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Abstract—Two models of floating heat sources are studied. In the first
model the motion of two line heat sources constrained to float at an arbi-
trary depth in a viscous fluid is determined in the limit of small convection
velocities. It is found that the sources drift apart and at great separation
attain a constant velocity proportional to the square root of the heat flux.
The second model is a floating bloek heat source, presumed. to be very long
compared to its depth. It is found to exhibit periodic excursions between
the end walls of the fluid container with the same dependence of velocity
on heat flux as the line sources. A series of experiments are described which
exhibit various features of the theory. The numerical values found when
the theory i& applied to the earth suggest that the idealized flows may be
useful in the' interpretation of continental drift.

Introduction

Geophysical literature of the past few years has been filled with
fascinating observations on the drift of continents. The new
global tectonics (Isacks ef al., 1968) paints a picture of North and
South America moving away from Africa and Europe at a rate of
approximately four centimeters a year with significant upwelling
of deep material in the mid-Atlantic ridge. This motion has forced
the crust of the Pacific Ocean to turn down at the continental
edges, producing the ring of earthquakes and vulcanism in the
Pacific basin. The exploration of this global convection adds new
understanding of the history of our earth every month. However,
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the dynamical basis for this motion has been investigated in only
a casual fashion. The story told in the literature is of convective
motions due to heat sources deep in the mantle of the earth,
moving the (passive) continents around ; yet there is no evidence
for an energy source at depth to provide for such convective
_processes. ‘

The only well-established source of heat is the uranium and
other radioactive materials in the continental masses themselves
and a smaller amount in the oceanic basalt. A source of heating
in the continental material on top of deeper, perhaps less viscous
material, would be a stabilizing effect in the usual convective
sense. However, as early as 1935 Pekeris established that con-
vection would exist due to an imposed horizontal temperature
gradient, even though the underlying fluid were stable. Pekeris
did not discuss, nor at that time was it determined that continents
were drifting, but he did suggest that temperature differences of
100 degrees or so between continental structures and oceanic
structures would lead to fluid motions of about a centimeter a
year. Pekeris assumed certain smooth global distributions of
temperature variation and computed the slow velocity fields
which would result from these temperature distributions in a
uniform fluid.

In this work we will explore the consequences of the assumption
that the principal source of heat for continental motion is the
distribution of radioactive materials in the continental and oceanic
crust. Our models are attempts to isolate the simplest examples
of motion induced by such horizontal inhomogeneity in heating
and yet retain what we believe to be those features most essential
for models which may have usefulness in the general interpretation
of geophysical data. While we consequently have excluded the
variation of viscosity with depth, the solidification of crustal
material, and of course the geometric complexity of the real
geophysical process, we can yet hope that if the significant
dynamical aspects of the continental drifting phenomenon are
contained in our idealization some of these complexities can be
added at a later date.
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1. Drifting Line Heat Sources

Both models we construct are approximately realizable in the
laboratory, with the purpose in mind of testing the limits of
validity of our theoretical proposals. This first model has the
virtue that theoretical results for the entire field of motion can be
attained. It has the disadvantage of mathematical complexity and
un-geophysical appearance. We encourage the earth-scientist first
to read section 2, returning to this section with such doubts as are
raised in his mind there.

We consider two line heat sources of strength @ per unit length
in a fluid of depth %. The heat sources are constrained to move at
a depth d and at any instant are a distance 2a¢ apart. The upper
and lower bounding surfaces are isothermal, the lower one being
held at a temperature AT above that of the upper. We consider
two dimensional motions induced by these heat sources, the stream
function for such motion satisfying the condition that it and its
second derivative with respect to the vertical coordinate (z)
vanish at the upper and lower surface, i.e. rigid slippery boun-
daries. On the line of symmetry between these two sources, the
stream function and its second derivative with respect to the
horizontal coordinate (x) vanish and the horizontal gradient of
the temperature also vanishes. Figure 1 indicates one-half of this
symmetric distribution.

As posed, this problem is well-suited for numerical computation
even when the viscosity is a complicated function of temperature.
However, we seek analytical solutions and prescribe the kinematic
viscosity (v), the thermometric conductivity (x), and the coefficient
of expansion (a) of the fluid to be everywhere the same. The
Boussinesq descriptions of the dynamics and thermodynamics of
this fluid are given in Eqs. (1.1) and (1.2)

Dw

g7, = vV2 1.1
Dt+agT” vWiw (1.1)

%%;+wa = kVT +Qd(x — a)d(z +d) (1.2)
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Figure 1. Geometry and boundary conditions for the drifting line heat
source, @.

where f = — AT/h, D|Dt is the substantial derivative, subscripts
indicate partial differentiation, and § is the Dirac delta function.
Here we require that AT always be less than the critical tempera-
ture difference needed to initiate free cellular convection. The
relations of the stream function (i) to the vorticity (w), to the
horizontal velocity (), and to the vertical velocity (w) are

Vi = o, wz =1Uu, _l//a:zw (13)

The problem is completed by Eq. (1.4), which is the essential
statement that the time derivative of source position is equal to
the horizontal velocity in the fluid at the position of the source.

a,= Y la, —d)=U (1.4)

A scaling of the variables of this problem, based on the linear
response (V) for fixed @ and g = 0, is

b=V, = (b, T=@ﬁ"

K
5= (N, ¢ =(h£>t', v E<“g;?vh2> (1.5)

We now drop the primes in this scaling and rephrase the physics
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of our problem as
1
—(V AR (- VIV + T = Vi (1.6)

T,+Rv VT +Ra ¥, = V¥ +6(x —a)d(z +d) (1.7)

U= R lpz(a, —d) (18)
4 3
o=, Ra=ﬂ, R=ﬁ=°‘gQZL (1.9)
K Ky K VK

in terms of the three independent physical parameters; the
Prandtl number o, the Rayleigh number Ra, and a thermal
Reynolds number R.

Tt is relevant to the drifting continent problem to seek solutions
of Egs. (1.6, 7, 8) for 1/¢ vanishingly small. However, we would
like to know the field of motion for R both small and large. An
expansion of 4 and 7' in a power series in R can give us valid
solutions for small R and some insight, perhaps, into the character
of the solutions at larger R. The leading equations in an R
expansion, for vanishingly small 1/o, are

T, = Vi (1.10)

T+ Ra b, = V2T +6(x —a)d(z+d) (L.11)

The next h‘i‘gher order equations in R are the linear inhomogeneous
set

Tho = Vi T (112)

Ty+Ra by, — VT, = —v-VT (1.13)

whose solution depends on the solutions found for Egs. (1.10, 11).
To solve Egs. (1.10, 11), one first constructs the Fourier trans-
forms appropriate to our boundary conditions,

’ w0 : 0
6k, m) = J cos kx dxf T(z, z) sin mnz dz
-1

0

whmo=fw

0
sin kz dx‘[ J(z, z) sin mnz dz (1.14)
0
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hence

. 4fo 2
T, Z)ZEJ coskx dk Y —0(k, m)sin mn(-2)

0 m=1

P, ) = %Jw sin kx dk i — ¢(k, m) sin mn(—z) (1.15)
m=1

0

Then, from Egs. (1.10, 11), the equations satisfied by 0 and ¢ are
— k0 = (k% +m*m?)%p (1.16)

0,+kRad + (k% + n*m?)0 = — cos ka sin mnd (1.17)

The solution of Eqs. (1.16, 17) for 8 is, with § = 0 initially :

[4
f = —sin mad e L 1¢ [ etl ¥ cos ka(t) dr (1.18)
Jo
where
R, k2
[ ] = ((kZ ‘l‘,ﬂ:zmz)— m) (1.19)

Hence, from Egs. (1.15, 16),

(e, —d) = § m sin (2nd)m v kdk [t I 14
~1 o (B2+72m2)2 |, /B

n=t-t,{}={sinkla(t)+a(t)] +sin ka(t) —alc)]} - (1.20)

With Eq. (1.4), Eq. (1.20) constitutes a formal solution to the
first-order problem. However, Eq. (1.20) also contains higher-
order features of the flow because a(f) has not been linearized.
It is instructive to include the first advective effects of the source
by considering the expansion

aft) = a(t) —a, n+gaun*+ - (1.21)

Then the retention of both a(f) and a,# terms in Eq. (1.21) for
use in Eq. (1.20) corresponds to the inclusion. of both first and
second-order R terms for the source. Alternatively, one can
restate the problem as that of determining the R which will
produce a linear flow at the source equal to an imposed constant
source velocity U. .
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With the neglect of a,, 52 and higher terms in Eq. (1.21), one

can explicitly evaluate the time integral in Eq. (1.20) as

¢
-[ el ™{ }dn = F sin 2ak + G(1 - cos 2ak),
0 .

_{~[Jeos EUs+ kU sin kU et 24 ]

b e (1.22)
G _ {—[ ]sin kUt — kU cos kUty et ¥+ kU
- [ ]2—|-k2U2

For a certain time after the source @ is first turned on the time
dependent terms in Eq. (1.22) will be important. However, for

1

[ ]minimum

1

t > t, (1.23)

the time-dependence vanishes and

(1.24)

[ BrkrU?

0

t>te . _
j ot o } gy — L 15 20k +RU(L — cos 2ab)

Hence, the k integral in Eq. (1.21) may be written

© t> i,
j k dk j ot Wy =

o (B2+m®m?)? ) o
N k(1 —e®2e%) dk (1.25)
L2 w (k% +72m2)? — k? R + ik U (k* 4+ n®m?)%} '
simplifying the form of Eq. (1.24) by the use of complex notation.
Then utilizing Eqs. (1.4) and (1.20, 25), one concludes that

ik(1 — ety dk

R & sin 2nd)ym [t 1.96
U= 2'7:717”2:1 m3 j_w (k2 + 1) — yk2 +ikv(k? + 1) (1.26)
where b = (2na)m, y = Ra/n*m?, v = Ulnm.

The problem remaining is to evaluate the k integral and the m
sum as a function of 7, i.e. the Rayleigh number. This can be
done reédily for R, = 0 and for Ry close to its critical value for
free convection. Intermediate values for R, involve the deter-
mination of the complex roots of the sextic equation

E
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(B2 +1)2 — yk2 +oko(k2+1)2 = 0 (1.27)
For y = 0, the roots of Eq. (1.27) are

k= x 4, x4, E(—vﬂ:\/vz-wl) (1.28)
Therefore |

/RN & sin (2nd)m
U=(—=)Y 7
(47I >m=1 m? (Jv2+4(2 + v+ 4)

+He—b>

where H = 2+(1+bpp 8 oo (- (Vo2ta~p)/2)
2 ———— ——
v Vv 14w 14 —0)

~1b(1+0), for v <1,

(1.29)

It is seen that the m series converges with great rapidity in most
cases. For d =1, roughly 0.98 of U is contained in the first term
m = 1. Also from Eq. (1.29), it is clear that the velocity of th(;
1n1t1a1. separation of the two heat sources is proportional to R
dropping off exponentially with increasing separation. Ai’z

distances large compared to hi2n, ford = } and m =1

U2 = n2(V(R/4n%) + 1+ 1)(~(R]4n?) + 1 - 3) (1.30)

Hence
1
U =~ Jon VvR-R,, R, = 324 (1.81)
for R>R,
and
U~ JVE-R, R>R
o ¢» - (1.32)

ThlS. l.atter conclusion, Eq. (1.30), is entirely the consequence of
retaining the second-order motion term, Eq. (1.21). Hence thé
square-root dependence of U on R at great separation distance
%nust be considered suspect until the remaining second-order terms
in the flow field i are determined.

The second case for which th .
. e k integral can be det ]
without great labor is for g ¢ determined

<
I

a2
|

m

(1.33)
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where both ¢ and » will be considered to be much smaller than
one. We again choose d = } and find that the m =1 contribution
to the flow is

R\2J2 = 1+ /14w Ny
Ug(Tﬁ)TW{T‘-(chS(Jé)b_psul(_ﬁ)b‘) >‘<Ve ‘1}

where

\/ 2 .Y . '
N7o +1 NG = P +1q (1.34)
As in the y = 0 case, one finds that U has an initial exponential
decay, but here the decay is reduced by &/9 and the velocity
oscillates with a spatial period reflecting the free convection cells
which would occur if e< 0. At great separation distance, two
different limiting velocities result from Eq. (1.34). For an e
chosen so that it is much smaller than v.

_ /R \23
U = 243x (3—&@) (1.35)
This result involves two limiting processes (¢ >0 and R —0)
and suggests that one must reconsider the neglected time terms.
in Bq. (1.22), for as ¢ > 0, £ — . However, for ¢ > v, one finds
from Eq. (1.34) that

U 12nJ_32123 1.36

= Joe (3&:4) ~ 1) (1.36)
These conclusions, Eqs. (1.35, 36), indicate the signjﬁcaﬁt increase -
in U at a given R which may occur as the stability of the fluid
is decreased. However, these results are restricted to small values

of U. A computation of Eq. (1.26) for small ¢ but large U indi-
cates that U varies as the square root of R as in the y = 0 case.

2. Drifting Block Heat Source

“This second, more geophysically oriented, model is pictured in
Fig. 2. A two-dimensional block of width L is immersed to a
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Figure 2. Block heat source drifting to left due to heat flux ¢ into
““ channel ” d.

depth (h—d) in a fluid of depth A. The block is a heat source of
strength ¢ per unit length on its lower face. The fluid is contained
in a region L, +.L, + L long with insulating side and bottom walls.
To achieve a thermodynamically steady-state model we presume
that the fluid is a uniform heat sink whose strength is sufficient
to absorb the total heat flux, ¢I, from the block. This choice of
heat sink is assumed to model a vertical heat flux from the upper
surface of the fluid to the right and left of the floating block.

The principal assumptions of this model are: that d is very
small compared to L; that the flow, %, in the * channel > d is
laminar, i.e. that the channel Reynolds number is small compared
to one; that the flow in the regions to the right and left of the
block cause density fluctuations which are small compared to
p —py; that the thermal diffusion time across the channel, d?/x,
is small compared to the mass transport time along the channel
Lflu]. The consistency of the following flow process is to be
studied : starting with L; ~0, the heating ¢L cause the density
of region L, to fall to p,; due to the resultant pressure head, the
horizontal force on the block, F'; — F gives rise to a block velocity,
V, to the left; the resulting channel velocity, u, and heating, qL,
are just sufficient so that the fluid emerging into region I, has
decreased its density from p to p,. We assume that the heat
capacity, C, the coefficient of thermal expansion, «, and the
kinematic viscosity, v, of the fluid are constants. It would be
compatible’ with this flow model to presume that the viscosity
increased with height above the bottom, i.e. with temperature,
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so that the flow, u was confined to the bottom region until reaching
the right-hand wall. Ascending flow along the right-hand wall
then could be thought of as modeling the mid-Atlantic upwelling
with a symmetrically disposed second block moving off to the
right of Fig. 2. )

In order to use the simple Boussinesq description of the ﬂow
we will restrict attention to density contrasts, p —p,, which are
small compared to the density p. Then, for a steady-state to be
maintained

By~ F = Liph - ap - plh-dy = —vpLu@) (1)

where ¢ is the acceleration of gravity, u, is the vertical gradient
of u at the lower boundary of the block, and the right-hand side
of Eq. (2.1) is the total viscous stress due to flow in the channel
balancing the total horizontal pressure force, (F*—F), on the
vertical sides of the block. For thermal balance of the heat into
and out of the channel one must have

gL = go?(d+ V)Ap (2.2)
where
1 (¢
a E_[ w(z)dz, Ap =p-p;=pa(T,-T)
0

Hence to determine V, one must compute the laminar Couette—
Poiseuille-thermal flow, u(z), in the channel. We seek solutions
compatible with a pressure which varies linearly along the channel
in the horizontal (x) direction, so that

x
P=gph-2)(1-7) +pith-2)7 | (23)
We are to find «(z) from the horizontal equation of motion
1
— VU, = - _Pac (24)
p

subject to the boundary conditions ‘
w(0)=0 and u(d)= -V (2.5)
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The solution of Egs. (2.3, 4, 5) is

u(z) = 2%;2? (g) (1-d) Ag—P—-Aﬁ(m )] V@ (2.6)

where (AP[g) = ph—pih,.

Hence, from Eq. (2.6) one finds that

_gdr (AP Apdy ¥
&= oLy (— - T) ~3 (2.7)
and
g AP 1 ) 4
uid) - - I ( Sh0d) — 2.8)

‘We note that

(1 - APJpgh)*
hi—ph* = ph? (_( - 1) ~
PP = PET = Aplp)

[ 222 o

Aplp<1 and AP[pgh<1.

Therefore, with the use of Eqgs. (2.8) and (2.9), the force balance
Eq. (2.1) may be written

for

(% —d2)Ap — (b — d)AP d AP dAp+va

T 55 3 7 @1

Hence Eqgs. (2.2), (2.8) and (2.10) represent three equations for
the four unknown @, V, AP, and Ap. A fourth equation relating
these variables is found from the conditions for the continuity
of mass flow between regions to the right and left of the drifting
block. For the left region

L, 22 a”h = p(h—d)V —pdit (2.11)
and for the right region
)
Llé%——l = = pylhy —d)+pda (2.12)
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For a steady solution to Egs. (2.7), (2.8) and (2.10), both AP and
Ap must be independent of time. From Egs. (2.11, 12) one finds
that AP is independent of time when

pdit = I:p(h—d)— (%3 —dA ) ( 1L2>:| V =p(h—d)V

(2.13)

the right-hand relation holding for small Ap and AP. We will
return to the conditions imposed on p, p;, k, h; by the time
independence of Ap in the following paragraph. Kquation (2.13)
completes the set of equations needed to determine solutions for -
i, V, AP, and Ap. Then from Egs. (2.2), (2.8), (2.10) and (2.13)
we find that

= (350 ()
7 =lane) (2.14)

@=Lt @Y7 6]

One finds also that

where

agln 1
Ap = (C’h)V (2.15)
and that
AP (12pLv(h—d[2) agLdy 1
Y= ) G @1

- The steady solutions Egs. (2.14, 15, 16) are possible when
Ap as well as AP are time independent. In addition, Egs. (2.11,
12) for mass continuity require that when AP is constant, then
independently

ot
ot

0p1hy
ot

=0, =0 (2.17)
to first order in the small quantities AP and Ap. A final relation
determining the time dependence of p, p,, h, hy is the require-
ment that the total production of heat is balanced by a uniform
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sink of heat in the fluid. This latter condition, plus the constancy
of Ap and Eq. (2.17) leads to

dlnp dlnp, dlnk _ dlnh, —aq<L1+L2+§>‘1
o0 ot ot ot  Cp*h\ L 3
(2.18)

We conclude that the drifting block moves from the right
symmetry plane to the left at a constant speed given by Eq. (2.14),
uniformly creating as much new fluid of density p, asis destroyed by
the uniform sink. Upon reaching the left symmetry plane, the block
reverses its direction and moves to the right. The turn-around
. time depends on the magnitude of the (neglected) second-order
terms in Ap and the thermal diffusion velocity in the channel.

~Hence, Ap can always be chosen sufficiently small so that the
turn-around time is a negligible fraction of the block transit time,
(Ly+Ly)[ V.

The most significant conclusion is that the velocity V Eq. (2.14),
depends on the fluid parameters and the heating rate in the
same manner as does the final velocity U, Egs. (1.30, 31, 32) for
the drifting line source treated in section 1. The two expressions
differ in that Eq. (2.14) contains.the geometric factors (#/L) and
(d/h), and in that there is no value of heating or depth d for which
the motion vanishes. '

3. Laboratory Experiments with Drifting Heat Sources

In this section the first results from a continuing study of drift-
ing heat sources is presented. The experimental arrangement
simulates the line heat source model of section 1 since that theory
provides a description of the entire flow field.

The principal observable with which we were concerned was
the velocity of the source as a function of the heating rate,
geometric and fluid parameters. We sought also to discover
whether an isolated heat source could propagate itself due to its
own fluid motion, as is suggested in the results of section 1.

A variety of floats were used, all of which were heated by

N

SELF-CONVECTION OF FLOATING HEAT SOURCES 137

passing electric current through stainless steel wires. The
electricity reached the floats through 0.005 cm diameter copper
wires. When hung limply from above these lead wires produced
negligible forces on the floats. The two types of sources reported
upon here are; first, floating polyethylene strips with  wires
stretched beneath them and second, wires contained in hollow
aluminum oxide tubes floated by styrofoam pontoons at their
ends.

Silicone oils of various viscosities were used as the fluid. The
tank containing this fluid was 30 cm wide, 40 cm long and 10 cm
high. The bottom of the tank was covered with 0.5 cm of mercury
in order to approximate the isothermal, slip boundary conditions
used in the theory. The fluid was bounded above by air which,
although providing the appropriate slip boundary condition, had
two disadvantages. The first was that convection into the air
did not provide a sufficiently isothermal surface. The second was
that surface tension gradients, due to this variation of surface
temperature, could be large enough to influence the source
velocity. Although an experimental method exists to remove
these difficulties, it was found that their effect on the observations
could be adequately estimated.

Preliminary experiments with the polyethylene floats made us
aware of the importance of any asymmetry in the heat source-
float geometry. When a heating wire was positioned even slightly
to one side of the center of its supporting flotation strip, invari-
ably they would move in the direction of the less heated side.
We concluded that only the very symmetric oxide tube source
was suitable to simulate the theoretical line source of section 2.
However, some data for an asymmetric source is included in
Fig. 4 and will be discussed shortly.

The typical time trajectories of two oxide tube floats, for
Ra =0 and for two very different values of R, are shown in
Fig. 3. The most striking feature of these observations is the
constancy of the velocity of separation for many dimensionless
length units after the power is first turned on. The second feature of
importance is the gradual reduction in velocity at large separation.
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!
0 | 2 3 4
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Figure 3. Typical displacement versus time curves for a pair of line heat
sources. Note the difference in time scales.

Neither result is in keeping with the theoretical deduction
Eq. (1.29). In the theory, the initial velocity of separation should
depend linearly on R and drop off as exp ( —b). The final velocity
should be constant and depend linearly on the square root of R.
We have concluded, tenta’bively, that: a thermal boundary
layering process resulting from higher-order terms in the R
expansion is responsible for the initial constant velocity at
moderately large b. We conclude, also, that the solution for great
separation distance, Eq. (1.30), is not stable for highly symmetric
sources, at least not sufficiently stable to overcome the small
three-dimensional end effects and float drag. However, the
magnitude of the velocity of the source is in keeping with the
theory, as is reported in the following paragraph.

A series of experiments were performed to determine the
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initial velocity as a function of R. The value of R was changed
by varying the depth of 60,000 centistoke oil, the depth varying
from 5 cm to 0.25 cm. Only two different heating powers were
used, 0.5 watts per cm and 1 watt per cm. In this way it was hoped
that spurious forces due to surface tension, end effects and float
drag would be the same in all the experiments. The data for these
experiments is plotted in Fig. 4 as (+). The solid line in this

[CO

Ol

| | | |
2 |o3R 104 105 108 107

Figure 4. Velocity of line sources versus heating parameter, R. Datum for
symmetric source pair is indicated by +. Datum for a single asymmetric
source is indicated by ©. The solid curve is Eq. (1.82). Dashed curves are
discussed in the text. :

figure is the theoretical result Eq. (1.32) in which U varies as the
square root of R. The lower dashed line represents the maximum
value of U versus R from Eq. (1.29). The upper dashed line is an
approximate solution similar to Eq. (1.29), but with the upper
boundary of the fluid taken to be an insulator rather than iso-
thermal. Evidently, there is 'some reasonable agreement with
theory, which might be improved if float drag and end effects can
be reduced.

The circular data points (©) in Fig. 2 are for a single float
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which was purposely made asymmetric. It is seen that its velocity
dependence on R is very similar to that of the pafting float
pairs. Dr. Alan Newell, in conversation, pointed out to us that
source asymmetry could easily be incorporated into the analysis
of section 1. If the line source in Eq. (1.2) is taken as [§(z —a) +
yd’(x —a)] where y <1 and ¢ is the derivative of the delta
function, then the source velocity becomes proportional to y at
large separation distances.

The preceding data was taken with no heating from below, i.e.

.25 T I I I .
- 201 9
® -
| 5 <] ]
°
| O ° ° —

b 5*‘0600 . o o} ]
O. o © |

R =27.103
Ra=.9 (Ra)eriricaL

0 4 .8 1.2 1.5 1.8
)

Flgu?e 5. D.isplacement versus, time record for a symmetric line source
pair in a fluid heated from below.

for Ry = 0. A very few experiments have been made for R, close
to its critical value for free convection. A typical trajectory for
Ra = 0.9(Ra), is shown in Fig. 5. The fluid, floats and geometry
were the same as those of Fig. 4. It is seen that the floats separate
until they reach a distance b = 12.5, after which they maintain
this separation and move off together at a reduced velocity. As
one might have anticipated, this spacing is the exact size of the
free convection cell which would first occur if the fluid were
unstable [Ry > (Ra),]. It seems likely that the final velocity of
the pair of floats is due to a slight difference in their source
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strengths. No studies have been made yet in the range
Ra > (Ra),. It will be of considerable interest to discover the
area in the R, Ry plane in which the floating sources dominate the
convective process. ‘

4. Geophysical Implications

The experiments and the theories of both sections 2 and 3
suggest that source drift velocities proportional to the square root
of the heating rate can be expected to occur in a fluid differentially
heated by the floating sources. Theory and experiment also
suggest that the drift velocity is independent of the thermo-
metric conductivity of a fluid with a large Prandtl number.

A qualitative consequence of the model of section 3 is that the
heat flux ¢ emerges from the “ocean” regions, although:it is
produced in the ‘ continent ”. We presume, of course, that a
similar heat flux emerges from the top of a realistic continent.
In applying this model to the earth one must add the horizontally
homogeneous heat sources and the appropriate adiabatic lapse
rate to the Boussinesq description of the vertical temperature
distribution. Hence the model does not require that heat actually
flow down, but only that the differential heating produces
temperature variations in the horizontal.

To detérmine the magnitude of drift velocity from Eq. (2.14),
we have assumed that the differential heating rate between
continent and ocean is approximately ¢ = 1076 cal/sec cm. We
have chosen A = 6.107 cm, as this is the largest depth at which
there is evidence for significant motion. The source depth is
taken to be (h—d) = 3.10°cm. However F(d/h) of Eq. (2.14) is
quite insensitive to this choice. The principal uncertainty is the
value of the kinematic viscosity. Pekeris (1935), and Turcotte
‘and Oxburgh (1969a, b), have used Haskell’s (1935) value of
v = 3.102! poises, estimated from the Fennoscandia post-glacial
uplift. The parameter group (ag/pc) is taken to be 2.5-1072 cm?/
cal sec? with confidence that the uncertainty in this value is small
compared to the uncertainty for the values of v and k. With
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these estimates used in Eq. (2.14) we find that
V continens =23.1078 em/sec ~1 cm/yr

As a consequence, the density contrast Ap/p across a continent
of L = 5.10° em is less than 1072 from Eq. (2.15). Also, one finds
from Eq. (2.16) that the difference in pressure head across the
continent is approximately 3.10% cm. A discussion of the strength
of the crustal material and whether the estimated forces are
sufficient to account for the observed breaking, folding, and
flowing will not be attempted here.
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A Hydrodynamic Curiosity:
the Salt Oscillator :
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Abstract—If a vertically oriented hypodermic syringe with the plunger
removed is filled with salt water and partially submerged in a beaker of
fresh water, then under the proper conditions, the system develops finite
amplitude oscillations. These oscillations appear as a downward jet of salt
water, followed by an upward jet of fresh water, and so on for many cycles.
The geometry of the syringe determines the period of the oscillations: a
long, small diameter needle yields a slow, viscous flow; a short, lgrge
diameter mneedle yields fast inviscid pumping. Theoretically, a time-
dependent Hagen—Poiseuille pipe flow model describes the oscillations;
furthermore, the oscillations can be divided into two modes, depending on
whether viscous or non-linear damping predominates. When viscous
damping predominates, the geometry of the syringe determines the period
of the oscillations, which are independent of the density difference Ap
except as the viscosity varies with density. When non-linear damping
predominates, the period is proportional to {(Ap)'/2. Experiments confirm
the existence of both modes.

1. Introduction

A variety of straight tubes whose cross-sectional area varies with
lengths (such as funnels, hypodermic syringes, pipettes, and tin
cans with pin holes in the bottom) when filled with salt water and
partially submerged in a beaker of fresh water will exhibit finite
amplitude oscillations. These oscillations appear as a downward
jet of salt water, followed by an upward jet of fresh water, and so
on for many cycles (Fig. 1).. For example, a tin can of radius
3.3 cm with a pin hole in the bottom, which was initially filled to
a depth of 8 cm with a saturated solution of sodium chloride,
produced oscillations with a period of 40 sec and ran for four days.
A hypodermic syringe with a volume of 10 cm?®, in an experiment
143
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