. Substitution into the governing PDE (74) and minding the boundary

conditions gives30

U

Vo
= exp(z/

√

2ν/ω) cos(ωt − z/
√

2ν/ω), (90)

which we might have guessed, or certainly can recognize, up to the factor
√

2 that appears in the

length scale of (90). The solution reveals that the boundary effect diffuses into the fluid, producing

a sinusoidal current at depth, Fig. (12). The current at depth lags the surface current, and the

amplitude decays over a comparable depth scale.

5.5 Diffusion problems

1) Consider the steady solution of Sec. 5.3. Suppose that the (water) column has a finite depth, L, and
that the experiment is run out to a time that is long enough that the current becomes essentially steady.
As before, assume that the boundary value of the current, Vo has the sole effect of changing the
amplitude of the current. A VPlist for steady diffusion is then

30 A thorough description of this solution method is by https://youtu.be/Jtg3WOTZfSw



5 A SIMILARITY SOLUTION FOR DIFFUSION IN ONE DIMENSION 55

(91)
• A VPlist for a steady state, one-dimensional diffusion:

1. current, U/V o
.
= [ 0 0 0 ], the dependent variable,

2. depth, z
.
= [ 0 1 0 ], the independent variable,

3. the kinematic viscosity, ν
.
= [ 0 2 -1 ], a parameter,

4. the depth of the fluid column, L
.
= [ 0 1 0 ], a parameter.

What do you find for U/Vo? What happened to the kinematic viscosity, ν? Where is the steady state
solution evident in Fig. (10)? Can you interpret the steady solution in terms of the stress profile, τ (z),
Eq. (74)? And specifically, how does the stress on the lower boundary (which is at rest) compare to
the stress at the surface? Now suppose that the lower boundary is free-slip, which in practice means
that there is no gradient normal to the surface, ∂U/∂z = 0. What is the steady state U(z/L) in that
case?

2) The ocean surface layer. A classical boundary layer grows in thickness like t1/2 or until the
boundary layer reaches a lower boundary. On the other hand, we know that wind has been exerting a
stress on the ocean surface for a very long time, and yet the surface boundary layer of the ocean, often
called the Ekman layer, has a finite depth, very roughly, 50 m. The ocean surface layer is evidently
not a classical boundary layer of the type considered here.

One important reason for this difference is that the ocean is rotating with respect to the distant
stars at a rate f = 2Ωsin(latitude), where Ω is Earth’s rotation rate, 7.272 ×10−5 s−1. At mid-latitudes,
f ≈ 10−4 s−1. The rotation rate f should thus appear in a VPlist of the ocean surface boundary layer.
Under the assumption that the fluid thickness L is not relevant, can you use dimensional analysis to
show that a steady boundary layer thickness could be possible (dimensionally)? Assuming that the
diffusivity is roughly ν = 10−2 m2 sec−1, can you make a correspondingly rough estimate of the
(rotating) upper ocean boundary layer thickness? (Hint: O(100 m).) This is often called the Ekman
layer depth.31

3) A seasonal cycle of subsurface land temperature. The diurnal and seasonal variation of solar
radiation warms the Earth’s surface periodically. Heat loss from the surface occurs via infrared
radiation and by sensible and evaporative heat fluxes so that over a day or a year there may be a more
or less closed diurnal or annual cycle of the surface temperature. The periodic (but not necessarily
sinusoidal or regular) variation of surface temperature diffuses downwards into the ground at a rate
that depends upon the properties of the subsurface soil and rock; solid rock and water-saturated soil
have a thermal diffusivity (reusing ν) ν ≈ 1.2 × 10−11 m2 s−1, while loose, dry soil is a comparative
insulator, ν ≈ 0.5 × 10−11 m2 s−1. The amplitude, depth of penetration and phase of the resulting
subsurface temperature response is of considerable importance for the design and operation of
geothermal energy projects.32

31 On the equator, f = 0, and so the rotation effect that produces a finite-depth Ekman layer vanishes. Is a classical

(very thick) boundary layer observed on the equator? No. The notion of an Ekman layer depth discussed above is not

applicable very near the equator, where instead a basin-scale, hydrostatic pressure gradient caused by a tilted sea surface

and oceanic thermocline (subsurface density variation in the vertical) largely balances the mean wind stress. This basin-

scale asymmetry is the background for the El Nino - Southern Oscillation phenomenon.
32 Cuhac, C., A. Makiranta, P. Valisuo, E. Hiltunen and M. Elmusrati, 2020, ’Temperature measurements on a so-

lar and low enthalpy geothermal open-air asphalt surface platform in a cold climate region’, Energies, 13, 979 - 998.

doi:10.3390/en13040979.
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Figure 13: Subsurface (land) temperature observations made over a year as part of a geothermal en-
ergy study conducted in Finland by Cuhac et al. (2020).32 These data were extracted from their Fig.
(12). The data start in early April 2014 and continue until the following April. Notice that the begin-
ning and ending temperatures do not coincide; evidently the following April was cooler than the first.
Nevertheless, there is a clear signal of downward diffusing, summer warming.

A typical annual cycle of subsurface land temperature is in Fig. (13). Some questions for you:
How would you characterize these data, e.g., what is the depth of penetration of the summer
warming? In terms of the idealized (perfectly sinusoidal) model solution (90), what is a plausible
value for the thermal diffusivity at this site? What departures do you discern between these
observations and the idealized model solution? What depth of penetration would you expect for an
otherwise comparable diurnal cycle?
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6 Choosing scales with a purpose

Dimensional analysis amounts to normalizing (or dividing) dependent and independent variables by

an appropriate scale. Appropriate has two parts. First, the scale must have the same physical

dimensions (e.g., mass, length, time) as the dependent variable, say. Second, if the scale is chosen

thoughtfully, then normalizing will yield a nondimensional dependent variable that has a

meaningful magnitude. This second aspect of choosing a scale is often called ’scaling analysis’. A

dimensional analysis can be performed with no thought given to a scaling analysis. However, the

results of a dimensional analysis will often be considerably more useful if aspects of a scaling

analysis are considered either from the outset, or at the third, interpretive step of a dimensional

analysis.

6.1 A nonlinear projectile problem

To illustrate the role of a scaling analysis, consider the following projectile problem (after Lin and

Segel (1974)5). The problem is to calculate the height of a projectile of mass m that is launched

upwards with speed V from the surface of a planet having a radius R and mass M . To make the

problem interesting, the variation of the gravitational acceleration with height will be

acknowledged. To keep the problem simple, the likely important effect of aerodynamic drag on the

projectile will be ignored. With this simplification, the vertical component of the equation of

motion for the projectile is

m
d2z

dt2
=

−mMG

(R + z)2
,

where G is the universal gravitational constant. The acceleration of gravity on the planet’s surface

z = 0 can be defined as g = MG/R2, a parameter, and the equation of motion rewritten

d2z

dt2
=

−g

(1 + z/R)2
. (92)

Suitable initial conditions are

z(t = 0) = 0 and
dz

dt
(t = 0) = V. (93)

The projectile has an initial positive upward velocity, V , a parameter, and thereafter is subject only

to a downward acceleration due to gravitational attraction to the planet. As the height of the

projectile increases, the gravitational acceleration decreases, and at some large z the projectile

could escape the gravitational tug of the planet altogether and continue into deep space. Clearly

this is going to have something to do with the parameters g, R and V . To see just how, let’s

analyze a nondimensional form of the model equations (77) and (78), beginning with
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(94)
• A VPlist of vertical motion in variable gravity:

1. height of the projectile above the planet surface, z
.
= [ 0 1 0 ], the dependent variable,

2. time, t
.
= [ 0 0 1 ], an independent variable,

3. the acceleration of gravity on the planet surface, g
.
= [ 0 1 -2 ], a parameter,

4. radius of the planet, R
.
= [ 0 1 0 ], a parameter,

5. initial (vertical) speed, V
.
= [ 0 1 -1 ], a parameter.

The initial basis set of nondimensional variables for this VPlist is

Π1 =
z

R
, Π2 =

t

R/V
and Π3 =

V 2

gR
, (95)

and the relation between these three nondimensional variables may be written

z

R
= F (

t

R/V
,
V 2

gR
). (96)

It will be helpful to denote these particular nondimensional variables with a prime,

z′ =
z

R
, and t′ =

t

R/V

and the combination

ε =
V 2

gR
.

With this notation, Eq. (96) is

z′ = z′(t′, ε).

The maximum height that the projectile will reach, Z, is of particular interest, and the

nondimensional form of Z corresponding to this initial basis set is

Z

R
= F (

V 2

gR
),

or with the prime notation,

Z ′ = Z ′(ε). (97)

Notice that ε = V 2/g R is the only nondimensional parameter in the relation for maximum height,

i.e., g, R and V appear only in this combination. The parameter ε has a physical interpretation as

the ratio of twice the initial kinetic energy of the projectile compared to the depth of the potential

energy well of the planet evaluated on the planet’s surface. A larger ε leads to a larger maximum

height, and when ε ≥ 2, the kinetic energy exceeds the work required to climb out of the potential

energy well. V is then said to be the escape velocity, approx. 12 km s−1 for Earth (ignoring drag



6 CHOOSING SCALES WITH A PURPOSE 59

0 1 2 3 4 5 6 7 8

time/(R/V)

0

1

2

z/
R

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

0 1 2 3 4 5 6 7 8

time/(V/g)

0

1

2

3

z/
(V

2
/2

g)

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

 = 1.19

 = 0.09

Figure 14: Projectile height computed numerically for several ε varying from 0.09 to
1.19. The solutions have been nondimensionalized in one of two ways; in the (upper)
panel, using the initial basis set, Eqs. (96) and in the (lower) panel, using a second basis
set built around a zero order solution described in Sec. 6.3. Notice that for small values of
ε the set of curves in the lower panel appear to collapse toward one curve, while the set of
curves in the upper panel do not.

with the atmosphere). Thus, in the usual (partial) way of dimensional analysis, we have already

learned something useful about this problem.

Numerical solutions of Eqs. (92) and (93) nondimensionalized by this basis set look

reasonable, Figs. (14), upper and (15), upper, in as much as Z ′ is a well-defined function of the

nondimensional parameter ε. This is a mathematical certainty since these data are solutions of a

numerical model whose parameters are known exactly and hence the VPlist and dimensional

analysis should be consistent with the numerical solutions. This first basis set thus meets one of the

main goals of dimensional analysis - to make a clear, concise presentation of what would otherwise

be an unwieldy mass of data (imagine plotting the maximum height as a function of the three

relevant dimensional variables).

6.2 Small parameter → small term?

An aspect of nondimensionalization that goes beyond previous discussions is the question of how

or whether a nondimensional model equation can be used to develop an approximate solution. The
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solution method considered here is that one or more of the most difficult terms of an equation

might be dropped to yield a solvable problem. Once an approximate solution is at hand, the model

equations can be amended to take account of the term dropped on the first pass, and solved again.

Often the first such iteration will provide useful information regarding the consequences of the

difficult term.

The initial basis set Eq. (97) amounts to scaling (and nondimensionalizing) the projectile

height by the radius of the planet, R, and scaling time by the time interval required to move the

distance R at a speed V . For the purpose of writing the model equation in nondimensional form,

use that z′ = z/R and t′ = t/(R/V ) and hence the nondimensional velocity of the projectile is

dz′

dt′
=

dz/R

dt/(R/V )
=

1

V

dz

dt
, (98)

and the acceleration is
d2z′

dt′2
=

d2z/R

d(t/(R/V ))2
=

R

V 2

d2z

dt2
. (99)

When the equation of motion, Eq. (92), is written using these nondimensional variables the result

is

ε
d2z′

dt′2
= − 1

(1 + z′)2
(100)

and the ICs are just

z′(t = 0) = 0 and
dz′

dt
(t = 0) = 1. (101)

The nondimensional equation of motion contains the single parameter, ε. For Earth-like values of

R and g, and for V = 2000 m s−1 or less, say, ε is a small parameter, roughly 10−2.

In this problem, the difficult, nonlinear, term is the z-dependent, gravitational acceleration term

of Eq. (92). It is plausible that the z-dependence could be ignored if z � R, and by extension, if

ε � 1. Thus, it should be possible to solve the problem in the limit that ε → 0 and then go on to

find a better solution by iteration. On that basis, it might seem plausible that a first approximation

to Eq. (100) could be obtained by dropping the term multiplied by the small parameter ε, the

acceleration term. However, the solution to the reduced equation, 0 = 1/(1 + z′)2, is z′ = ∞,

which is contrary to the assumption of small z′, and is nonsensical, generally. Either the idea that

we could find a useful approximation by starting from small ε is wrong, or, we erred in dropping

the acceleration term. In fact, it was the latter step that failed; there was no justification for

concluding that the acceleration term could be dropped simply because it is multiplied by the small

parameter ε because we have no idea how big the nondimensional acceleration d2z′

dt′2
is compared

with the terms kept, i.e., compared with 1. It turns out that d2z′

dt′2
� 1 for ε → 0. As a result, when

the acceleration term is dropped, it will not be possible to proceed toward an improved solution. It

is important to understand that the nondimensional Eq. (100) is not at fault here; the terms of Eq.

(100) still have the ratio one to another of the dimensional Eq. (92) since all that has been done is
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Figure 15: The maximum height of a projectile launched upwards at speed V from planets with
a wide range of V , R and g. Each point is the maximum height diagnosed from a numerical solu-
tion. (upper) The maximum height nondimensionalized by R, consistent with the initial basis set of
nondimensional variables, Eq. (96). (lower) Here the maximum height is nondimensionalized with a
second basis set deduced from a scaling analysis (Sec. 6.3). Both basis sets show a clear-cut depen-
dence of maximum height upon the single nondimensional parameter ε = V 2/gR. Notice that as ε
approaches 2 the nondimen sional height goes to infinity, indicating that the projectile has escaped
the tug of gravity. In the lower panel, the dashed blue line is the maximum height from the zero order
solution, Z∗

0
, and the green line is the first order solution Z∗

1
that takes some account of the reduced

gravitational acceleration with height. The solid red line is an approximate solution Eq. (119) in
which the effective gravitational acceleration is estimated as g(1 − ε/2).



6 CHOOSING SCALES WITH A PURPOSE 62

to divide by parameters. However, the inferences that might be drawn from Eq. (100) could be in

error.

If the intent is to estimate the relative size of terms that are multiplied by nondimensional

parameters, then the nondimensional dependent variables, in Eq.(100) z′ and d2z′

dt′2
, will have to be

O(1) in the limit that the small parameter, ε, goes to zero, the relevant limit here. 33 In the first

nondimensional basis set considered for this problem, the planet radius R was used as the length

scale for the height of the projectile. While R is certainly an important length scale, it nevertheless

has no direct relation to the maximum size of z, i.e., there is no basis for supposing that Z/R is

O(1), generally. The imposition of this additional requirement on the choice of the scales is often

said to comprise a ’scaling’ analysis, implying a purposeful and thoughtful choice of the basis set

of nondimensional variables.

6.3 Scaling the dependent variable

To ensure that the nondimensional z is O(1) as ε → 0 we have to choose a scale that is consistent

with a physically motivated, even if highly simplified, model solution in that limit; in Sec. 4 this

was said to be a ’zero order’ solution. In this problem, a zero order model for the dimensional

height z follows from ignoring the height dependence of the gravitational acceleration in Eq. (92),

d2z0

dt2
= − g, (102)

where ( )0 refers to the order, which will be formalized shortly. The ICs are exactly as before

z0(t = 0) = 0 and
dz0

dt
(t = 0) = V, (103)

and the solution is

z0 = V t − gt2/2. (104)

The zero order maximum height is then

Z0 = V 2/2g.

33 In Sec. 5 the ’big O’ notation was used to indicate the numerical order of magnitude, e.g., O(1) or O(102), say. Here

the meaning is extended to indicate the asymptotic behavior of a function. If a function f(ε) is O(1) in the limit ε → 0,

then the function f(ε) → constant in that limit. The constant need not be 1, though we have taken care that it will be

here. If f(ε)/εn → C, then f(ε) is said to be O(εn) in that limit. There are other possible gauges against which to measure

asymptotic behavior besides the simple power law dependence that will suffice here. For more detail on the big O notation

see http://encyclopedia.thefreedictionary.com/Big%20O%20notation A few questions: Based upon what you can see

in Fig. 15, how would you characterize the order of the functions Z′(ε) and Z∗(ε), i.e., are they order ε−1, ε0 or ε? What

is the order of d2z′/dt′2, and how does this impact the inferences we might draw from Eq. (100)?
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When this is used as the scale for vertical distance, we can be sure that the maximum of the

nondimensional height ≈ 1 in the range of small ε. An appropriate time scale is the time it takes

the acceleration g to erase the initial velocity V , and is V/g. This new choice of scales amounts to

a new basis set of nondimensional variables that is derivable from Eq. (96) when Π1 and Π2 are

multiplied by Π−1

3
, or, reusing the Πs,

Π1 =
z

V 2/2g
, Π2 =

t

V/g
and Π3 =

V 2

gR
. (105)

The relation between these three nondimensional variables can be written

z

V 2/2g
= F (

t

V/g
,

V 2

gR
), (106)

or using a ( )∗ to denote these nondimensional variables,

z∗ = F (t∗, ε).

The nondimensional maximum height is then

Z

V 2/2g
= F (

V 2

gR
), or, (107)

(108)

Z∗ = Z∗(ε), (109)

with ε as before. This second basis set leads to a new interpretation, that ε ∝ Z0/R, is the ratio

of the zero order maximum height to the radius of the planet.

This new basis set also leads to a clearly defined functional dependence of maximum height

upon the single parameter ε, Fig. (15), lower. This new form Z∗(ε) looks something like the initial

form, Z ′(ε), though with one significant difference. At small values of ε the new Z∗(ε) goes to a

constant, 1, where the initial Z ′(ε) decreased to zero as ε → 0. Thus, the new basis set is consistent

with an underlying zero order solution in the limit of vanishing ε, where the initial basis set was

not. This new basis set of nondimensional variables seems an obvious choice now that we have it

in front of us, but then the first basis set seemed sensible as well (and was the form that happened

to come from the computational algorithm).

6.4 Approximate and iterated solutions

We have now identified length and time scales that are appropriate specifically to the vertical

motion of a free projectile in a constant gravitational field, as opposed to just any length and time
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scales that may happen to be present in the VPlist. Using this new basis set, and that

z∗ =
z

V 2/2g
, and t′ =

t

V/g

are the nondimensional height and time, the nondimensional velocity of the projectile is

dz∗
dt∗ =

dz/(V 2/2g)

dt/(V/g)
=

2

V

dz

dt
, (110)

and the acceleration is
d2z∗

dt∗2
=

d2z/(V 2/2g)

d(t/(V/g))2
=

2

g

d2z

dt2
. (111)

When ε is small, the dimensional acceleration is approximately equal to g, and this d2z∗

dt∗2 is thus

O(1). The same is true for the nondimensional velocity. Despite that the velocity goes to zero at

the top of the trajectory we still say that dz∗/dt∗ is O(1), because our concern is with the largest

magnitude of a term, rather than its average or smallest value. The equation of motion Eq. (100) in

these nondimensional variables is
d2z∗

dt∗2
=

−2

(1 + εz∗/2)2
(112)

and the initial condition is

z∗(t = 0) = 0 and
dz∗

dt
(t = 0) = 2. (113)

It is helpful to expand the right hand side of Eq. (112) using a binomial expansion,

d2z∗

dt∗2
= − 2 + 2εz∗ − 3

2
ε2z∗2 + ε3z∗3 + HOT, (114)

that will converge for εz∗/2 ≤ 1. Because we have taken care to nondimensionalize the height and

time with appropriate scales, the size of each of the terms can be told by the exponent on the

parameter ε. The acceleration term and the first term on the right hand side are independent of ε or

O(ε0), which is to say O(1) (a factor 2 notwithstanding). The second term on the right hand side is

O(ε), the third term is O(ε2), and so on, and the HOT is the sum of all the terms that are higher

order in ε. The order of a model is said to be the highest exponent of ε in the terms retained in the

expansion.

When the terms multiplied by ε are dropped, there follows a useful first approximation to the

projectile problem,
d2z∗

0

dt∗2
= − 2,

which is the so-called zero order model Eq. (104) written in nondimensional form. The ICs are
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exactly as Eq. (113) and the solution is

z∗
0

= 2t∗ − t∗2. (115)

It seems that we have gone in a circle, but with Eq. (114) in hand we know how to proceed toward

an improved solution; use this zero order solution as an estimate of z∗ in the first order model, in

which all terms higher order than ε2 are omitted, to find,

d2z∗
1

dt∗2
= − 2 + 2εz∗ ≈ −2 + 2εz∗

0
(116)

= −2 + 2ε(2t∗ − t∗2), (117)

which is easily integrable. The ICs do not involve ε, and the ICs of the first order model are Eq.

(113) (the initial velocity is satisfied by the zero order solution alone). The first order solution is

z∗
1

= 2t∗ − t∗2 + ε(
2

3
t∗3 − 1

6
t∗4). (118)

Compared to the zero order solution, which appears here as the first and second terms on the right

hand side, the new term is O(ε) and may be regarded as a correction to the zero order solution.

The consequence of this new term for Z is that, for small ε so that t∗ is O(1), there is an increased

height compared to the zero order solution. Hence, this model and solution takes account

(approximately) of the decrease in g with height. The maximum nondimensional height evaluated

from Eq. (118), Z∗
1
, shown as the green line in Fig. (15), lower, compares well with Z∗ diagnosed

from numerical solutions in the range 0 ≤ ε ≤ 1/2, and then begins to diverge from the numerical

solution for larger ε, first above then below. Thus the first order solution represents approximately

the effect of decreasing gravitational attraction with height above the planet’s surface.34

An improved solution can be guessed by noting that the average value of z∗
0

is ≈ 1/2, and

from Eq. (112) we might go on to guess that the height-dependent gravitational term in Eq. (117)

could be estimated as the nominal gravity reduced by the factor 1 − ε 1

2
. This has the correct

asymptotic behavior, i.e., it goes to 1 as ε vanishes, and it has the right qualitative behavior at

ε = 2 when the projectile should escape into deep space. The solution for the nondimensional

maximum height is then

Z† = 1/(1 − ε/2), (119)

the solid red line of Fig. 15, lower, which compares well to Z∗ diagnosed from the numerical

solutions from the full model up to ε = 2. Here and frequently, it happens that the first order model

gives valuable insight into the parameter dependence (and one might say the physics) of a

phenomenon in a way that numerical solutions, no matter how extensive and precise, may not.

34 This iteration procedure is a simple and intuitive kind of perturbation analysis known as ’successive approximations’

combined with an expansion in the small variable ε. Perturbation methods are powerful and very important techniques.

Excellent references are Ch. 7 of Lin and Segel (1974),3 and a very clear and concise text by J. G. Simmonds and J. E.

Mann, 1986, A First Look at Perturbation Theory, Dover Publishing.
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7 Applications / Homework projects

7.1 The Planck program, natural units for the universe

In Sec. 2 it was noted that the natural time scale of a simple pendulum is the reduced period,

P/2π =
√

L/g, of small amplitude oscillation. When time is measured or normalized with this

time scale, the parameters L and g disappear from the governing equation for a pendulum, a small

convenience for calculations. This change of scale also points the way to a much more effective

way to display a mass of data (Figs. (1) and (3)), and to think about pendulums generally. In 1899,

Max Planck proposed something similar, but on a far, far grander scale — natural units for the

universe.

Fundamental Physical Constants

constant symbol dimensions SI value

mass, length, time

speed of light c [ 0 1 -1 ] 299 792 458 m s−1

Gravitational G [ -1 3 -2 ] 6.674 × 10−11 kg−1 m3 s−2

Plancks const., reduced ~ [ 1 2 -2 ] 1.054 × 10−34 kg m2 s−2

Table 1: Three of the Fundamental Physical Constants and their SI values. These important constants

are known to considerably higher precision than implied here. To this short list could be added the

charge of an electron and the Boltzmann constant, which would extend the scope to electro and ther-

modynamics.

7.1.1 A new fundamental constant with dimension mass

Even before the turn of the twentieth century it had been established that there were two

fundamental physical constants that could be presumed to hold throughout virtually all of space

and time, the speed of light in vacuum, c, and Newton’s universal, gravitational constant, G (values

in Table 1). Planck discovered a third fundamental constant, ~
.
= [ 1 2 -2 ], that represented the

quantum of action appropriate to atomic scales, and it too could be presumed to be universal.

Crucially, ~ includes the dimension mass. Given just these three universal constants, Planck

recognized that one could construct the dimensions of any variable of mechanics.
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In an address to the Prussian Academy of Sciences, he noted that units formed in this way would

necessarily retain their meaning for all times and for all civilizations, even

extraterrestrial and non-human ones, and can therefore be designated as ’natural units.’

Max Planck, 1899

These natural units for the universe are called Planck units or Planck scales, Table 2.

Consider the Planck length, Lp to be the dependent variable of a VPlist; there are then four

variables in the VPlist, Lp, plus the constants of Table (1), and the dimension matrix has rank

R = 3. The inference from dimensional analysis is that there is one nondimensional variable,

Lp

Gh/ c4
= constant, (120)

and that it is a constant. In other cases where the dimensional analysis came down to just one

nondimensional variable, e.g., the period of a simple pendulum, the constant was found to be O(1)

by comparison to observations or theory. Thus the nondimensional period, P/
√

L/g, is an

appropriate representation of the period of a simple pendulum with respect to both the dependence

upon L and g and the magnitude. Could that be the case also for the Planck length?

If the constant of Eq. (120) is O(1), then Lp is unimaginably small, Lp = 1.616 × 10−35 m,

which is roughly 10−20 times the diameter of a proton. However, we do not know whether the

Planck length has a direct physical interpretation, i.e., whether there is anything in nature having a

length scale that is ∝ Lp. This is a length scale that is well outside the reach of present

experimental or observational methods, and so the suggestions for a physical interpretation are

many and untestable: that it is the length scale of the nascent universe, that it is the smallest

possible scale of a black hole, that it is the smallest possible, meaningful length, and so on. The

physical interpretation of Planck length is an open question for physics and cosmology.

7.1.2 Planck problems

1) Use dimensional analysis to form a Planck time and mass from the fundamental constants c, G,

and ~ of Table 1. How many nondimensional variables do you expect in the null space? You can

check your method by computing the Planck length in SI units and comparing against Table 2.
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Planck units

unit symbol construction SI value

Planck mass Mp

√

~G / c3 2.176 × 10−8 kg

Planck length Lp G~/c4 1.616 × 10−35 m

Planck time Tp ? 5.396 × 10−44 s

velocity Lp/Tp = c 299 792 458 m s−1

momentum ? 6.524 kg m s−1

energy Mpc
2 1.956 ×109 kg m2 s−2

Table 2: Planck units for mass, length and time formed from the Fundamental Constants of Table 1.

The entries ? are left for you to fill in.

Come visit, Earthlings,

We have donuts, huge and tasty,

and well worth the trip.

2) Interstellar (mis)understandings. SETI35 has at last detected and deciphered a radio signal

coming from the neighborhood of Alpha Centauri that has been repeated over and over again for

what may have been a very long time. The message is a short piece of text (see above), and then a

long string of 1s and 0s, evidently a large binary number, N ≈ 1034. This appears to be a generous

peace offering from a very advanced civilization. Their donuts may be good, but could they

possibly be good enough and big enough to be worth such a lengthy trip — four years for a

photon and much, much longer for mere Earthlings. The number N presumably defines the donut

size in Planck units, the most likely system for interstellar communication. However, the clever

ambassador neglected to indicate whether it was Planck volume or mass or energy or length.

Assuming that their donuts are comparable to ours in terms of density, consistency, etc., and that

their planet has a gravitational acceleration comparable to Earth’s, what is a plausible interpretation

of the number N , i.e., just how big are these donuts?

35Search for ExtraTerrestrial Intelligence: https://www.seti.org/
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3) The dimensional form of gravitational mass attraction between two masses M1 and M2 is

calculated by Newton’s law to be

F =
GM1M2

r2
. (121)

Show that when the variables in this equation are written in terms of the Planck units for force,

mass and length (Table 2), e.g., r′ = r/LP
.
= nond, (121) is simplified somewhat to

F ′ =
M ′

1
M ′

2

r′2
.

Since every variable has a prime, the prime may as well be dropped to arrive at

F =
M1M2

r2
. (122)

The interpretation of (122) could be unclear if not accompanied by a brief explanation, and

specifically, what happened to the important gravitational constant, G, of (121)?

7.2 Open channel flow through a weir

Figure 16: (left) An ad-
justable weir that controls
the flow of fresh water
from Shawme Pond at left
into Cape Cod Bay and
the North Atlantic to the
right. (right) A fish ladder
that facilitates the upstream
journey of river herring to
their spawning grounds in
Shawme Pond. Photos by
the author in Sandwich,
Massachusetts.

The transport of water within rivers and canals is of great practical interest, and difficult to

monitor by direct measurements of the velocity. An indirect but simple and reasonably accurate

method for monitoring the transport of open channel flows is to measure the height of the water

surface at a location upstream of a weir, a barrier erected across the flow.36 A weir has a

well-defined notch, often rectangular, through which the water may flow and then fall freely into a

lower pool, Fig. (16), left. The volume transport through the notch, Q, is expected to have a

36 A very clear and appealing discussion of the physics and practice of open channel flows is by Caspar Hewett,

https://www.youtube.com/channel/UCv2u6bFc7SSFsPHf98M50Mg
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Figure 17: Two possible models of
transport through a rectangular-notch
weir evaluated using the transport
data listed in the main text. Neither
of these models indicates a satisfac-
tory result insofar as the similarity
functions have a very pronounced
dependence upon h/b. These two
models may be seen as end members
of a family of models inferred from
dimensional analysis (Eq. 125).

systematic dependence upon the width of the notch, here b = 1.5 m, and the upstream, still water

surface height, h, measured with respect to the lower edge of the notch. The energy source in such

a flow is gravitational potential energy released as the water falls through the notch, and hence the

acceleration of gravity must be an important parameter. Water density would be relevant if the

dependent variable was mass transport, but if the dependent variable is volume transport, then the

water density may be omitted. That leaves a very concise VPlist for

• Volume transport through a rectangular-notch weir:

1. volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

2. upstream water height, h
.
= [ 0 1 0 ], the independent variable,

3. notch width, b
.
= [ 0 1 0 ], a parameter,

4. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter.

having only four variables and parameters and two physical dimensions, length and time. If

attention is restricted to one specific weir, then two of these parameters, g and b, are ’globally’

constant (Sec. 2.6).

The relationship Q(h, b, g) may be inferred with help from dimensional analysis and the

following data:37

upstream water level, h, m = [ 0.11 0.23 0.29 0.38 0.45 0.53 0.69 ]

volume transport, Q, m3 s−1 = [ 0.097 0.286 0.403 0.601 0.773 0.982 1.46 ]

37 Computed by a fairly comprehensive model that attempts to account for nominal friction at the weir as well as the finite

size of the upstream basin: https://calcdevice.com/weir-spillway-id239.html
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This VPlist is small enough that it can be analyzed by inspection, but let’s use the null space

basis method to illustrate an important point. If the variables and parameters of the VPlist are

entered in the order above, then the nondimensional relationship among the variables comes out to

be

M1 :
Q

Qo
=

Q
√

g b5
= F1(

h

b
), (123)

dubbed model M1. This model is correct, (non)dimensionally, but notice the important term that

scales the dependent variable, Qo =
√

g b 5. If Qo had come from a simplified model, then it

could be a zero order solution with some physical significance. But in this case, Qo is merely the

first thing that came from the algorithm; it might be a good choice, or it might not be.

To find out, evaluate (123) using the data above, which gives the blue dots of Fig. (17). The

result is not encouraging for M1 insofar as the h-dependence of the similarity function F1(h/b) is

very substantial. Notice that this Qo omits the upstream height, h, which we know is important. In

fact, this Qo is a constant for any one weir, and the crucially important dependence of Q upon h

has to be relegated entirely to the similarity function of M1. That isn’t wrong, mathematically, but

neither does this M1 represent any real progress toward a useful model of weir transport.

Let’s try the calculation again, but this time reversing the input order of h and b, to find a

second model, M2,

M2 :
Q

√

g h5
= F2(

h

b
), (124)

This simply interchanges h with b, and now the zero order solution, Qo =
√

g h5, neglects b, the

notch width, which is bound to be relevant. The argument h/b was retained in the similarity

function F2 so that M1 and M2 may be compared directly in Fig. (17). Model M2 (the red dots of

Fig. 17) seems no better than M1 in that the similarity function varies significantly with h/b.

What can be learned from this? The calculation of a null space basis is a formal, logical

(mathematical) procedure that takes no account of the physical meaning of the input variables. In

this case, the calculation makes no distinction between two lengths, h and b, even while we know

that they are quite different things.

You can improve on either of these first two models by combining the formal methods of

dimensional analysis with physical insight, i.e., common sense plus a little experience. To start,

show that a generalized relationship can be written

Q

(g b5)1/2 ×
(

h
b

)n = nF (
h

b
), where 0 ≤ n ≤ 5/2. (125)

The first model M1 is the case n = 0, and the second model M2 is the case n = 5/2. Thus,

dimensional analysis leads us to a family of models, depending upon the parameter, n, of which

M1 and M2 are end members. The task is then to find the best n, the best member of the model

family that has a physically sensible zero order solution, Qo. A hint: Suppose a given h; what
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would you then expect for the dependence of Q upon b? You can test your new model by

evaluating the similarity function as in Fig. (17) using the data listed above. If the result looks

promising, i.e., if your new model yields a quasi-constant (or at least a much less variable)

similarity function, then it could be plausible to represent the similarity function by a similarity

constant.

A weir transport formula generally has to be calibrated for each specific weir to account for a

variety of secondary effects including friction, that depends upon whether the weir is broad-crested,

as here in Fig. (16), or sharp-crested, as well as the configuration and size of the upstream basin,

i.e., its depth, width and length. For any specific weir these are globally constant parameters (Sec.

2.6) and hence their consequences may be lumped into (ascribed to) a similarity constant. What do

you find for this weir? 38

Figure 18: Blueback herring and the very similar
alewife are known as river herring. An adult has
a length up to 0.3 m and a mass of about 0.25 kg.
The adult fish live at sea for four to five years,
and then return to freshwater ponds to spawn in
the spring. Drawing by the author.

The weir of Fig. (16) presents a formidable obstacle to the small river herring that migrate

upstream from the North Atlantic to their spawning grounds in Shawme Pond. A springtime

herring run was once an important food source for people and marine predators alike, but since the

1960s herring numbers have been greatly reduced by the damming of rivers and habitat degradation

generally. The return of river herring to Shawme Pond is made much easier by a fish ladder, a

bypass channel, Fig. (16), right, having a sequence of 12 identical small weirs and ponds. What

would you expect for the variation of h from one weir to the next?

7.3 How fast did dinosaurs run?

The most tangible evidence of dinosaur locomotion comes from fossilized trackway data that

shows the stride length, λ, the distance between successive prints of the same foot, as well as the

foot length, f (Fig. 19).39 It is often possible to estimate these parameters for a specific,

distinguishable animal on a trackway, and it is easy to tell Theropods and Ornithopods (bipedal

dinosaurs with bird-like feet) from Sauropods (quadrupedal, with elephant-like feet) though the

species can not be told. Correlations made with fossil skeletons show that the hip height, h, is

roughly proportional to the foot length, h ≈ 4f . There is nothing directly evident regarding time or

speed. However, an empirical relationship between these features of gross anatomy and the

38 A typical similarity constant for weirs of the sort considered here is ≈ 1/2.
39A remarkable example: https://www.fs.usda.gov/detail/gmug/news-events/?cid=FSEPRD1171521
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Figure 19: Evidence from fossil trackway data interpreted

via dimensional analysis suggests that mighty Tyran-

nosaurus Rex was not a fast runner, typically. While the

physical evidence and its analysis are fairly compelling,

what do we know about her motivation and intention?

T Rex did not hurry,

Until, on a warm breeze, came the scent

Of sweet donut.

walking/running speeds for a very wide range of animals was developed by Alexander, 1976,

A76,40 on which this problem builds. How to infer dinosaur speed from trackway data?

• A VPlist for estimating running/walking speed from trackway observations:

1. speed, V
.
= [ 0 1 -1 ], the dependent variable,

2. stride length, λ
.
= [ 0 1 0 ], a parameter,

3. height of the hip joint, h
.
= [ 0 1 0 ], a parameter,

4. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter.

Gravity is highly likely to be relevant for any form of terrestrial locomotion, dinosaurs or not, and

would seem to be the only plausible parameter that can provide the dimension time. There are four

parameters having two dimensions, length and time, and so there are two nondimensional variables

related by, as the first basis set,

V√
gh

= F (λ/h). (126)

where F (λ/h) is an unknown similarity function. The dependent variable has been scaled with√
gh, which is the phase speed of shallow water gravity waves on the sea surface. This is a natural

scale from this VPlist, but is not the only possibility. The dependent nondimensional variable of

(126) is the square root of an important nondimensional variable called the Froude number,

Fr =
V 2

gh
,

40 The pioneering study by Alexander, R. M., 1976, ’Estimates of speeds of dinosuars’, Nature, Vol. 261, May 13. 129

- 130. See also R.. Alexander, 1991, ’How dinosaurs run’, Sci. Am., 264, No. 4, 130 - 137. The first papers on this topic

aimed to find correlations of the sort considered here, and discovered widespread, systematic relations that describe what

would seem to be a very complex phenomenon — animal locomotion. Later papers have delved into the detailed structure

of bones and muscles, e.g., W. I. Sellers and Manning, P. L., 2007, ’Estimating dinosaur maximum running speeds using

evolutionary robotics’. Proc. Royal Soc. B, 274, 2711 - 2716. doi:10.1098/rsbp.2007.0846.
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which often arises in contexts in which inertial forces ∝ V 2 and gravitational forces ∝ g are at

issue.

A76 used observations on the walking and running speed of living animals (including humans)

to determine the similarity function F (λ/h) of (126) and found that walking and running speed by

a surprisingly wide variety of creatures — bipeds and quadrupeds, birds and mammals, creatures

small and large — is consistent with

Fr =
V 2

gh
= .062

(

λ

h

)3.33

(127)

where the coefficient and the exponent were determined by fitting (126) to observations of U, λ and

h.41

Given the following dinosaur trackway data of eight individual animals from A76,

stride, λ, m = [ 3.0 3.0 2.4 1.3 2.1 1.6 2.5 1.6 ]

hip height, h, m = [ 2.1 2.0 1.0 1.1 1.2 0.7 3.0 1.5 ]

estimate the speed of the responsible dinosaurs on the plausible assumption that (126) applies to

these astounding creatures. The first six entries were made by bipedal dinosaurs, Theropods or

Ornithopods, and the last two were made by quadrupedal Sauropods. Is there a systematic

difference? An adult T Rex was a very large animal having a hip height up to h = 4 m. From what

you can see in Fig. (19), how fast do you estimate T Rex was running on that occasion?

As we have seen in other problems, the detailed form of a solution is often not determined

solely by dimensional analysis. Given λ and h, a speed requires a fourth parameter with dimension

of time, and g is the obvious candidate. However, the way g enters does not have to follow (126),

which uses
√

gh as the velocity scale. Suppose instead that the dynamics of a swinging dinosaur

leg is similar to a swinging pendulum; what do you get if the velocity scale is taken to be stride

length / stride period ∝ λ/
√

h/g? How can this be realized from the original form, Eq. (126)?

7.4 The expanding blast wave of an intense explosion

An interesting (although very grim) problem that yields to dimensional analysis is the analysis of

the expanding blast wave that follows from the energy released into the atmosphere by an intense,

localized explosion. The Trinity test of the first atomic bomb is an example of enormous historical

41 Excluded from this analysis are animals that have a sprawled posture and support their weight mainly on their bellies,

e.g., crocodilians and lizards. Recent and more comprehensive data collections reveal that there is, not unexpectedly, some

systematic species dependence in the function (127). You may be pleased to know that humans are a little faster than the

grand average reflected by (127).
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Figure 20: The 1945 Trinity test of
the first atomic bomb as captured by
very high-speed photography. Of this
occasion, the project scientific director
J. Robert Oppenheimer later recalled:
’We knew the world would not be the
same. A few people laughed, a few
people cried. Most people were silent.’

import, Fig. (20), documented in high-speed photographs from Taylor (1950).42 These rather coarse

images allow estimates of the radius, r(t), of the rapidly expanding blast wave (for short times,

coincident with the fireball visible in the available photographs):

time, t, 10−3 s, = [ 0.1 0.24 0.38 0.80 1.36 1.93 15.0 127.0 ]

radius, r, m, = [ 12 18 25 34 40 45 110 170 ]

Taylor’s in-depth analysis of the phenomenon calculated the increase in pressure caused by a

point-like release of thermal energy, and the subsequent expansion of the heated, high pressure air

against the much smaller pressure of the ambient atmosphere. He started with the equations for

momentum, mass and energy balance and boiled the problem down to a similarity solution for the

expanding radius, r,

r(t) = F (κ)

(

E0 t2

ρa

)1/5

(128)

where ρa = 1.25 kg m−3 is the nominal density of air. The parameter κ is the nondimensional ratio

of the constant pressure specific heat of air and the constant volume specific heat of air,

κ = Cp/Cv , which commonly arises in the analysis of acoustic phenomenon. For nominal

42 Taylor, G. I., 1950, ’The formation of a blast wave by a very intense explosion: II’. The atomic explosion of 1945. Proc.

R. Soc., London, A201, 175 - 190.
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conditions, κ ≈ 1.4, but of course an atomic blast is an extreme case that may involve fairly exotic

effects. The bottom line is that Taylor’s analysis found F (κ) ≈ 1.

Here’s a significant shortcut for this problem that omits the thermodynamic F (κ) dependence

and yet arrives at Taylor’s essential result: solve for the (nondimensional) radius of the blast wave

as a function of time, assuming that the only relevant parameters are the density of air, ρa, and the

energy of the expanding blast wave, E0. The key result is the power-law time-dependence of the

radius. Does your result match (128)? And does this power law conform with the observations

listed above? What do you infer for the energy parameter, E0? 43

Suppose that you did include the specific heat at constant pressure in the VPlist, Cp
.
= [

mass length time temperature ] = [ 0 2 -2 -1 ], which has a dimension inverse

temperature, and necessarily the specific heat at constant volume, Cv , same dimensions. What

changes? 44

7.5 Planetary orbits

It is one of the great tasks of science to learn what are accidents and what are principles,

and about this we cannot always know in advance.45

Steven Weinberg, 2003.

The collaboration of the Dutch astronomer Tycho Brahe (1546 - 1601) and German polymath

Johannes Kepler (1571 - 1630) was a milestone of the early Scientific Revolution. Tycho was an

energetic and meticulous observer of the heavens who built the most precise observing instruments

of the time, while also compiling historical, astronomical data from many sources. His protege,

Kepler, was an accomplished mathematician whose worldview owed much to the classical Greeks

and medieval scholastics. Kepler was strongly motivated by the mystical belief that the heavens

must reflect a harmony and a geometric simplicity that evidenced creation by the Deity.46

43 You wouldn’t be confident in this analysis absent the much more detailed and comprehensive investigation of Taylor

(1950), and, the opportunity to test against observations. Since this phenomenon is very far from common experience, it

will be helpful to know that the E0 estimated in this way is roughly 8 × 1013 Joules, which is equivalent to the energy re-

leased in the detonation of about 15 kilotons of TNT. This greatly simplified model ignores the work against the ambient

atmosphere and hence may underestimate the actual thermal energy released. It also ignores the energy released as radia-

tion that would have escaped the blast wave instantaneously, another likely bias toward a low total energy estimate.
44 If you choose, you can see some of the results of this problem computed by the script DanalysisA2.m, Sec. 3.4.
45 Weinberg, S., 2003, ’Can science explain everything? Can science explain anything?’, Ch. 2 of Explanations, J. Crow-

ell, Ed., Oxford Univ. Press. 23 - 38.
46 Holton, G., 1956, ’Johannes Kepler’s universe: its physics and metaphysics’, Am. J. Phys., Vol. XXIV, No. 5, 340

- 351. The literature on Kepler’s remarkable life and accomplishments is voluminous and still growing. One of the

better online references is https://www.aps.org/archives/publications/apsnews/201407/physicshistory.cfm and also

https://plato.stanford.edu/entries/kepler/.
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Figure 21: Kepler’s Platonic solids model of the solar
system. The outermost sphere represents the orbit of
Saturn, and the next smaller sphere represents that of
Jupiter. These are related by the inscribed cube which
fits just inside the outer sphere, and encloses the inner
sphere. Pure geometry thus defines the ratio of the
radii of these spheres and, it was thought by Kepler,
the orbital radii of Jupiter/Saturn. Given the freedom
to choose the order of the remaining four solids, this
scheme can be extended with some success to Mars
and the inner planets. This model was in several re-
spects a landmark in the Scientific Revolution; it
brought the heavens down to Earth, and it supported
a sun-centered solar system. Taken literally, it ex-
plained the number of planets that were then known,
and it made a definite, quantitative prediction of the
relationship among the planetary orbits that could be
tested against observations.

Kepler came to prominence as a young mathematics professor when he published a geometric

model of the solar system based upon the notion that the planetary orbital radii increased in

proportion to the circumference of the five regular, Platonic solids nested on the Sun (Fig. 21).47

The inspiration for this model seems to have come from the coincidence of there being exactly five

Platonic solids, the number needed to account for the relative radii of the six known planets. The

quantitative predictions of this model were within about 10% of the orbital estimates of Nicholas

Copernicus — not convincingly right, but not clearly wrong.

7.5.1 Discovering a harmony in the heavens

The ambiguous match between Kepler’s Platonic solids model and Copernicus’ orbital estimates

was no doubt part of Kepler’s motivation to compute refined orbital estimates from Tycho’s precise

and extensive observations. The result was a significant advance in the precision of orbital

estimates, with values close to modern (Table 3).48 However, aside from Jupiter’s orbital radius, the

refined estimates were not very different from those made by Copernicus. Kepler’s writings leave

the impression that he had a clear understanding of what would constitute a meaningful departure

of a model prediction from observed reality. And specifically, he found that the Platonic solids

model was not a satisfactory fit to the more precise orbital estimates, as he must have hoped.

47 This image is thanks to the Yale University Library https://search.library.yale.edu/catalog/1886333
48 Kepler’s data has been called to question for being a bit more precise than the observations should have allowed,

https://www.nytimes.com/1990/01/23/science/after-400-years-a-challenge-to-kepler-he-fabricated-his-data-scholar-says.html
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Historical and Modern Orbital Parameters

variable Mercury Venus Earth Mars Jupiter Saturn

Tycho and Kepler mean radius, Rp, AU 0.388 0.724 1 1.524 5.200 9.510

Copernican mean radius, Rp, AU 0.38 0.72 1 1.52 5.22 9.17

Modern mean radius, Rp, AU 0.387 0.723 1 1.52 5.200 9.54

Modern period, Tp, years 0.242 0.616 1 1.881 11.86 29.33

Modern planetary mass, Mp/Me 0.054 0.815 1 0.108 317.8 95.2

Modern eccentricity 0.205 0.006 0.017 0.093 0.048 0.054

Table 3: Estimates of orbital parameters by Tycho and Kepler, Copernicus, and modern values. These

include the mean radius, Rp, and the period, Tp. Note that Tp is normalized with Earth’s period, a

year, and Rp is in units of Earth’s mean radius, an Astronomical Unit, or AU. The absolute distance

was not known in Kepler’s era. Also included are modern estimates of planetary mass, Mp, in units of

Earth’s mass, Me, and the orbital eccentricity.49

Harmony among the planets of our solar system, if any exists, was not to be found in the

relationship of the orbital radii.

A few questions for you. 1) Considering the six planetary orbital radii, Rp, of Table 3

available to Kepler, do you see a harmony i.e., some kind of regularity or pattern? 2) Evaluate the

Platonic solids model given that a cube just touches the orbital sphere of Saturn at its eight corners,

and encloses snugly the orbital sphere of Saturn (see Fig. 21). What is the ratio of the radii of the

inner and outer spheres, and how does that compare with the ratio of the observed radii in Table

(3)? Use both Copernican data and the Tycho/Kepler data. 3) Now consider the orbital radii Rp,

and the orbital periods Tp, taken planet by planet; do you see a relationship Tp(Rp) that is in

common to all six planets? (You may recognize your result as Kepler’s third law of planetary

motion.)

Kepler never gave up completely on the Platonic solids model, but his interests extended to

modeling the detailed orbits of the individual planets, a key ingredient for forecasting astrology (a

task that came with his post as a court astronomer). It was recognized that a circular, sun-centered

orbit did not suffice for the eccentric orbit of Mars, and Kepler found that the ad hoc fix of adding

one or a few additional suborbits (epicycles) was only a marginal improvement. After years of

effort, Kepler discovered that an ellipse with the sun at one focus was a markedly better model of

Mars’ orbit, in terms of accuracy and simplicity. Moreover, he found that all of the planets moved

on elliptical orbits, to within the high precision of the Tycho/Kepler analysis (Kepler’s first law).

Here, at last, Kepler found a genuine harmony, though of a different kind than he had sought with
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the Platonic solids model. Today we expect that this same law will hold for planets and asteroids

in bound orbits found anywhere in the universe.

Kepler’s analysis confirmed a crucial role for the Sun, and even more that the Sun acted to

’gather’ planets to itself, i.e., that the Sun was the seat of an attractive force that decreased with

distance. Despite that crucial insight, Kepler did not discover a physical mechanism for planetary

motion before his death in 1630. Kepler’s grave site has been lost, but his moving, self-written

epitaph has survived:

I measured the skies, now the shadows I measure.

Skybound was the mind, Earthbound the body rests.

Johannes Kepler

7.5.2 An orbital mechanism

The mechanism behind elliptical orbits was clarified some fifty years after Kepler’s death by

Newton’s theory of universal gravitation. You could just as well say that Kepler’s laws of planetary

motion imply the central force and the inverse square dependence on radius that is the heart of

Newton’s universal gravity. Newton’s theory is amenable to a dimensional analysis. Suppose that

the orbital period, Tp, depends upon gravitational interaction between the sun with mass Ms and a

planet with mass Mp, their separation distance, Rp, and Newton’s gravitational constant, G
.
= [ -1

3 -2 ]. What can a dimensional analysis tell us about the orbital period, Tp? Given the following

numerical data, AU = 1.49 ×1011 m, G = 6.67 ×10−11 kg−1 m3 s−2 and Ms = 1.9880 ×1030

kg, what is the similarity constant? (Hint; a common geometric factor.) There will be two

nondimensional variables in this analysis. What is the dependence of the (nondimensional) period

upon Mp/Ms? 50 If your result is indeed universal, then it should conform also with the orbital

parameters of the first four moons of Jupiter discovered by Galileo, Table (4). Jupiter has a mass

Mj = 1.8973 ×1027 kg.

Table 4: The Galilean moons of Jupiter

Io Europa Ganymede Callisto

Orbital radius, Rm, 103 km 421 671 1070 1882

Period, Tm, days 1.77 3.55 7.15 16.68

49Kepler’s data are from C. M. Linton, 2004, From Eudoxus to Einstein: A history of mathematical astronomy, Cam-

bridge U. Press, page 198. Copernicus’ data is from https://pages.uoregon.edu/imamura/121/lecture-3/ Modern data

are from https://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html
50 If you choose, you can see some of the results of this problem computed by DanalysisA2.m (Sec. 3.4).
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