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The dynamical behavior of vertical and horizontal movements 
of floating heat sources is studied experimentally and theor- 
etically. The study of the properties of horizontally moving 
sources continues the recent work of Howard, Malkus and 
Whitehead; and the slightly reformulated theory indicates be- 
havior in qualitative agreement with the earlier work. The 
dynamics of slightly deformable heat sources is explored and a 
class of source aggregates whose strength decreases with depth 

I. Introduction 

This pape r  embraces  convective behavior  o f  a viscous 
fluid. The te rm "hea t  convec t ion"  was coined in the 
mid-n ine teen th  century  to  denote  the t r anspor t  o f  a 
f luid 's  sensible heat  by  its own mot ion .  M a n y  sug- 
gested models  o f  cont inenta l  p la te  movemen t  have 
con ta ined  the effect o f  convent ion,  the heat  ar is ing 
f rom a fixed and  somet imes unspecified source. This 
pape r  differs f rom most  others,  however ,  in tha t  not  
only  is the effect o f  convect ion  inc luded bu t  the effect 
o f  movemen t  or  convec t ion  o f  explici t ly s ta ted heat  
sources is also included.  As such, it  cont inues  the 
recent  work  o f  HOWARD, MALKUS and WHITEHEAD 
(1970), hencefor th  to be called H M W .  The first pa r t  
(section 2) involves some recent  dynamica l  observa-  
t ions and  calcula t ions  o f  hea t  sources free to move 
la teral ly;  it is in tended to  show the effect and  move-  
ments  o f  poss ible  concen t ra t ions  o f  relat ively radio-  
active regions o f  g lobal  d imens ions  near  the surface o f  
the Earth.  The second pa r t  (section 3) involves anal-  
ysis o f  the effect o f  a source ly ing in the upper  region 
o f  a viscous fluid which is free to move vert ical ly;  it 
is in tended to show the effect o f  crusta l  downwel l ing  
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is found to dynamically deform to an asymmetric shape which 
continues to propel the source. The consequence of downwelling 
which entraps heat-producing surface material is also reported. 
One of the principal features is a local deep heating which leads 
to an upward restoring force. Systems are discussed in which this 
causes an oscillating behavior with period t ~ (vpCp/(yTQw)) ~ 
which, if the Earth fulfills certain conditions, is of the order of a 
few hundred million years. 

in the event  that  it en t raps  hea t -p roduc ing  materials .  
In  recent years,  there has been an increasing a m o u n t  

o f  interest  in cont inenta l  drift ,  especial ly in associa t ion  
with the new global  tectonics.  Mechanisms  to generate  
the associa ted  mant le  mot ions  have centered a r o u n d  
two pr incipal  energy sources. The first, re laxa t ion  o f  
the Ear th  to a lower  poten t ia l  energy state, e i ther  relies 
upon  relat ively great  amoun t s  o f  s to red  poten t ia l  
energy being mechanical ly  released at  a slow rate,  or  
it  is coupled to some change  in state within the Ear th ,  
ei ther  as a chemical  process,  a phase  change,  or  g radua l  
mean  cool ing  o f  the Earth.  The former  process  con- 
flicts with the rap id  fennoscand ia  uplif t  and  the close 
a p p r o a c h  to i sos tacy o f  the Ear th ' s  field. The la t ter  has 
often been suggested, but  it requires  significant chemi- 
cal or  physical  t rans i t ions  o f  great  amoun t s  o f  ma-  
terials in o rder  to supply  the large amoun t s  o f  energy 
associa ted  with crustal  mot ions  over  geological  history.  

I f  one assumes tha t  the lowest  s t rength regions o f  
the mant le  have a viscous character ,  the f r ic t ional  
energy to p rope l  cont inenta l  dr i f t  can be es t imated  by 
the fo rmula /aU2A/L.  F o r  example ,  if/a, the viscosity o f  
the mant le ,  is 3 x 1021 poise  and L, the depth  o f  the 
layer  with this min imum,  is 500 km, the energy to 
make  mot ions  U o f  4 cm/y  is app rox ima te ly  4.8 × 101 s 
erg/s or  1.2×  101~ cal/s for  an area  A as large as the 
surface o f  the Ear th .  The rmodynamics  dictates that  
such movements  must  arise f rom a mechanism which 
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is only partially efficient, and indeed the heat escaping 
from the Earth totalling approximately 3 x 102o erg/s 
or 7.75 x 1012 cal/s is sufficiently great to inefficiently 
drive the above motion. It is worthy to note that if a 
mechanism which liberates 100 cal/g supplies this heat, 
and all material in the mantle of 9 × 1026 cm 3 partic- 
ipates, with an average density of 4 g/cm a, it could per- 
sist for only 1.0x 109y before being exhausted. A 
major and energetic change of  phase is necessary to 
supply 100 cal/g while chemical reactions of this 
magnitude are not usually associated with the relatively 
inert mantle material. However, a possible candidate 
might be the gradual cooling of  an initially hot Earth. 

Another source of energy is found in the radioactive 
release of slowly decaying uranium and thorium, which 
is found in granitic rocks and somewhat less in basalt. 
Although the amount of these trace elements varies 
from one particular type of rock to another, they 
generally demonstrate sufficient radioactivity (17 x 
l0 -6 and 5 x 10 -6 erg • cm -3 • s -1, respectively; AL- 
LEN 1964) to account for the present heat flux if extrap- 
olated downward some 80 km. Although such an ex- 
trapolation has no observational basis, smaller depths 
of heat-producing material, of  the order of 10 km, have 
been directly observed to contribute a significant 
amount of local heat flux, as discussed for instance by 
LACHENBRUCH (1968). Seismic studies indicate that 
typical granitic densities exist to the order of 30 km 
under continents, and basaltic densities exist to the 
order of 5 km under the ocean floor. The amount of  
radioactive materials below these depths is open to 
conjecture. On a global scale, the values of heat flux 
arising from the continents and the ocean floor have 
been remarkably similar. In conjunction with thermal 
conduction estimates similar to those used in the local 
studies, this fact has been used to argue against con- 
tinental material supplying a significant amount of 
global heat. However, one could expect active convec- 
tive motions to override conduction, make heat flux 
virtually uniform everywhere on the globe, and render 
conductive considerations of only local importance. 
This aspect of convection will be shown more fully in 
section 2. 

Because of the uniformity of global heat flux some 
have felt compelled to extrapolate the heat flux meas- 
urements extending downward a few kilometers to 
deeper depths and have consequently suggested mantle 

movements in the form of cellular convection. Many 
studies have been made of such motions; they exhibit 
a variety of forms, and generally become complex and 
even somewhat turbulent (KRISHNAMURTI, 1970a, b; 
WHITEHEAD, 1971) at the Rayleigh numbers greater 
than 105 , which are the values most widely suggested 
to exist in the Earth. This complexity does not appear 
to exist in the relatively simple plate tectonics which 
have recently emerged, as described, for instance, by 
LE PICHON (1968). 

With lateral inhomogeneities present, the fluid no 
longer possesses the freedom to generate unconstrained 
convective cells, although if the inhomogeneity is very 
weak it may only alter the position or direction of the 
cells (SEGEL, 1969; NEWELL and WHITEHEAD, 1969). A 
mechanism involving a large insulating plate drifting 
upon small cellular convective motions has been sug- 
gested by ELDER (1968). It is not unlike the mechanism 
generated by lateral inhomogeneities discussed in 
H M W  and in section 2. Documentation for stronger 
inhomogeneities is sparse. The calculations in HMW 
of a fluid close to the critical Rayleigh number and 
with a floating point heat source showed cellular fea- 
tures overlapping typical behavior of moving heat 
sources. The results showed that the lateral inhomo- 
geneities always affected flow more strongly than the 
destabilizing gradient. Section 2 will assume that such 
inhomogeneities exist and are free to float in a uniform 
liquid. 

In addition to the lateral changes in the top mantle 
due to the continents and their roots, a second striking 
feature of the outer layers of the Earth is a strong 
stratification. It is almost inevitable that radioactive 
heat producing materials are concentrated near the 
top of the mantle and are even more abundant in the 
crust. However, seismic studies have suggested that 
there is strong crustal downwelling under the oceanic 
trench regions. If this conveys significant heat produ- 
cing materials to typical deep focus earthquake depths 
of  a few hundred kilometers, deep local heating over 
geologic time would generate significant upthrusting 
forces. This aspect of heat source convection is dis- 
cussed in section 3. 

2. Self-propelling heat sources free to move laterally 

This section will report upon experimental and 
theoretical studies of geometrically simple floating heat 
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sources which are free to move laterally. The emphasis 
will be upon the physics of  the various processes which 
occur. I f  the Earth shares this physics, its added com- 
plexities will not greatly alter its behavior. It  is a study 
of the type reported in HMW, which is a study of 
floating two-dimensional heat sources held at depth d 
in a fluid of  depth h. In H M W  the theoretical equa- 
tions, although unwieldy to handle in general, were 
solvable in the limit of  the heating parameter  R = 
go~Qh3/(K2v) small. The result indicated that the veloc- 
ity was proportional  to R. However, more intriguing 
was the fact that if the results were extrapolated to 
large R one found that the velocity became propor- 
tional to R + and that one lone heat source was capable 
of  generating its own lateral motion. Experiments did 
not find this self-moving feature, although a variety of  
sources was observed to have a general R ~ behavior 
for large R. When the fluid was heated from below as 
well, velocities were found to be proportional to R ~ 
and R in various limits. 

Here the theoretical problem will be solved in a 
slightly different way, and qualitative agreement will 
be found between experiment and theory. An R ~ law 
will result, and it will be shown to be a general feature 
of such convecting systems in the absence of  heating 
f rom below. Complex floats with certain unique prop- 
erties will also be reported upon. 

We begin by defining the idealized system whose be- 
havior can be expressed by the Boussinesq approxima- 
tion to the equations of motion in which the variations 
of  material properties with temperature and pressure 
have been ignored: 

V ' u = O ,  

Du 
Dt 

D T  
Dt  

-- p - l  pq-vV2u_go~Tf~, 

(2.1) 

(2.2) 

= K V E T + Q 6 ( x - a ( x ,  t), z + d ) ,  (2.3) 

where u(x, z, t) is the velocity field, T the tempera- 
ture, v the kinematic viscosity, g the gravitational 
field in the direction of the unit vector/~, ~ the volume- 
tric coefficient of  expansion, and tc the thermometric 
conductivity; (5 is the Dirac delta function and repre- 
sents a line source of  heat at x = a, z = - d. Since a 
is a function of time, the source can move laterally. 
A "self-convection" condition to move the heat source 

due to fluid motions by its own heating will be speci- 
fied later. Basically, eqs. (2.1)-(2.3) are a good ap- 
proximation to conservation of mass, momentum and 
energy, although the variation of  fluid properties with 
temperature and pressure have been ignored except for 
volumetric expansion. However, in defense of eqs. 
(2.1)-(2.3) one must note that they contain the driving 
force for fluid motion (9~TfO, the friction opposing 
that force (vV2u), and the effect of  that motion 
(DT/Dt )  in virtually the simplest general form possible. 

We nondimensionalize as in HMW, scaling the varia- 
bles upon the linear velocity for fixed a: 

tp = gc(~:-tv-tQh3~9', (5 = h-~6 ' ,  

r = hr ' ,  t = h2~c-lt ' ,  

T = Qtc-XT ', 

where primed coordinates are dimensionless, h is the 
depth of the fluid and ~ is the two-dimensional velocity 
potential, 

u' = R e ,  w' = - R ~ , ' x ,  

where R = g~tc-2v-JQh 3. Dropping the primes, the 
physics of the problem is expressed as 

f f - l { V 2 ~ c t d i - R ( u , V ) V 2 ~ l ) + Y  x = V 4 ~ / ,  (2.4) 

Tt + R(u"  VT)  = V 2 T+ 6 ( x -  a(t))6(z + d) ,  (2.5) 

(7 ~ K - 1 V ,  

in terms of the Prandtl number a and the thermal 
Reynolds (P6clet) number R. Since a in the interior of  
the Earth is generally of  the order of  1024 or more, the 
terms with a -  1 can be ignored for our purposes. H M W  
ignored the R ( u ' V T )  term to first order and found 
that by setting Oa/Ot = R ~ z ( a , - d  ), solutions for the 
motion of the sources could be obtained such that 
u ,~ R for two floats parting in the limit of  R small, 
which is a valid limit and u ~ R ~ for large R. Since for 
uniform motion OT/Ot is proportional  to R ~ in that 
limit, it was not clear that the R(u .  VT) term could be 
ignored. We will retain this term in the equation from 
the beginning by expanding the velocity in a Taylor 
series about  the points where VT is expected to be 
greatest, that is, about  any heat sources in the prob- 
lems. We thus write in the convective term 

u = u s + ( ( x -  ~ )  • v ) u s +½ ( ( x -  O "  V)2u~+ • - .  , 



202 J .A .  WHITEHEAD 

where ~ is the coordinate of  source s, and then retain at 
most the first term which gives an asymmetry about  
the point s. This procedure is certainly valid in the local 
region where x -  ~s is small, and can be expected to be 
valid also for larger x - ~ s  if no large velocity sign 
reversals are encountered which will turn the field 
around and sweep it the other way. Calling us = 
Usi+ Wsk, the thermal equation reads 

OT OT 
T t + R U s ~  x +RW~ a-~ = V2y+f (as ' -d ) '  (2.6) 

where we have condensed 6(x-as,  z+d) to 6(as,-d). 
Assuming that the heat source is moving uniformly 

to the right at velocity OaJOt, we transform coordinates 
to a moving frame x = x-(OaJOt)t. Defining V 
= R-  l(aa/Ot), eq. (2.6) is rewritten 

~T (?T 
( - R V +  RUs) ~-cx + W--oz = vZr+6(as)~(-d) (2.7) 

as is now a constant, and a constant flow is superim- 
posed upon the flow field. The equation is now line- 
arized except for the unknown quantities V and Us; if 
it is desired to understand the behavior of  a number of  
heat sources, a separate thermal equation can be 
written for each source. The thermal field can be 
separated into components which are symmetric and 
antisymmetric in an x-direction about  the heat source, 
and only the antisymmetric component  generates a 
velocity Us at its own source. The only antisymmetric 
operator is O/Ox; the operators WO/Oz and V 2 are 
symmetric to a sign change in x. Therefore the opera- 
tor WaT/Oz can be ignored. V 2 will be retained because 
its rejection would involve singularities caused by 
neglecting the highest order derivative. It  also contains 
important  thermal conduction behavior. In the limit 
a ~ 0% the equations reduce to 

dT V 4 ~b = a~ '  (2.8) 

OT 
( -RV+RUs)  a~" = VZT+f(as' - d ) .  (2.9) 

The above set of equations can be reduced to a set of 
algebraic relations for unknown V and Us. This is ac- 
complished by solving for O(x, z, V, Us) and then 
utilizing a "floatat ion" condition on the heat source 
(or sources) to determine U s and II. Analysis proceeds 

in the same manner as in HMW. General Fourier 
transforms of the temperature and velocity fields are 
calculated by defining 

O(k, m) = e'kX dx T(x, z) sin (mnz) dz,  

~b(k, m) - f~oo e'kX dx f °- 1 ~(x,z) sin (mnz) dz,  

T(x' z) - l f ~e- ikX dk,. = l ~ -O( k, m) sin ( -  mnz) , 

~k(x, z) =- n - 1 e- ikx dk -- ~o(k, m) sin ( - mnz). 
oO m =  1 

These are appropriate for nonslip-isothermal boundary 
conditions. Here ~k is the potential of  flow caused by 
the thermal field and does not include the constant 
flow associated with the moving frame. The equations 
for the transforms are found by substitution into eqs. 
(2.8) and (2.9): 

- ikO = (k z + rnZnZ)Eq~, (2.10) 

- i R ( -  V+ U)kO + (k z + m2n2)0 = - e ik"s sin (rand). 

(2.11) 

Horizontal velocity at any point in the fluid due to the 
heat source at (a, d) is found by taking the inverse of  
eqs. (2.10) and (2.11): 

~k : (X,Z)= ,n= ,  ~ f ~ imk exp [ - i k ( x -as ) ]  x 

x sin rand cos mnz [(k 2 + m2n2) a + 

+ikR(V-  Us)(k z + mZTt2) 2] - 1 dk.  

! Recall that U = R~k~, so that 

U(x, z) = rt-4R ~ m -3 sin mndcos  mnzx  
m = l  

f ~o ik exp [ - i n m k ( x - a s ) ] . .  

(2.12) 

This is the velocity in the fixed frame while v--- 
( V -  Us)/(nm) is the velocity in the moving frame. When 
this equation is integrated, the series drops off rapidly 
for higher m and we need only analyze the harmonic 
m = 1, Calling rt(x-a) = ~, 
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U(x, z) --- k S -  3R sinrrd cos 7tz x 

x [ ( 4 + ( 2 +  ~)v)e-½¢ 8 exp [ -½~( x/'v2 + 4 - v ) ] ]  

f o r ¢ <  0, 

U(x, z) --- ¼g-3R sin red cos rtz x 

[ ( 4 - ( 2 -  ~)v)e ½¢ 8 exp i-½~/vz +4+v) ]  ] 
x L - ;2  

(2.13) 

for  ¢ > 0, (2.14) 

which is the algebraic solution o f  the velocity of  the 
fluid at  the points  (x, z) caused by a source moving  
with velocity V. In  the case of  ¢ = 0, the formulae  
reduce to 
U(a, z) = ½n- 3Rv{ 4~-2+ 4 (2 + X/V ~ + 4)} -1 X 

× sin rtd cos nz .  (2.15) 

A f loatat ion or self-convection condit ion will define 
V as a funct ion of  U~(x, z), and will essentially close 
the equat ions so tha t  solutions can be obtained.  The 
behavior  of  var ious floats consist ing o f  heat  source 
aggregates can be found using the appropr ia te  float- 
at ion conditions. Some examples  follow. 

V = (¼n- 2R sin 2xd) V -  I ,  

or, f o r d = k ,  

V = ¼re- 1R{. (2.19) 

For  small R, if  we assume Us <~ V, then v = V/Tt and 

Us = ~-zTt-4RVsin 2red, for  small V, (2.20) 

Us = ¼n - I R I / - 2  sin 2rid, for  large V, (2.21) 

Since R is small, this obeys the assumpt ion  Us <~ V. 
The limits join at  the value V = n, at  which point  

U = ¼n-3 R sin 2~d,  

which is small. The behavior  for  the limiting cases of  
large and small R is sketched on fig. l a. 

This p rob lem was readily duplicated in the labora-  
tory  by towing a tightly stretched stainless steel wire 
horizontal ly through viscous oil 4 cm deep. The wire 
was sufficiently fine (0.001 inch) to contr ibute  only 
negligible stress to the fluid. The oil used was 500 cen- 
t istoke (v = 5 cm2/s) silicon oil with a volume coeffi- 
cient o f  expansion c( of  0.00108 °C-  ~ and a thermomet -  
ric conductivi ty K of  0.001 cm2/s. The stainless steel 
wire had a resistance of  17 ~ / c m  and a range of  R f rom 

2.1.  Various geometries 

2 .1 .1 .  Point source being dragged with velocity V 
through a fluid. This simplest case has V = constant  
and we find v = ( V -  Us)/n. Eq. (2.15) reads 

- - -  ! 

Us = U ( a , - d )  = ¼rc-3Rv{ V / v 2 + 4 ( 2 + x / v Z + 4 ) }  -1 x 

x sin 2red (2.16) 

For  small v, the solution is 

U s = ~ 2 ~ - 4 R ( V  - Us) sin 2red, 
i.e. 

U, = V(1 - 32n4R-  1 s in-  12red), 

and for  large R, 

Us = V [ 1 - O ( R - 1 ) ] .  (2.17) 

This implies that  v is small when R is large. When  the 
terms (v2+4)  * become impor tan t ,  a solution exists for  
v>> Us, 

Us = ¼rt-2RV -1 , (2.18) 

and drops  off as V increases. 
By equat ing eq. (2.17) to eq. (2.18) we find that  the 

two solutions intersect when 

2~ 
2;, 

U s 

2~ 

2 ~  
2:r 

Us 

m m  
Vs--~ 

i.o 2.0 
i 

I J I , I I [ '  

10 
m m  Us 

1.0 
m m  

Us • /ff _ , P ° ~  

f 

J I I l 
eg  2 ~  3,/~ 4Vg 
2T 2w 2T 2~, 

V 
Fig. 1. Sketch of the predictions of eqs. (2.17)-(2.19) in the 
upper picture (a) compared with experimental datum points (b) 

for the fluid velocity at a point source for R = 900000. 
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(aJ 

(b} 

(c) 
g 

(d} 
Fig. 2. Streamlines of  flow in the frame of  a single point  heater 
at large R moving through a fluid with velocity V. (a) V = 0; 

(b) V = 0 . 0 6 6 R ~ ;  (c) V = 0 . 1 7 R  ~ (d) V = 0 . 3 6 R  ~. 

103 to 10 6 w a s  experimentally observed. The velocity 
of the oil at the surface above the heater was measured 
by timing the transit time of 1 mm polyethylene floats 
over a 5 m m  distance. A typical plot of Us versus V is 
shown in fig. 1. Within an experimental accuracy of 
5 % it was seen that Us never got as large as V, while 
for large R there was a region where Us = V before 
dropping off at a value of Us = 0.2 R ~. This qualita- 
tive behavior is compatible with the theoretical pre- 
dictions. Streamlines of  the flow were determined by 
observing the trajectories of  neutral density floats. 
The results are shown in fig. 2. The flow is split into 
two closed branches which decrease with increasing V. 
The forward branch vanished at V = 0.2R *, which is 
close to the theoretical estimate eq. (2.19). 

A case of  Us > V was not admitted by eq. (2.16) 
and also was never seen in this experiment. This im- 
plies that such a freely floating isolated heat source 
would not selfconvect. However, a source with a small 
asymmetry in its shape would be expected to climb the 
U-V curve in fig. 1 until Us drops off, which occurs at 
U s e R  ~:. 

2 .1.2.  Two overlying connected point heat sources. I f  
two heat sources are connected so that one lies at a 
depth dl and another lies at depth d2, of  strengths R~ 
and R2 respectively, each will make a thermal tail for 
the other. I f  we solve for the velocity at any point 
from two such heaters we find 

U(x, z) = ½~-3R,/),{ x/7~ +4 (2+x/v2+4)} - '  x 

x Sill nd I cos nz (2.22) 

+ ½n-3Rz/)2{ x / ~ + 4  (2+x/v~+4)} - '  x 

x sin red 2 COS ~z ,  

where 

with 

/)1 - ( v - U O l ~ ,  /)~ - ( v - U g l y ,  

U1 -- U(a, dl), U2 = U(a, d2). 

I f  the two heaters have equal drag in the fluid, the 
speed of  the float will be the mean of U~ and U2, so 
the floatation condition is V = ½(UI+ U2). We can 
now define/)1 and v2 as 

v~ = ( V -  U~)l~ = ½ (U2-  U~)ln, 

v2 = ( v -  Ug l~  = ½ (u~-  U g l y ,  

and therefore 

t)2 ~ -- Vl • 

Using eq. (2.22) and the above definitions, we find 

vl  = ½ ( U 1 -  V2)ln 
= (2.23) 

where 

R* = (R1 sin rid1 --RE sin rid2) (cos rcdl - c o s  rid2). 

The solution is shown in H M W  as 

/)~ = {(¼x-4R* + 1)*+ 1} {(¼n-4R* + 1) ~ -  3}. 
(2.24) 

This has a solution for nonzero /)1 when R* > 32n 4 
and then we expect self-propulsion such that for 
large R* 

1)1 = } '/'C-2 4 ~ "  (2.25) 

The velocity of  the heat source V is now readily cal- 
culated by finding U1 from eq. (2.22) and using V = 
/)1 + U2. This yields, for R* large, 

V = I n - 1  x/R ~ + O(R* -1 ). 

In contrast to the single point heat source, this pair 
of  sources will exhibit self-convection if R* is positive 
and sufficiently large. Examination of R* shows that 
R* is positive only if the lower heater R 2 is greater than 
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R1 sin ndl/sin rid2. The physical meaning of this re- 
quirement is shown on fig. 3. The thermal field of  the 
lower float is swept in one direction, while the field of  
the upper float goes in the other. I f  the lower thermal 
field is sufficiently strong, its thermal tail keeps the 
source moving. 

A similar analysis can simulate a body whose rigidity 
is somewhat above the center of  heating. I f  the upper 
heater is powerless and possesses much greater drag 
than the lower float, then the floatation condition is 
V = UI, R1 = 0 and v2 = ( U 1 - U z ) / m  Using eq. 
(2.22), 

U 1 =- - - 1 E - 3 R 2 / ) 2 {  ~ v 2 + 4  ( 2 + x / ~ + 4 ) } - *  x 

x sin rtd2 cos rid1, 
i 

U2 = -½n - ' R 2 v 2 {  x/v2+4 ( 2 + x / ~ + 4 ) } - *  x 
x sin 7zd 2 c o s  g d  2 , 

we find 

v2 = U, (cos rid, - c o s  nd2)/(ncos nda). 

The solution of large U~ is therefore 

U, = cos rid, {R sin n d  2 ( c o s  rid1 - c o s  nd2)} ~ 
x {2n (cos ndl  - c o s  nd2)}- 1 

= ½n - l R  ~ cos nd 1 sin~nd2 (cos ndl  - c o s  nd2) -~  . 
(2.26) 

A float with this property was experimentally observed. 
The upper body was a 2 x 1 x 50 cm 3 styrofoam float 
which was placed in a 60 x 60 cm 2 tank filled 4 cln deep 
with 500 centistokes oil. The lower heater was a 0.001 
inch diameter stainless steel heating wire stretched 
below so that the wire was at 3.0 cm depth. Two soft 
copper wires were hung loosely to the float from above 
to feed in electrical power, while massive copper coun- 
terweights at each end of the wire kept the styrofoam 
almost totally immersed and guarded against any self- 
propulsion from tipping of the float. 

The float exhibited an immediate and decided tend- 
ency to propel itself as soon as the heater current was 
turned on. A small push in either direction was suffi- 
cient to generate a preferred direction of motion. Time- 
lapse movies taken of  the float show it moving to the 
right at a constant rate, being stopped by a bumper  
near the end of the tank, then starting back the other 
way. This process can be repeated for many traverses 
of  the tank. 

Movies and pictures taken from the side through the 

I r l r _ l ' ( I V l / ~ L  HEATER 
TA IL 

(a) 

(b) 

Fig. 3. Pho tograph  of  a self-propelling source mov ing  (a) to 
the right,  (b) to the left. The  background  stripes are bent  by the 

intense thermal  field which s t reams aft o f  the float. 

oil, as shown in fig. 3, demonstrate the dynamic 
asymmetry of the thermal field as it trails behind the 
float. One can calculate the predicted rate of  flow for 
such a device with 

dl -- 1.0/4.0, d2 = 3.0/4.0, 
U 1 -- 2 - 9 / 4 n - l R  ÷  = 6.7x 10-2R *. (2.27) 

Since the apparatus travelled at a constant speed, it 
was possible to measure the velocity to an accuracy of 
better than 5 % at different values of  R. The measure- 
ments showed a striking R ~ dependence. A second 
apparatus was made at one-fourth the size of  the first 
to get additional readings at low R and the data over- 
lapped well. As shown in fig. 4, these data, taken before 
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Fig. 4. Data for the speed of the self-propelling float versus 
R as compared to eq. (2.27), UI = 7.97 × 10-2 R ÷. Data with 
open circles were taken in a ¼-sized apparatus compared to data 

with closed circles. 

the theoretical reformulation of the basic equations 
was completed, agree closely with eq. (2.27) in not 
only the R ~ power law but also closely with the coeffi- 
cient. 

In addition, the experiment exhibited a drop-off in 
velocity at small values of  R ("small" being less than 
103). At such values, the thermal tail was seen to be 
very small; the most dramatic decrease in velocity was 
seen when the tail was so small that the thermal field 
essentially brushed the float above. 

2.1.3.  Self-deformable bodies. A network of sources 
attached to each other in such a way that the network 
can slowly deform under forces in the system can be 
envisioned as a model of more continuous heat-produc- 
ing bodies. For  example, if a heat source gets slightly 
softer with depth, the deformation would take the same 
direction as the thermal tail shown in fig. 6, and as dis- 
cussed in the model above. It would thus produce an 
asymmetric body. 

Another configuration which dynamically deforms 
into an asymmetric body is the field of  three point-heat 
sources at depth d and separated from each other by 
the distance a. Let the two outer bodies be rigidly 
connected to each other and let the inner body be 
unattached to the other two, as in fig. 5a, b. In the 
limit of v small for each source, eq. (2.13) reads 

U = ¼g-4R • ¼(½4)(1 +½~)e -++ • (2.28) 

The velocity of  fluid from the three sources is shown in 
fig. 5a, b for the sources being far apart  (far field) and 
close together (near field), respectively. Note that in the 
far field limit, the net velocity on either side of the 
central float is inward, and if the central float is slightly 
perturbed it will be restored to the center by the flow 
of the outside floats, thus restoring the three-float 
aggregate into a symmetric body. In the near field 
limit, however, the net fluid velocity on either side of  
the central float is outward, and if the central float is 
slightly deflected it will get swept into a branch of 
flow which moves it away from the center, thus de- 
forming the three-float aggregate into an asymmetric 
body. Unfortunately, the two outer bodies must be 
closer than twice the depth of the fluid for the near field 
limit to apply. Experiments at heating rates of R = 
3 × 105, and theoretical development of  eq. (2.14) in 
the limit of large v, indicate that the heaters may even 
have to be closer in the large R limit. Since the Earth- 
like crustal plates are generally more extensive than the 
presumed depths of  low viscosity, this mechanism 
would not be expected to be globally relevant. 

More extensive arrays of heaters also have interesting 
self-deforming properties. Take, for instance, an array 
of sources as shown in fig. 5c. Due to the pres:nce of 
the heaters, a large circulation upwells under the center 
of  the float and sweeps heat laterally. I f  this velocity va- 
ries sufficiently slowly, it can be assumed that this oc- 
curs at the constant velocity v. To see the behavior for 
large v, we find that eq. (2.13) reads, for a point source, 

U = I n - 3 R  sin nd cos n z  

x ½v-2{(2+]¢1)exp [ -½1413-8  exp r-½141/Ivl]} 
(2.29) 

for 4 and v in the same direction, i.e. ~" v > 0, and 
eq. 2.14 reads 

U = ~rc-3R sin nd cos nz 
x i v - z { ( - 2 +  141) exp [-½141] - 8 exp [ - I¢1  [vl] 

(2.30) 
for ~ • v < 0. Note that the circulation dies out when 
4 = O(1) in the upstream direction, but only when 

= O(v) in the downstream direction. This occurs as 
a consequence of the thermal field being moved down- 
stream; therefore the flow at any given point is pro- 
duced only by those heaters closer to the center. 

Assuming each heater is of the same magnitude, and 
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(b} 

(c) 
Fig. 5. Sketches  o f  source  aggregates  in (a) the nea r  field limit 
(b) the far field limit; (c) a deformable simulation of a continuous 

slab. 

numbering the heaters consecutively, the velocity is 
calculated from eq. (2.29) as 

U 2 -~ ¼1 ~ - 3 R v - 2 ( e - ~ / ( z v ) ) ,  
U 3 = ¼n - 3Ro - 2 ( e -  ~/(2v) ..~ e - 2~/(2v)), 

U¢ = ¼n - a R v -  2 ( e -  ~/(2u) + e - 2~/(2v) + e - 3~/(2v)), 

n 
Un = 14 I ~ - 3 R v - 2  Z e-m¢/(2°)" 

m = l  

With extension of the heater proportional  to U , -  U , - I ,  
it is clear that maximum extension occurs in the center 
of  the float, and decreases outward at the rate e -x/(Zo) 
For large v, this means that U, varies slowly and our 
initial assumption of constant v is valid. In the Earth, 
if U = 10 -7 cm/s, the plate is 10000kin half-width 
and • = 1 0 - 3 c m 2 / s ,  the depth would have to be less 
than 30 km for a stress to vary by a factor of  2.7. For 
h = l07 cm, we find v = ] 0  3 which is large. Therefore 
the assumption of slowly varying lateral stress would 
appear to be useful for Earth studies. 

This lateral motion also smears out the thermal 
field. To see this, one can directly integrate eq. (2.1 l) 
for the thermal field, and end up with terms propor-  
tional to ve -~/(2v) in the downstream direction and 
v-1 e-~V in the upstream direction for each individual 

heater. Therefore, one would again expect that extend- 
ed sources of  the size of  continents would generate 
motions which would spread out heat flux and make it 
almost uniform over the entire globe unless h were less 
than 30 km. 

2.2. Discussion of the formulation and applications 
The principal aim was to rederive eqs. (2.8) and 

(2.9) in algebraic form, from which the behavior of  
more complicated heaters is readily calculated, and 
then to discuss specific models. In the same vein, SMITH 
(private communication) has been investigating the 
case of  multiple and purposely asymmetric heat sour- 
ces. It is quite conceivable to even extend the analysis 
to continuous systems using eqs. (2.8) and (2.9) as 
solutions to a Green's function; the equations, being 
linear, admit superposition of solutions. 

Adopting the operator U s ~T/Sx resembles the Oseen 
approximation used in the Navier-Stokes equations. 
To be valid, the leading term must retain the most 
significant physics. I f  so, an investigation of the neg- 
lected terms illuminates additional physics but does 
not lead to new results, only small corrections. The 
term W OT/Oz expresses the vertical convection of heat 
by the fluid. In the experiment discussed in section 
2 .1 .1 ,  in which a single heat source was towed through 
a viscous fluid, a thermal plume was observed to surge 
up to the surface where heat was then conducted to the 
outside. The upward motion of  such a plume is evident 
in fig. 3; however, it erased the thermal-tail effect only 
slightly. In fact, the operator W 8T/Sz lacks the neces- 
sary asymmetry in the horizontal direction to counter- 
act the thermal-tail effect and can only dilute it. 

For a freely floating point source of heat, Us is equal 
to V, and the term (Us- V) OT/dx is identically zero. 
The next-order term in the x-direction is ( x -  s) (8 Us/Sx ) 
(OT/Ox). This operator is symmetric fore and aft of  S 
and so does not generate a dynamic asymmetry but 
instead convects fluid either toward or away from the 
float in a symmetric manner. In regions of  upwelling, 
Ou/Ox is positive near the top surface to conserve mass 
and so the fluid motion conveys heat out away from 
the heat source, as the near field flow did in fig. 5c. 
This feature was observed in many of the experiments 
described in section 2.1.1,  and can be responsible for 
spreading the heat flux over a very wide region. 

At the risk of  over-emphasis, we repeat that this 
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model contains the complete dynamical story of an 
idealized floating heat source. As such, the sources of 
thermal energy (the heat source), and kinetic energy 
(the operator ge~T/t?x), and the sink of thermal 
energy (isothermal surfaces) and kinetic energy (viscos- 
ity) are explicitly stated. It can be expected that fea- 
tures of this model will persist even if accompanied by 
physical processes which do not greatly change the 
energy balance. For instance, if significant variations 
in strength of the carrier fluid are expected, as present 
Earth models suggest, the rate of deformation of 
different levels can be parameterized as self-deforma- 
tion as done in section 2.1.3.  This could be done for 
vertical as well as horizontal aggregates of sources, 
viscously or plastically held together. 

A central feature of the solutions presented in this 
section is the velocity being proportional to R ~ for 
large R. This is in fact a general property of these for- 
mulations as can be seen by writing eqs. (2.4) and (2.5) 
in scaling form, assuming that derivatives are order 
one: 

~/,+ T = 0, (2.31) 

R O T  = T + I .  (2.32) 

We solve for ~k and get 

R @ 2 + O - 1  = 0, (2.33) 

with the solution 

O = ( -1_+ ~/I+4R)/(2R).  (2.34) 

Since U = RO by definition, we solve eq. (2.34) for 
large R to get 

U = O(R ~) 

Such R ~ behavior also emerges from boundary layer 
studies of cellular convection with rigid boundaries; 
see, for instance, ROBINSON 0967). 

When applying this R ½ law to the Earth, one en- 
counters large uncertainties in the values of viscosity 
and depth of fluid, and hence the question of whether 
this theory predicts drift velocities of 4 cm/y has little 
meaning. However, there is some merit in using the 
more reliably known quantities to determine bounds 
upon the unknown quantities. For this purpose, we 
use the values U = 10 -7 cm/s, 9 = 980 cm/s 2, ~ = 
= 2 x 10- 5 °C- 1, x = 0.01 cm2/s and Q = 2 x 103 

TABLE 1 
Viscosity as a function of depth of the low viscosity layer deduced 

by using eq. (2.19) as discussed at the end of section 2 

v h 
(kin) 

1019 1 
1021 100 

3 × 10 2 t  300 
1022 1000 

°C" cmE/s. Q was determined by assuming that seven 
Earth plates, each with a line heat source 10000 km 
long, supply the entire heat flux emerging from the 
Earth. Putting these values into eq. (2.19), we then see 
that v/h = l0 '4. Since v and h are relatively poorly 
known for the Earth, we present various values of these 
quantities in table I. The third pair down, v = 3 x 1021 
cm2/s and h = 300 km, was found by MCCONNELL 
0968) to give the best fit to the spectral observations 
of the uplift of Scandinavia. 

3. Vertical convective entrapment 

The asymmetries discussed so far have arisen from 
horizontal motions manifested by the term UOT/Sx 
in the differential equations. However, geometries exist 
where such terms are intimately coupled with vertical 
motions which lead to horizontal asymmetries. A 
common example is the B6nard convective problem in 
which heat is transported laterally to hot thermals 

+ TEMPERATURE 

'~ ~COOL FLUID 
I 
I 
L I S O T H E R M A L  
= F L U I D  
I 
I 

(o) 

(c) 

(b} 

tdS) 
Fig. 6. Consequences of vertical entrapment of heat sources. 
(a) The temperature distribution produced by a layer of uniform 
heat-generating material above an isothermal fluid, (b) initial 
downwelling of cool surface material; (c) deep upthrusting caused 
by long-time scale internal heating; (d) upwelling of hot, super- 
heated material. Plus or minus signs indicate temperature excess 

or deficiency with respect to isothermal material. 
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which then take the heat to the surface. When a heat 
source is trapped in downwelling thermals, an interest- 
ing behavior can result. 

A model which clearly illustrates this process con- 
sists of  a layer of  heat-producing material overlying 
a deeper layer of  fluid, as shown in fig. 6. Boundary 
conditions are such that the same amount  of  heat is re- 
moved at the top boundaries as is produced by the 
heat-producing material, so that the internal fluid 
below, in a motionless state, is isothermal. Both deep 
and top materials are presumed to have the same prop- 
erties. It  is assumed that the density is dependent upon 
temperature in the form p = Po (1 - a T )  so that the top 
layer is unstable and tends to sink. 

Examination of a local region where the flow 
downwells in fig. 6 shows that the material heats up as 
it descends. The change in the downward force per unit 
length of slab changes at the rate 

aF OT 
Ot pog~W fir, (3.1) 

where Po, g, ~, are defined previously, w is the width of  
the plunging slab, and 

T -  f o  T(z') dz' 
j -  g 

is the average temperature of  the descending slab in 
deviation from an isothermal state. The slab extends 
down into the fluid to a depth z. Its time derivative is 
not dependent upon the details of  the heating process, 
for we note that OT(z')/at = Q/(pCp), a constant, for 
z '  < z, and ~T(z')/& = 0 for z '  > z. Therefore 

OT Oz fo OT(z') = T(z)-~ + ~t dz' 
- g  

~z (2 
= -Tos t  q - p C p  Z '  

where pCp is the specific heat per unit volume and To 
denotes the average temperature of  the material which 
turns downward into the slab. The rate of  change of 
the buoyancy force is therefore 

~F ( ~z Qz ) (3.3) 8t - P°gc~wL TO Ot --  pCp  " 

A viscous force resists motion and is proportional to 
I~DLh-l(Oz/Ot), where D is the distance between the 
plunging segments and h is the depth of  the fluid; it 

has been assumed that D >> h. Equating the rate of  
change of this to OF/Ot and rearranging, we get 

O2Z t~Z 
cOt- ~ - 2  ~ +co2z = 0, (3.4) 

where 

2 -- g~whT° 0 . ) 2  - -  gctwhQ 
vD vDf lCp  

The solution is now proportional  to e pt, where 

p = 1(2_+ x/22 - 4~o2). (3.5) 

I f  o92 > 122, p will be complex, hence the model will 
oscillate with a period 

to = 2fifo92-¼22) -~ , (3.6) 

and grow with time 

tg = 2 2 - x .  (3 .7 )  

In order to have oscillations, the condition 

9awhpCpTo 2 
< 1 (3.8) 4vDQ 

must be satisfied. The same condition is derived in a 
more complete stability problem in the appendix. 
Although this condition can be satisfied under certain 
circumstances in the Earth, laboratory models which 
fit this criterion and still have relatively large ampli- 
tudes have not been found. 

One finds that only very viscous fluids will oscillate 
with a period slow enough to allow significant heating 
of  the plunging material. A fluid with v = 102 cm2/s, 
which is ten times the viscosity of  temperate honey, in 
association with an internal heat source of  0.01 W/cm 3 
will have a period of 10 min. To keep shear energy 
production to a fraction of the driving energy, the total 
downward displacement of  the unstable fluid would 
have to be less than 10 - 3  c m .  This is considerably less 
than the amplitudes necessary for the equations to be 
valid, although a subsequent analysis will show that 
the same process occurs for vanishingly small ampli- 
tudes. Greater heat production yields faster oscilla- 
tions but only slightly larger amplitudes. Note that the 
growth rate 2 is proportional to ~T0, which is essen- 
tially a measure of  the density imbalance of the surface 
fluid over the interior. Present experimental efforts are 
aiming at producing a surface fluid which is slightly 
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heavier than the interior fluid and which is electrically 
conductive. 

Even in this primitive form, eq. (3.4) represents the 
dynamics of a system in energetic equilibrium as well 
as in force equilibrium. The potential energy repre- 
sented by heat produced by the material is removed by 
conduction at the top surface, the heat deposited in the 
interior being convected upward in the up-cycle. 

The force within the plunging slab is proportional 
to the local temperature excess as shown in fig. 6. The 
material is under tension as the slab begins its plunge, 
becomes compressive near the bot tom of the slab at a 
later time, is increasingly compressive over most of the 
slab later, which generates the restorative upwelling, 
and is entirely compressive as the slab surges upward 
and restores the heat-producing material to the surface. 

The preceding analysis has assumed a geometric 
form for the fluid motion, clearly a dangerous proce- 
dure. The system can fortunately be recast into a form 
which sacrifices geometric and physical simplicity for 
mathematical convenience so that a more thorough 
analysis of the equations of  motion can be done. As 
shown in the appendix, this admits an analysis using 
expansion procedures akin to those used extensively in 
stability theory. 

Basaltic rock, lining the ocean floor, is seen to ac- 
company the sea floor as it spreads away from ocean 
ridges (MAXWELL et al., 1970), and is also seen to exist 
near the downwelling trenches, which show evidence 
of dynamic activity to depths of  700 km (OUVER and 
ISAC~ZS, 1967). I f  heat-producing material accompanies 
ridge upwelling and lithospheric plunging to significant 
depths, local heating could be expected to produce 
forces whose rate of  change would be expressible as a 
second-order differential equation in time, similar to 
eq. (3.4), whose solution, in general, can involve os- 
cillations. To see the magnitude of the various terms in 
a possible Earth-like model, we use pCp = 0.6 
cal .  cm -3 . s -1, v = 1021 cm2/s, hiD = 0.1, g = 103 
cm/s 2, ~ = 10 -5 °C -1, k = 6 x  10 -3 cal .  cm -2 • s - i ,  
and estimate To from the conductivity relation 

To = 2-~Ow2/k, (3.9) 

which is the average temperature of  a thin layer with 
source Q, of  thickness ½w and insulated on one side. 
For  Q of the order of  basaltic rocks ( =  1.2x 10 -13 
cal .  cm -3 • s - l ) ,  the parameter  group gehpCoQ / 

(242 • 4k2vD) is 0.86 x 10 -36. To satisfy the oscillation 
condition eq. (3.8) we then must have 

w s < 11.6 x l035 cm s, 
or 

w < 1.63 x 107 cm = 163 km. 

If  the Earth were originally covered with 60 km of 
material with the above heat productivity, eqs. (3.6) 
and (3.7) indicate that the motion would grow with an 
exponential growth time of 750 x 106 y and oscillate 
with a period of 260 x 106 y. Note that eq. (3.9) es- 
sentially makes the growth time a sensitive function of 
w while the oscillation time remains relatively insen- 
sitive. 

I f  the basalt underlying the ocean sediments is signif- 
icantly less than 60 km deep, the heat produced by 
such a source is much smaller than that which is ob- 
served to escape from the Earth. In that case, the prin- 
cipal energy source of continental drift might be heat 
from the continental material. The oscillatory mech- 
anism discussed in this section would be closely re- 
lated to the situation which would occur if a continent 
overrides a downwelling trench region, for then very 
large amounts of  heat-producing material could be 
suddenly entrapped. This would lead to rapid deep 
heating, upwelling forces within the trench and a sud- 
den alteration in the relative motion of the adjacent 
lithospheric plates. Assuming that the newly entrap- 
ped radioactive material is lighter than the ocean crust, 
the time it takes for this flow inversion to take place 
would be less than half the oscillatory period of eq. 
(2.6). I f  a heating material were seven times as radio- 
active as the basaltic value of 1 .2x  10 -13 cal .  c m  - 3 "  

s -1, the rebound time would be less than 75 × 106y. 
Much more rapid reversal times could be expected 

if relatively light, continental material overrode a 
trench and became entrapped. When this happens, the 
coefficient 2 in eq. (3.4) will suddenly decrease and 
even reverse sign. One could then get a balance be- 
tween the first two terms in eq. (3.4), and if the newly 
entrapped material is 10 % lighter than the deep mantle, 
the upwelling time will be estimated by the time 

vDp 
t - - -  5 × 1 0 5  y ,  

9o3hAp 
using v = l021 cmE/s, h/D = 0.1, D = 60 kin, and 
g -- 103 cm/s 2 It  is possible that such a process and its 
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rebound is connected with mountain building episodes. 

Appendix. The stability problem 
The system in section 3 can be recast into a theoreti- 

cally more tractible problem. We will look at the stability 
of a layer of fluid heated from below with a constant heat 
source gradient 7 in the fluid such that the motionless 
system obeys the conductive law 

aZro 
/£ OZ 2- "~ yZ = 0,  

with the solution 

To = f l z + ~ x - l y ( l s z - z 3 ) ,  (A.1)  

where z is positive in the direction of gravity and is zero 
at the midplane. The Boussinesq equations of conserva- 
tion of  mass, momentum, energy and heat source are 
now 

V . u  = 0, (A.2)  

au 
at 

+ u"  Vu = p - l V p + v V 2 u - g c t T ~ ,  (A.3)  

~T 
- -  + u ' V T + ( f l -½ x - l ~ , 2 2 ) w  = xV2T+Q, (A.4)  
at 

OQ 
a t  + u .  V Q +  yw = 0, (A.5)  

where#. 2 = ~ 4 - z  2. Defining W -  gc~flha/vW ', T =  flhT', 
Q = Kflh -1 Q', x = hx' and t = x- th2 t  ' (dropping 
the primes) and taking V ×V ×(A.3), the linearized 
dimensionless equations become 

a 
( o . - 1 0 5 -  V 2) V 2 W+ V 12T=0, (A.6)  

and defining R, = 9o~h'*fl/(Kv), Rq = go~h6y/(x2v), 

aT  
at 

+ ( R a - R q ~ 2 ) W = V 2 T + Q ,  (A.7)  

aQ 
+ RqW= O. (A.8) 

at 

Combining eqs. (A. 6), (A. 7) and (A. 8) yields 

05a L\ at[(-~ __ V2~] (\0"-1 ate--V2/ V2 "~ (RqZ2- R a ) V 2 ] ]  .J WAr 

+RqV2W = 0, (A.9)  

where W is the vertical velocity. The behavior in the 
limit of vanishing ? (the term in the square brackets) is 
the familiar Rayleigh-Bdnard stability problem which 
can be easily solved for the frictionless isothermal 
boundary conditions 

W = V 2 W =  V ' W = 0  at z = +½ ,  

with zero growth solutions 

W = sin xz exp (ik • x) 

at Ra = Rac = -~  7~ 4, 
and 

k "  k = ½n 2 

where k is a two-vector in the (x, y) plane. Inspection 
of eq. (A.9) shows that a nonoscillatory zero growth 
solution is impossible for finite Rq unless W = 0. We 
therefore search for zero growth oscillations. 

For  small Rq, let 

W = exp(pt) sin nz exp {i(k + h) • x }, 

and the operator V 2 becomes 

½n 2 + 2(k • h) 2 + h 2 . 

It is to be expected that h and p will be some function 
of (Rq)" where n > 0, so that it vanishes as Rq --. 0. 
Therefore, for small Rq, only the lowest powers of  p, 
h and Rq are retained. Substituting into eq. (A. 9) then 
yields 

9~2(0.- I + 1)p2 + 24n2(k. h)2p + 7~2Rq = 0, 
(A. 10) 

whose solution is 

p = [ -  24/z2(k • h) 2 
__+ x/242x4(k ./,)4 _ 9x2(o.- 1 + 1) " ~2Rq] 
x [{n2(a -1 + 1)] -1 (A. 11) 

Note that p = pr+ipi ,  with Pr < 0; and Pr = 0 when 
(k" h) 2 = 0, which defines the maximum growth rate, 
in which case the original neutral motions oscillate 
with frequency 

J 24 e q  

Pi = 9n 2 1 + a -  1" 
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The dimensional period is 

2 - t = 3g 2 h2 l + a  vx 2 
~--- ~ g~h 6' 

which, for a ~ oo 
/ 

t = 3 X 2 . /  
N g~ h  2' 

which is the same as in the previous example, eq. (3.6), 
for co 2 >> 2, except for the constant in front. In pur- 
suing this analysis to finite amplitude one finds that 
severe problems are encountered if R~-Rac > Rq. 
Physically, the ceils overturn one cycle and destroy 
the gradient of the heat producing material and there 
is no way for this gradient to be restored. However, if 
Rq > Ra-Rat ,  the oscillations merely grow to a finite 
state and persist as oscillating finite amplitude motion. 
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