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An experiment on the stability of convection rolls with varying wave-number 
is described in extension of the earlier work by Chen & Whitehead (1968). 
The results agree with the theoretical predictions by Busse (1967a) and 
show two distinct types of instability in the form of non-oscillatory disturb- 
ances. The ‘zigzag instability ’ corresponds to a bending of the original rolls; 
in the ‘cross-roll instability’ rolls emerge at right angles to the original rolls. 
At Rayleigh numbers above 23,000 rolls are unstable for all wave-numbers 
and are replaced by a three-dimensional form of stationary convection for 
which the name ‘bimodal convection’ is proposed. 

1. Introduction 
Cellular convection in a fluid layer heated from below, which traditionally 

has been called B6nard convection, can be regarded as a characteristic example 
for a gradual transition from laminar to turbulent flow. In  contrast to  the 
sudden transition from laminar to non-stationary turbulent flow, which is 
exhibited by plane parallel shear flows, the instability of a layer heated from 
below is followed by a number of transitions from one type of stationary cellular 
convection to another. A large body of experimental and theoretical work has 
been devoted to the investigation of these transitions in the past decades, 
starting with the first discovery of a secondary transition by Schmidt & Saunders 
(1938). In  the course of these investigations the following picture of convection 
in a high Prandtl number fluid has evolved. When the temperature difference 
across the fluid layer is slowly increased, the static state will become unstable 
when the buoyancy force is sufficiently strong to overcome the stabilizing 
effects of viscous dissipation and thermal conduction. The point at which the 
static fluid first becomes unstable to disturbances of infinitesimal amplitude is 
described by the critical value R, of Rayleigh number R, which is the non- 
dimensional expression for the temperature difference across the layer. Owing 
to deviations from the Boussinesq assumptions in any real fluid, convection 
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will first emerge in the form of hexagonal cells as the Rayleigh number is raised 
above its critical value. When the deviations from the Boussinesq assumptions 
are small, convection in the form of rolls will replace the hexagons at  a Rayleigh 
number slightly above the critical value. When the Rayleigh number in the 
conceived experiment is increased further and reaches a value somewhat larger 
than ten times its critical value, the two-dimensional flow in the form of rolls 
changes into a three-dimensional pattern which in this paper will be called 
‘bimodal convection’. Only after the Rayleigh number has reached a much 
higher, not yet well-determined, value will stationary convection be superseded 
by non-stationary convection. 

Because of these properties, convection in a high Prandtl number fluid is an 
ideal subject to study typical features of secondary flows. One such feature is 
the dependence on a wave-number which is an implicit parameter for the secon- 
dary solutions of the equations of motion. In  the case of convection the wave- 
number is strikingly exhibited by the cellular pattern of the flow. Solutions of 
the basic equations corresponding to convection in the form of rolls exist for a 
relatively large range of wave-numbers a depending on the Rayleigh number 
€2, yet the convection rolls are stable only in a small subrange of wave-numbers. 
This paper will be concerned with the stability region of convection rolls in the 
R, a plane and with the instabilities which are responsible for the boundaries of 
the stable domain. 

The stability of two-dimensional convection in the form of periodic rolls 
with respect to disturbances of infinitesimal amplitude has been analyzed in a 
paper by Busse ( 1 9 6 7 ~ )  to which we shall refer by (I). An experimental study of 
the stability of convection rolls was first undertaken by Chen & Whitehead 
(1968), henceforth to be called (11). In  the present paper theoretical, as well as 
experimental, aspects of the problem will be considered in extension of the 
work described in (I) and (11). The emphasis, however, will be laid on the experi- 
mental investigation. 

The idea of the experiment by Chen & Whitehead was to generate convection 
rolls of a prescribed wave-number by establishing well-defined initial conditions. 
The fluid layer contained between glass plates was covered with a grid and 
exposed to a strong light source which produced temperature and velocity 
perturbations with a well-defined wavelength. The artificially produced pertur- 
bations eliminated the influence of the random perturbations and gave rise to 
convection in the form of rolls with the prescribed wave-number when the 
Rayleigh number was increased beyond its critical value. As soon as the desired 
Rayleigh number was reached the source was shut off. Thus the final state of the 
convection layer, after a stationary state had been reached, was influenced by 
the additional heating only in the form of the initial conditions. The aspect 
ratio of the fluid layer used by Chen & Whitehead was rather small, with the 
consequence that on the average 10 convection rolls were established. Hence 
the side walls of the circular layer exerted a strong influence on the dynamics 
of the convection rolls and their instabilities. In  the present paper an experiment 
is described in which the technique of Chen & Whitehead is applied to a rect- 
angular fluid layer of much larger aspect ratio. A typical number of convection 
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Instabilities of convection rolls 307 

cells (containing two counter-rotating rolls) is 50. The results differ from those 
described in (11) and demonstrate that a rather large aspect ratio is required to 
approximate the idealized case of an infinitely extended layer. 

The paper starts with an exposition of the physical mechanism of instability 
in $2. Some theoretical results, based on the same computations as the results 
reported in (I), are presented in $92 and 3. The latter section is devoted to the 
discussion of bimodal convection. ‘Bimodal convection’ has been chosen as 
the name for the three-dimensional pattern which represents the only stable 
form of stationary convection for Rayleigh numbers above 22,600. The experi- 
mental apparatus and the method of observations are described in 334 and 5. 
The experimental results will be discussed in $ 6  in comparison with the theoretical 
predictions. 

2. Physical mechanisms for the instability of rolls 
We shall start the theoretical part of the paper with a brief review of some 

general results of the theory of convection. The Boussinesq equations for con- 
vection in a horizontal fluid layer heated from below in their usual dimensionless 
form are 

(2.1) I V2v + k6 - V p  = Pr-l(v. Vv + &/at), 
v2e-Rk.v = v.vo+ae/at, 

v . v  = 0, 

where v is the velocity vector and 6 is the deviation of the temperature from the 
static temperature field. k denotes the unit vector in the vertical x direction of 
a Cartesian system of co-ordinates. The rigid boundaries of infinite conductivity 
require 

v=O,  6 = 0  at z = & + .  

For stationary convection of infinitesimal amplitude the right-hand side in (2.1) 
is replaced by zero. The resulting linear problem has solutions satisfying 

for all values of a. The lowest eigenvalue R, of the Rayleigh number R is a 
function of a which has a minimum at 

R, = 1708, a, = 3,114. 

The function R,(a) is shown by the lower curve in figure 1. 
Even though not all solutions of the linear problem correspond to possible 

solutions of the full non-linear problem in the limit of infinitesimal amplitude, 
there exists an infinite class of possible stationary solutions of (2.1) for every 
value of the wave-number a if R exceeds R, (a). It has been shown by Schliiter, 
Lortz & Busse (1965), for values of R sufficiently close to the critical value, that 
the only stable solution is the two-dimensional solution corresponding to 
convection in the form of periodic rolls. It has been shown also that the convec- 
tion rolls are stable for a finite range of wave-numbers a which correspond to 
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somewhat less than one-third of the interval of a for which stationary solutions 
are possible. In  order t o  extend these results of the analytic perturbation theory 
to the case of larger Rayleigh numbers, a Galerkin method was employed in (I). 
Stationary periodic two-dimensional solutions of the equation (2.1) in the case 
of infinite Prandtl number Pr were obtained for Rayleigh numbers up to 30,000. 
The stability of the stationary solution was analyzed by superimposing three- 
dimensional disturbances of infinitesimal amplitude with arbitrary spatial 
dependence. The calculations have shown that convection rolls are unstable 
outside the pear-shaped region in figure 1 which is bounded by the curves B and 
C. The two types of instability which are responsible for the stability boundaries 
B and C will be described in the following. 

1 2 3 4 5 6 
OL. 

FIGURE 1. Stability region of convection rolls. The zigzag instability and the cross-roll in- 
stability produce the stability boundaries B and C, respectively. The dashed line denotes 
the value of the wave-number G of the marginal cross-roll disturbances along curve C. 

The basic reason for the instability of rolls can be understood from the results 
of the linear theory. There exists a distinguished value ac of the wave-number at  
which the convection is optimally adjusted to the geometry of the layer. This 
property is reflected in the existence of a variational formulation for the linear 
problem. At small but finite amplitudes an extension of the variational formula- 
tion still holds (Busse 19673). The property of optimal adjustment, however, 
does not distinguish a single value for the wave-number of the physically realized 
solution at  finite amplitudes. Since finite amplitude convection with a given 
wave-number a modifies the unstable static state of the fluid layer in such a way 
that the cause for the gravitational instability is reduced, disturbances with a 
different wave-number will decay in general. Only if the deviation of the wave- 
number a from the optimal value ae exceeds a finite threshold value will 
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Instabilities of convection rolls 309 

disturbances be able to grow and finally replace the original convection pattern 
by a pattern with better-adjusted wave-numbers. Since periodic rolls represent 
the only kind of stable stationary convection - at least for sufficiently low 
Rayleigh numbers - any unstable disturbance will finally lead to a convection 
pattern in the form of rolls with a wave-number within the stable domain. 

Two different instability mechanisms exist at  high Prandtl numbers to accom- 
plish the transition from convection rolls with an unstable wave-number to rolls 
with a stable wave-number. (For a modification of the following discussion at 
low Prandtl numbers we refer to Busse (1970).) When the wave-number of the 
convection rolls is too small compared to the optimal value, the effective wave- 
number can be increased (wavelength decreased) by bending the straight rolls 
into a wavy roll pattern. We shall call the instability initiating the bending 
process the ‘zigzag’ instability. It is responsible for the stability boundary B 
in figure 1. Mathematically, the instability can be described as a periodic trans- 
lation of the rolls in the direction perpendicular to their axis which indicates the 
close relationship t o  the property of translatorial invariance of the convection 
solution in the horizontally infinite layer. For rolls with a wave-number higher 
than the optimal value the zigzag mechanism can only lead to less optimally 
adjusted rolls and therefore does not occur. 

Stationary convection rolls exert a stabilizing influence by the modified mean 
temperature profile, as well as by the action of the fluctuating temperature and 
velocity field on any disturbance. Among all possible disturbances of a given 
wave-number, that which is least affected by the latter influence is most likely to 
initiate the instability. The theoretical analysis confirms this expectation and 
shows that disturbances in the form of rolls perpendicular to the given rolls are 
most effective in changing convection with an excessively large wave-number to 
a pattern with a more favourable wave-number. This instability mechanism, 
which we shall call the ‘cross-roll’ instability, is possible, of course, at large as 
well as at  sufficiently small wave-numbers, in contrast to  the zigzag mechanism. 
It is responsible for the stability boundary labelled C in figure 1. 

The foregoing discussion has to be modified for Rayleigh numbers larger than 
about 15,000. At Rayleigh numbers of this order, convection in the form of 
two-dimensional rolls does not represent the only form of stable stationary 
convection. 

3. Bimodal convection 
The dashed line in figure 1 describes the wave-number of the cross-roll in- 

stability in the direction parallel to the axis of the stationary convection rolls at 
the stability boundary C. The dashed line for & has been obtained by a rough 
interpolation from the values for the wave-number & of the disturbance with 
maximum growth rate plotted in figure 2. The latter results are derived from the 
same numerical work which was described in (I). The difference between the 
values & corresponding to the left and to the right part of the stability boundary 
C is sma.11 and changes sign at  about R = 9 x lo3. The fact that the dashed line in 
figure 1 intersects the curve C at about R = 15,000 implies that the cross-roll 
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310 F.  H. Bwse and J .  A .  Whitehead 

instability cannot lead to stationary convection in the form of rolls for Rayleigh 
number above the point of intersection. Since di lies outside the range of wave- 
numbers for stable two-dimensional convection, the stationary asymptotic state 
is necessarily three-dimensional, if a stable solution of this kind exists. Otherwise, 
secondary instabilities may occur. The theoretical analysis of infinitesimal dis- 
turbances cannot make further predictions at  this point. Experiments have 
shown, in fact, that in most cases a stationary three-dimensional convection 

5 -  

d 4 -  

3 -  

I I I I I I 

- 

- 

1 1  I I I I 1 

3x104 \ 

R = ~ x  lo3 

FI~URE 2. The wave-number d of the cross-roll disturbance with maximum growth rate 
as a function of the wave-number 01 of the stationary rolls for selected values of the Rayleigh 
number R. The maximum growth rate is negative in the region of dashed lines. 

pattern in the form of bimodal cells is reached as the final state. The term 
‘bimodal ’ has been chosen since the three-dimensional convection can be 
roughly described as the superposition of rolls with a large wave-number on 
perpendicular rolls with a smaller wave-number and a larger amplitude. The 
result of the analysis in (I) that two-dimensional convection rolls of any wave- 
number are unstable for Rayleigh numbers exceeding the value R, = 22,600 
emphasizes the fact that the cross-roll instability at high Rayleigh number 
corresponds to a physical mechanism which is different from the mechanism at 
low Rayleigh number discussed in the preceding section. Experimental evidence 
suggests that for Rayleigh numbers in a certain interval beyond R, bimodal 
convection represents the only form of stable stationary convection with the 
higher wave-number component becoming more prominent as the Rayleigh 
number increases. Solutions of the basic equations (2.1) describing bimodal 
convection have not yet been obtained. An understanding of physical reasons 
for bimodal convection, however, can be gained from the following qualitative 
arguments. 
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Instabilities of convection rolls 311 

The two characteristic horizontal scales of bimodal convection suggest a 
corresponding separation of scales in vertical dimension. A tendency in this 
direction is indicated by the relative dominance of the higher Fourier components 
in the z dependence of the growing disturbance leading to bimodal convection. 
In  interpreting this numerical result it was argued in (I) that the gravitational 
instability of the thermal boundary layer a t  z = 4 is the principal cause for 
the cross-roll instability at  high Rayleigh numbers. The heat transport carried 
by convection rolls is not high enough to prevent this instability by keeping the 
thermal boundary layer sufficiently thin. Bimodal convection demonstrates that 
two modes adjusted to the boundary-layer scale and the scale of the interior 
region are more effective at high Rayleigh numbers in carrying the heat across 

FIGURE 3. Streamlines of bimodal convection. The streamlines for the vector field 
(a,v,, a,v,) at z = + have been obtained by multiplying the solution for the marginal 
cross-roll disturbance at R, = 22,600 with a suitably chosen factor m d  adding it to the 
solution of stationary rolls. 

the layer than a single mode. The same phenomenon has been found in the 
theory of the upper bound for the heat transport by convection (Busse 1969). 
That the transition at the Rayleigh number R, is connected with an increase in 
the heat transport has been observed by Malkus (1954) who used the change in 
slope of the measured dependence of the heat transport on the Rayleigh number 
as experimental evidence for transitions. Willis & Deardorff (1967) have recently 
confirmed the transitions found by Malkus. We refer also to the visual observa- 
tions by Krishnamurti (1970a, b). An explanation for the phenomenon that the 
transition often takes place at a Rayleigh number below R, will be attempted 
in $6. 

Since the component with the small wave-number constitutes the dominant 
part in bimodal convection, the transformation of rolls into bimodal convection 
by the cross-roll instability represents in general a rather small modification. 
Thus a fairly accurate picture of bimodal convection can be obtained by adding 
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to the two-dimensional stationary solution the critical disturbance of the linear 
stability theory multiplied by a suitably chosen amplitude. In  this way the 
approximate solution for bimodal convection shown in figure 3 has been ob- 
tained. The two-dimensional solution and the disturbance of zero growth rate 
at  R = R, and a = 3.4 have been used. The figure shows the streamlines of the 
velocity field close to the boundary of the layer. The picture can be compared 
with the observation of bimodal convection through a glass plate on top of the 
layer as shown by figure 8 (plate 1). 

F.  H .  Busse and J .  A .  Whitehead 

4. The experimental apparatus 
The control of the initial conditions for the convective instability and the 

convenient observation of the established convection pattern have been the 
primary objectives in designing the experimental apparatus. The possibility for 
accurate measurements of the quantitative properties of convection has been 
regarded as of secondary importance. 

Constant 
pressure 
spillways d nl I I  

I I 

I Bottom channel 

I 
L 

FIGURE 4. Schematic diagram of the experimental apparatus. Arrows indicate water flow, 
heavy black I i n ~  indicate glass, hashed regions indicate styrofoam insulation, 

In principle, the apparatus is similar to the one described in (11). As shown in 
figure 4, the fluid layer containing silicone oil is bounded from below by an 
arrangement of two parallel glass plates separated by a gap of 0-5 cm. The gap 
forms a channel through which thermally regulated water is flowing. The same 
arrangement is used on top of the convection layer. The pattern of convection 
was observed by shining a slightly diverging beam of light through the fluid layer 
from below, as shown in figure 5. Owing to the convective temperature field, a 
ray of light which passes through the layer is deflected through a small angle. 
The descending cold region of a convection cell, for instance, acts as a convex 
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Instabilities of convection rolls 313 

lens and produces a bright line as an image of the light source on a screen placed 
a t  the approximate focal distance. The photographs on figures 10 to 15 (plates 
2-7) show pictures produced in this way. 

Controlled initial conditions with a prescribed wave-number were generated 
by placing a grid on top of the cooling channel above the convection layer. The 
grid intercepted the light produced by two 500-watt light bulbs at  the distance 

Frosted 
screen. 4 Camera 

Movable grid “1------ 

FIGURE 5. Diagram of the observational technique showing movable upper 
mirror and grid used for inducing rolls. 

of 1-5 metres above the convection layer. Thus a temperature perturbation 
corresponding to the pattern of the grid was produced in the silicone oil. 
Although the amplitude of the temperature perturbation was less than0.05 OK, it 
provided the convection rolls of the corresponding wavelength with a sufficient 
lead over other random perturbations in the layer. Silicone oil with a low vis- 
cosity temperature coefficient was chosen in order to minimize the inhomo- 
geneities of the material properties in the convection layer. The properties of the 
Dow Corning 200 Silicone oil used in the experiment are 

v = 0.10 cm2/sec, K = 0.0010 cm2/sec, y = 1-08 x 10-3(~K)-1. 

Because of the low temperature dependence of those properties, the appearance 
of hexagonal convection could be restricted to a small region just above the 
critical Rayleigh number. Hexagonal convection is also favoured by a concave 
or convex temperature profile of the static state at the point of instability. By 
keeping the mean temperature profile antisymmetric with respect to the mid- 
plane of the layer, this effect can be avoided. For this purpose the mean tempera- 
ture of the layer was held nearly constant, while the temperatures in the water 
channels were changed in an antisymmetric manner. 

Special attention was given to the need for uniform horizontal temperatures, 
careful levelling of the apparatus, and precise dimensions of the convection layer. 
A uniform horizontal temperature was obtained by providing a sufficiently 
high flow rate in the water channels above and below the convection layer. The 
temperature difference between inlet and outlet was kept below 0.2 OK, reaching 
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this limit only in rather extreme cases. The f-inch thick glass plates bounding 
the convection layer can hardly be considered as infinitely conducting, as is 
assumed in most theories of convection, including (I). Yet the heat conductivity 
of glass is about six times higher than the conductivity of the silicone oil used in 
the convection layer. For this reason the finite conductivity of the boundaries 
should be responsible for only small quantitative deviations from the idealized 
case considered in the theory. The two temperature baths feeding the water 
channels were regulated by thermostats which kept the temperature constant 
within a few hundredths of a degree Kelvin. 

The glass plate bounding the lower water channel from below had the horizon- 
tal dimensions of 100 cm x 91 em and a thickness of & inch to provide sufficient 
strength for the apparatus. The horizontal dimensions of the top water channel 
were 80 cm x 80 em, leaving space for a reservoir of silicone oil around the 
convection layer and for the regions of in-and-out flow on opposite sides of the 
water channels. The plate glass of $-inch thickness separating the convection 
layer from the water channels did not have sufficient strength to remain flat 
unless the hydrostatic pressures of the silicone oil and the water in the two 
channels was carefully regulated to an accuracy of 1 mm head. The water flow, 
therefore, had to be constant within 5 %, which was achieved by constant head 
reservoirs for the inlets and by spillways with adjustable height at  the outlet of 
the channels. The resulting head of water at the inlets and outlets was monitored 
by pressure gauges and was found to stay within the 1 mm limit. 

Experiments were carried out for two different depths of the convection layer. 
For Rayleigh numbers below lo4, a depth of 5 mm was used; larger Rayleigh 
numbers were achieved with a depth of 10 mm. By placing the four spacers near 
to the four corners of the layer at a distance of about 15 cm from the sides and by 
using the pressure balance described above, a constant depth within a few tenths 
of a millimetre was attained. Although this accuracy seems to be sufficient in 
the case of the 1 cm depth, a spatial inhomogeneity was apparent in the experi- 
ment with a 5 mm depth. For this reason most of the data at  low Rayleigh 
numbers were obtained using a different apparatus with the horizontal dimen- 
sions of 30 cm x 30 cm. With this size a more homogeneous depth of the con- 
vection layer was achieved while keeping the aspect ratio comparable to that of 
the large apparatus at  1 cm depth. In  the small apparatus the glass plate bound- 
ing the convection layer from below was replaced by a mirror. Thus the beam of 
light entering the layer from above traversed it twice and produced a strong 
image of the convection patterns even at  rather low Rayleigh numbers. 

5. The experimental procedure 
The experiments with a depth of 5 mm and with a depth of 10 mm differed 

because of the characteristic response time d 2 / K  of the convection layer. This effect 
is partly offset by the fact that changes in the convection pattern occurred faster 
at  higher Rayleigh numbers. For this reason the times used in connexion with the 
low depth experiment described below were multiplied by a factor between 2 
and 4 for the 1 cm depth experiment. At the start of an experiment the convection 
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layer was left for at  least 15 min a t  a subcritical Rayleigh number to establish a 
static state of pure conduction. After this time a grid of the desired wavelength 
was placed on top of the apparatus and the heat lamp was turned on. For this 
purpose the top mirror shown in figure 5 was pulled back. After about 10 min 
the thermostats were set to their final values, with the consequence that the 
temperature difference between upper and lower water channels increased at  a 
rate of 1 O K  per minute. A few minutes after the final temperature difference 
was reached the heating lamp was turned off, the grid removed, and the top 
mirror set in place. A light beam emerging from a 0.4 cm hole in front of a 
tungsten filament bulb was shone through the oil layer and projected the 
convective pattern on to a frosted screen. The observations were recorded by 
taking photographs at appropriate intervals. When the convection rolls were 
unstable, the first signs of instability became apparent immediately after the 
observation started, or some minutes later. In  the case of the wavy instability, 
it took sometimes 15 min before indications of bending of convection rolls were 
observed. Stable convection rolls remained unchanged for hours. Sometimes a 
pinching instability travelled from the side wall into the field of view, or a new 
roll was generated at  the side wall, leading to a slight compression of the pattern. 
The question of stability was usually decided half an hour after the observation 
had started. However, the observations continued until the convection pattern 
was changed to a new quasi-stationary pattern. Since the instabilities did not 
occur homogeneously throughout the new layer, convection cells established 
by the instability were usually correlated only over a region of a few wavelengths 
in diameter. Accordingly, the new quasi-stationary pattern showed a patchy 
structure similar to the convection produced by a change from subcritical to 
supercritical Rayleigh number with random initial conditions. 

The Rayleigh number was not measured directly in the experiments. Using the 
calculations for the heat transport by convection rolls in (I), the Rayleigh number 
was computed from the temperature difference between the water channels, 
taking into account the fmite conductivity of the glass plates. The influence 
of the temperature boundary layer in the water channel itself can be considered 
as small and was neglected for this reason. Because of their indirect deduction, 
the values for the Rayleigh number can be incorrect by several per cent. An 
accurate determination of the Rayleigh number was not regarded as important 
because most parts of the stability boundary in the R, a plane depend only 
weakly on the co-ordinate R. 

6. Discussion 
The principal result of the experiment is shown in figure 6. The comparison 

of the observed instabilities with the calculated stability boundary indicates 
qualitative agreement between experiment and theory. The finite conductivity 
of the glass plates bounding the convection layer appears to be responsible for 
the shift of the experimental values relative to the theoretical curve. A rough 
theoretical estimate shows that the heat conductivity of the glass, which is six 
times the conductivity of the silicone oil, is responsible for B 5 % decrease of the 
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critical wave-number a. This result is in approximate agreement with the 
observations. The fact that the effective conductivity of the fluid layer increases 
with the Rayleigh number owing to the convective transport, can be used as an 
explanation for the increasing shift between the data and the theoretical curve. 
The analogous discrepancy is apparent in figure 7 in which the observed wave- 
number & of the cross-roll instability has been plotted as a function of the 

104 

R 

103 

I I I I I 

f /‘gi * *  * 
0 0  

0 0  0 0  0 + 

0 0 0 + 

3 ” 3 4 

a: 

FIGURE 6. Experimental results. 0, stable rolls; x , zigzag instability; +, cross-roll 
instability leading to rolls; * , cross-roll instability leading to bimodal convection; 
S , cross-roll instability inducing transient rolls with subsequent local processes. The 
curves correspond t o  the theoretical rcsults shown in figure 1. 

Rayleigh number. The value of ii does not depend on the wavelength of the basic 
rolls. The latter has been indicated only roughly in the figure by using the 
letters L, N ,  S for large, medium, and small-sized rolls, respectively. For R lo4, 
within a relatively large scatter, a slight tendency can be noticed for rolls with 
low wave-number (large rolls labelled L) to become unstabIe to cross-rolls of 
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greater wave-number E than rolls with a high wave-number (small rolls labelled 
S). This is in agreement with theoretical results shown in figure 2. 

The change in the convection pattern induced by the cross-roll and the zigzag 
instabilities is exhibited in figures 10 to 14 (plates 2-6). The zigzag instability 
was observed for Rayleigh numbers up to about 8000. It occurred sometimes 

S M  
L 

M L M  
L 

S 

s 

I S I  

102 ’ I I I I I I 

2 3 4 

a: 

FIGURE 7. The observed wave-number LZ of the cross-roll instability as a function of the 
Rayleigh number R. The letters L, M ,  S indicate that the instability occurred on rolls 
with large, medium, or small wavelength. The solid line represents the theoretical result 
from figure 1. 

simultaneously with the cross-roll instability in agreement with the comparable 
growth rates given by the stability theory. Since the wavelength of the zigzag 
instability was always a little smaller than the wavelength of the original rolls, 
the zigzagging continued to become accentuated until an angle of nearly 45’ 
wasreached. At this point the ‘zigs’ of a roll cell and the ‘zags’ of the neighbour- 
ing cell joined to form a new roll cell, as shown in figure 11. Since rolls of opposite 
inclination to the original rolls are produced with equal probability, the 
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final pattern showed a rather patchy structure. The cross-roll instability does not 
have this additional degree of freedom; thus the convection pattern produced 
by this instability showed large regions of uniform rolls perpendicular to the 
original pattern. 

In (11) the observation of the zigzag instability was mentioned only briefly 
since the cross-roll mechanism appeared to be the dominant instability for small 
wave-number as well as for large wave-numbers. This difference between the 
results of (11) and the present experiment indicates the strong influence of the 
lateral boundaries. 

At large Rayleigh numbers the onset of the cross-roll instability resembled the 
onset at low Rayleigh numbers. As the cross-roll disturbances evolved, however, 
they were succeeded by complex local processes when the Rayleigh number 
exceeded a value of about 15,000 and the wave-number of initial rolls was either 
above 3.8 or below 2.1. Owing to their high wave-number, the cross-roll dis- 
turbances could not generate stable rolls or bimodal cells. Although rolls with a 
corresponding wave-number were established as a transient pattern, they were 
soon transformed by more localized processes into a pattern of larger wavelength 
as figures 12 and 13 indicate. To a certain extent the local processes can be iden- 
tified with the pinching mechanism which we shall discuss below. 

While the cross-roll instability of rolls with large or with very small wave- 
numbers is followed by radical changes of the original convection pattern, a 
gradual transition to bimodal convection takes place for rolls of intermediate 
wave-number. The transition in the neighbourhood of the Rayleigh number 
R, = 22,600, in particular, involved such small changes that the stability 
boundary could not be very well defined by the present observational technique. 
This, together with the fact that no hysteresis was observed at  the reversed 
transition from bimodal cells to rolls, suggests that the bimodal solution of the 
stationary Boussinesq equation branches off the two-dimensional solution at  an 
infinitesimal amplitude of the three-dimensional component. 

Figure 14 illustrates the transition to bimodal convection while the Rayleigh 
number is increased slowly beyond 20,000. The shadowgraph pictures of bimodal 
convection are in agreement with the observations by Rossby (1969) and 
Krishnamurti (19704 and with the picture shown in figure 8, which was taken 
from an unpublished experiment by Willis. As the Rayleigh number increases the 
cross-roll component of the bimodal convection becomes more pronounced, as 
evidenced by the increased sharpness of the secondary pattern. No transition, 
however, to a different type of convection was found for Rayleigh numbers up 
t o  70,000. This observation seems to disagree with the findings of Krishnamurti 
(1970b) and the transition at  about R = 5 x 104 in the heat transport data meas- 
ured by Malkus (1954) and Willis & Deardorff (1967). However, as Krishnamurti 
mentions, the transition to non-stationary convection at R = 5 x lo4 seems to 
occur as a rather local phenomenon and may be suppressed by the fairly homo- 
geneous pattern in the present experiment. 

When the cross-roll instability does not lead directly to a new stable stationary 
pattern, the situation resembles the case of convection generated from random 
initial conditions. In  addition to the variation of the wave-number, the relative 
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orientation of the convection cells plays an important role. One of the processes 
by which the convection field rearranges itself locally is the pinching mechanism. 
In  its idealized form the pinching mechanism combines two roll couplets into a 
single couplet by joining the ends of two adjacent rolls. To illustrate this 
mechanism an experiment was performed in which two sets of rolls with parallel 
axes were generated. The wavelength of the two sets had a ratio of 2: 3. Pigure 15 
shows that the pinching effect extends the larger rolls a t  the cost of the smaller 
rolls. The large cell always seems to be favoured over the smaller cells, even if 
the large cell subsequently becomes unstable to the cross-cell instability. The 
pinching mechanism seems to be one of the causes for the change towards smaller 
wave-number, which is usually observed in convection experiments when the Ray- 
leigh number is increased. The tendency towards large-sized rolls is responsible 
for the fact that the transition to bimodal convection occurs [often [at Rayleigh 
numbers much lower than 22,600, as has been shown by Krishnamurti (1970~). 

One of the fascinating phenomena of convection generated from random 
initial conditions in a layer of very large aspect ratio is the fact that the pattern 
continues to change, even though the exterior conditions are kept stationary. 
The characteristic time scale of the changes, of course, is increasing strongly as 
time goes on. One may speculate about the large-scale pattern which will be 
achieved asymptotically at moderate Rayleigh numbers in the absence of any 
influence from lateral boundaries. In  the present study questions concerning this 
problem have been answered only in part. In addition to the wave-number, the 
curvature of rolls appears to be a relevant parameter in stability problems. It is 
to be expected that the asymptotic state will consist of regions of slightly curved 
rolls. Since changes will continue to occur a t  the edges between different regions, 
it remains an interesting question whether a strictly stationary pattern can be 
achieved starting from arbitrary initial condition. 

The authors are indebted to Paul A. Cox for the skilful construction of the 
apparatus. Figure 8 was kindly supplied by G. E. Willis. The research was 
supported by N.S.F. Grant GA-10167. 
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Journal of Fluid Mechanics, Vol. 47, part 2 Plate I 

FIGURE 8. Photograph of bimodal convection a t  R = 25 x los in an experiment by 
G. E. Willis. The convection layer contains silicone oil with Pr = 450 and is covered by 
a glass plate. 

FIGURE 9. Experimental apparatus with lifted top mirror. 

BUSSE AND WHITEHEAD (Facing p .  330) 
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