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Oscillatory and collective instabilities in large 
Prandtl number convection 
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An experimental study of transitions from steady bimodal convection to time- 
dependent forms of convection is described. Using controlled initial conditions 
for the onset of bimodal convection two mechanisms of instability can be sepa- 
rated from the effects of random noise. The oscillatory instability of bimodaI 
cells introduces standing waves closely resembling those occurring in low Prandtl 
number convection. The collective instability introduces spoke-pattern con- 
vection which is characteristic for turbulent large Prandtl number convection. 
Both instabilities originate primarily from the momentum advection terms in 
the equations of motion, as is evident from the strong Prandtl number depen- 
dence of the critical Rayleigh number R, for the onset of oscillations. The results 
are discussed in relation to previous experiments and recent theoretical work. 

1. Introduction 
Among hydrodynamic systems exhibiting the phenomenon of turbulence, 

convection in a layer heated from below possesses unique properties. Because 
of the simple gravitational mechanism of instability the physical conditions 
depend only on the vertical co-ordinate. Thus turbulent convection is distin- 
guished among other cases of turbulence by the property that it is statistically 
stationary in time as well as isotropic and homogeneous with respect to two 
spatial dimensions. The absence of a mean flow has the additional consequence 
that the centre of mass of any horizontal sublayer of fluid remains stationary 
with respect to the laboratory frame of reference. This is important from the 
experimental point of view since turbulent processes can be observed in their 
local frame of reference. On the other hand, convection may appear to be more 
complicated than purely hydrodynamic turbulence owing to the presence of 
thermal effects. A detailed inspection of the basic Boussinesq equations of con- 
vection shows, however, that the additional temperature variable is mathematic- 
ally analogous to the velocity variables and does not complicate the solution of 
the equations. Thus it is not surprising that convection in a layer heated from 
below has become one of the principal cases in experimental and theoretical 
research on turbulent processes. 

The simple properties of convection and the convenience of experimental 

t Present address: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts. 
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observation are responsible for the fact that more regular features are seen in 
convection than in other cases of flows generated by instabilities. At low Rayleigh 
numbers convection exhibits a variety of steady flows, and even a t  higher Ray- 
leigh numbers when time-dependent processes occur distinct frequencies are 
observed. The transition to increasingly more turbulent motion occurs by dis- 
crete steps. These steps represent instabilities by which a more complex form of 
motion replaces a less complex flow as the Rayleigh number increases. Starting 
with the basic static state as the solution of highest symmetry of the problem 
the first transition, representing the onset of convection, introduces two-dimen- 
sional motions in the form of periodic rolls. Three-dimensional forms of convec- 
tion replace the two-dimensional rolls in the second transition. At high Prandtl 
number this transition leads to bimodal convection, which has been investigated 
in detail theoretically and experimentally (Busse 1967 ; Krishnamurti 1970a; 
Busse & Whitehead 1971). At moderate and low Prandtl numbers, say less than 
about 5, oscillatory convection occurs with waves propagating along the axes of 
convection rolls. Recent experiments (Willis & Deardorff 1970) and theoretical 
work (Busse 1972; Clever & Busse 1974) have led to a good understanding of this 
process. 

Bimodal convection shares with two-dimensional convection rolls the property 
that i t  is steady. Hence a special importance is attached to the third transition, 
which, at high Prandtl number, introduces time dependence for the first time. 
Although a number of observations of this transition have been reported (Rossby 
1966; Willis & Deardorff 1967; Krishnamurti 1970b, 1973), theoriginoftheinsta- 
bility has remained a subject of controversy. While Krishnamurti finds that 
the critical Rayleigh number R, for the onset of time-dependent convection 
becomes independent of the Prandtl number P as P exceeds a value of order 
50, Willis & Deardorff (1970) suggest that the instability is similar to the oscilla- 
tory instability at low Prandtl number. In  this case a strong dependence of R, 
on the Prandtl number must be expected since the oscillations originate from 
the momentum advection terms in the equations of motion (Busse 1972). In  
this paper we shall present experimental evidence for the latter interpretation. 
The discrepancy with the findings of Krishnamurti will be resolved by the fact 
that the onset of oscillations is very sensitive to inhomogeneities in the convection 
pattern. Since those inhomogeneities are always present in an experiment 
started from random initial conditions, oscillations indeed appear first a t  
isolated spots as observed by Krishnamurti. If, however, initial conditions are 
chosen such that a regular convection pattern is established, the onset of oscilla- 
tions occurs homogeneously at  a Rayleigh number R, increasing approximately 
linearly with Prandtl number. 

Another instability to be studied in this paper is the collective instability 
leading to spoke-pattern convection. It differs from the other known instabilities 
in that it introduces a subharmonic wavenumber. Several bimodal cells are 
combined into one cell characterized by a spoke structure. Spoke patterns of 
ascending or descending fluid sheets represent a characteristic feature of turbu- 
lent convection at high Prandtl number. The generation of this pattern in a regu- 
lar manner demonstrates its quality as a distinctive form of convection. 
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Oscillatory and collective instabilities in convection 69 

The results of this paper together with those of our earlier paper Busse & 
Whitehead 1971, to which we shall refer as I) emphasize the importance of 
experiments with controlled initial conditions for the understanding of turbulent 
processes. As we shall outline in more detail a t  the end of the paper, two major 
effects present in the general case of turbulent convection can be separated: the 
randomness caused by initial conditions or small inhomogeneities and the discrete 
transitions introducing flows with qualitatively new features. Because of the 
existence of a lazge manifold of possible solutions, randomness in initial and other 
conditions of the problem becomes amplified and does not die away as in the case 
when the static solution is unique. By eliminating random influences the nature 
of the transitions can be clearly exhibited. This is the goal of the experiments 
described in this paper. 

The paper starts with a description of the experimental procedure in $2.  
The observations of oscillatory instability are discussed in $ 3. The theoretical 
solutions for the closely related oscillations of rolls prove to be helpful in explain- 
ing various observed features. No related theory is available in the case of the 
collective instability which is described in $4. The paper closes with some re- 
marks which attempt to demonstrate the relevance of the results to more general 
ideas on turbulence. 

2. Experimental technique 
The experimental apparatus and the method of observation have been de- 

scribed in I and only a brief description will be given here as shown in figure 1.  
A horizontal layer of silicone oil is bounded above and below by plate-glass 
water jackets connected to thermostatic baths. The jackets are carefully levelled 
and kept parallel. Convection is observed in a region with a horizontal extent 
80 x 80 cm. This region is bounded laterally by Plexiglas inserts which are sand- 
wiched between the upper and lower jackets. 

The convection pattern is visualized by a shadowgraph method. A slightly 
diverging beam of light from a point source traverses the convection layer before 
meeting the screen. Owing to the temperature differences between upward and 
downward motions the convection pattern acts like a lens. Bright lines on the 
screen are caused by the focusing effect of descending sheets of cold fluid. Dark 
areas correspond to hot fluid elements. Silicone oils of Dow Corning ‘200’ type 
were used in all experiments. Properties taken directly or interpolated from 
Dow Corning data are given in table 1 for the four different sets of experiments. 
We shall refer to the four different cases by their Prandtl number. 

The initial conditions for the onset of convection were controlled by using the 
inducing procedure developed by Chen & Whitehead (1968) and used in I. A grid 
consisting of regularly spaced tapes stretching across a frame is placed on top 
of theupper glass jacket and light is shone downwards through the grid into the 
convection layer while it is in its stable static state. The absorption of radiation 
gives rise to a small temperature increase ( E 0.05 O K )  along the strips of illu- 
minated silicone oil. After a period of several thermal time scales d 2 / K ,  where d 
refers to the depth of the convection layer and K is the thermal diffusivity, the 
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Heating 

Screen 

I I 

FIGURE 1. Qualitative sketch of experimental apparatus and 
method of observation. 

Thermal 
Prandtl Kinematic Thermal expansion Layer 
number viscosity diffusivity coefficient depth d 

P (centistokes) (cmzs-' x ("C-I x (cm) 

16 1.0 6.1 1.34 0.55 
46 3.1 6.7 1.06 1.0 
63 4.4 7-0 1.06 1-3 

126 10.0 7.9 1-08 2.0 

TABLE 1. Properties of Dow Corning ' 200' silicone oils used as convection fluids 
taken and interpolated from Dow Corning Bull. no. 05-172. 

second stage of the experiment is started by raising the temperature in the lower 
water jacket and reducing it in the upper jacket at a rate of about 0.3 "K/min. 
Shortly thereafter the heating lamp is turned off, the grid is removed and the 
observation of the convection by shadowgraph visualization is started. In  order 
to obtain optimal images on the screen, the depth d of the convection layer was 
selected to give the desired Rayleigh number with 3 cm OK 5 d AT 5 12 cm OK. 

In  I the method described above was used to investigate the instabilities of 
regular convection rolls including the onset of bimodal convection caused by 
the cross-roll instability. Since we are concerned in the present experiment with 
the instability of bimodal convection, it becomes important to have a regular 
pattern of this form of convection. Hence, a number of experiments were carried 
out with cross-rolls of the desired wavelength induced in a similar manner to 
that €or the original rolls. For this purpose a grid with the appropriate spacing 
is placed a t  right angles to the previously generated rolls while the Rayleigh 
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Oscillatory and collective instabilities in convection 71 

number is kept at a value of about 2 x 104. The heating lamp is turned on 
for an interval of about one thermal time constant, after which the experiment 
proceeds in the manner described above. The experiments shown in figures 7-9 
(plates 3-5) were performed in this way. Because of the finite size and the finite 
distance of approximately 1.5 m of the heating lamp the induced wavenumbers 
may vary by a few per cent through the convection layer. 

The observations were recorded by taking photographs at suitable intervals, 
and in the case of oscillatory convection, time-lapse movies were taken a t  speeds 
of 8, 16, 24 and 40 frameslmin. In general the screen was used in a position in 
which it intersected the light beam a t  an oblique angle. In  this way the cameras 
could be placed normal to the screen without interfering with the light beam. 
Hence the length scale in the direction of the long side of the photographs shown 
on the plates is elongated by a factor which can be obtained by comparing the 
ratio of the observed wavelengths of bimodal cells with those given in the figure 
captions. 

For the calculation of Rayleigh numbers from measured temperature dif- 
ferences between the water jackets, i t  was necessary to make corrections for the 
temperature gradients in the glass plates above and below the convection layer. 
Since the heat flux was not measured in this experiment and since theoretical 
values for the heat transport by bimodal convection are not available, the fol- 
lowing dependence of the Nusselt number on the Rayleigh number was assumed: 

Relation (2.1) represents an average of the data of Rossby (1966) and Somer- 
scales & Gazda (1969) for Rayleigh numbers of order lo5 and Prandtl numbers 
between 20 and 200. Because of the indirect method of correction and because 
of uncertainties in the material properties it is estimated that the accuracy 
of the Rayleigh numbers is of the order of 5 %. 

Relation (2.1) also indicates that for Rayleigh numbers of order lo5 the effec- 
tive heat conductivity of the convection layer is five times larger than in the static 
state. This explains the rapid adjustment of the convection to changes in the 
applied temperature. Accordingly, the requirements for quasi-stationarity in 
changes of the applied temperature difference are considerably lowered a t  high 
Rayleigh numbers. 

NU = 0-19R0'282. (2.1) 

3. Transition to oscillatory convection 
Although numerous experimental investigators have paid particular atten- 

tion to the first appearance of time-dependent effects in a convection layer under 
steady conditions, the onset of oscillations and their origin is still a controversial 
topic. The problem appears to be understood best in the case of low Prandtl 
number fluids, where oscillations are associated with the instability of two- 
dimensional convection rolls. The relatively simple nature of the instability has 
permitted a theoretical solution in the case of free (Busse 1972) and rigid bound- 
aries (Clever & Busse 1974). In  agreement with observations of convection in air 
by Willis & Deardorff (1970), the solution shows that the oscillations correspond 
to waves propagating along the axis of the rolls while shifting the rolls forwards 
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and backwards in the perpendicular horizontal direction. At Prandtl numbers 
above the order of 5 the oscillatory instability of rolls cannot be realized because 
it is preceded by the transition to bimodal convection. The latter can be visualized 
roughly as the superposition of two roll patterns with different wavelengths a t  
right angles. Since the homogeneity along the axis of the basic rolls is lost in the 
case of bimodal convection, propagating waves can no longer be expected. 
Standing waves may be expected, however, and are indeed observed. Figure 2 
(plate 1) shows first the transition to bimodal convection and then the onset of 
oscillations in the form of standing waves on the boundary of the short wave- 
length component of the bimodal convection. Since the dissipation rises rapidly 
with the wavenumber of the oscillation, waves on the large wavelength or basic 
component of bimodal convection do not occur. In  order to give some impression 
of the time dependence of the oscillation, opposite phases have been photographed 
in figures 2 (e) and (f) and in some of the following figures. Although the phase of 
the oscillation varies across the convection layer, its frequency is fairly constant 
according to the observations as is also borne out by the consistent change in 
phase shown in figures 2(e) and (f). We note that a larger than normal rate of 
increase in Rayleigh number has been chosen for some of the sequences of photo- 
graphs in order to show the development of different stages of convection in an 
optimal way. The rate of change was still low enough, however, not to alter 
noticeably the convection flow. 

As the Prandtl number is increased, the appearance of the waves changes 
gradually to resemble more a pulsating blob. Although discrete values of P 
are used in the experiment, we wish to emphasize the word ‘gradually’ since 
even at a given Prandtl number P the appearance exhibits a similar change as 
the wavenumber a20f the short wavelength component is increased in small 
steps. Figure 7 (plate 3), for example, still shows a wavy boundary a t  the 
Prandtl number P = 63 while figure 9 (plate 5 )  shows typical blob pulsations a t  
the same Prandtl number for a higher value of a2. Figure 8 (plate 4) shows an 
intermediate case. In  the case P = 126 only pulsations were observed as shown in 
figure 11 (plate 7) .  The change in appearance may be partly caused by a change 
in Rayleigh number since the critical Rayleigh number R, for the onset of regular 
oscillations increases both with Prandtl number and with the wavenumber a2. 
The lowest value of R a t  which oscillations were observed as a relatively homo- 
geneous regular pattern has been plotted in figure 3 as a function of Z? Because of 
the dependence of R, on a2 and because of the limited number of grids available 
in the experiment, the minimum value of R, is not well determined by this pro- 
cedure and considerable scatter is to be expected. The main feature is the strong 
dependence of Rt on the Prandtl number, which contrasts with the observation 
of oscillations in an irregular pattern by Krishnamurti (1970b) for the same range 
of Prandtl numbers. Before we comment on this discrepancy we should like to 
mention that a linear relationship 

R, = 2.5 1 0 3 ~  (3.1) 

seems roughly to fit the data. The theory of the oscillatory instability of rolls 
suggests that the onset should depend mainly on the velocity amplitude measured 
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Oscillatory and collective instabilities in convection 73 

R 105 

I 0 4  

10 1 00 

P 

FIGURE 3. Rayleigh number R, for the transition from regular steady bimodal convection 
t o  regular oscillating convection. ---, first occurrence of oscillations in convection started 
from random initial conditions (from Krishnamurti 1970b). 

in units of vfd. Assuming that the Rayleigh number dependence of the amplitude 
of the secondary component of bimodal cells is the same as that of small ampli- 
tude rolls, we find 

where R,, M 2.3 x lo4 is the Rayleigh number for the onset of bimodal cells. 
It is evident from the data that they do not contradict a relation of the form (3.2) 
although an exponent of 1.7 instead of 2 would give the best fit. 

The dependence of R, on the wavenumber a2 is shown in figure 4. No regular 
oscillations were observed when a2 was increased beyond a certain limit, which 
may depend on P and was not investigated in detail. Figure 9 (plate 5) shows an 
example in which the wavenumber a2 is rather large and a transition to spoke- 
pattern convection takes place without first exhibiting oscillations. 

Some observations of oscillations were also made in the case when convection 
was started from random initial conditions. In  agreement with Krishnamurti’s 
(1970b)  results i t  was found that oscillations occur a t  much lower Rayleigh 
numbers than those given by (3.1) in isolated spots at  which the convection 
pattern is particularly inhomogeneous. In  some cases oscillations were even 
observed at values of R below the transition line plotted by Krishnamurti. 
Since the occurrence of oscillations appears to depend on the degree of inhomo- 
geneity of the convection pattern, it  seems that a sharp value of the Rayleigh 
number a t  which oscillations first occur cannot be expected. The strongly Prandtl 
number dependent onset of oscillations found by Willis & Deardorff (1967) 
emphasizes this point. 

(3.2) Rt- R,,K P2, 
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I I 
4 5 6 

FIUURE 4. The dependence of the Rayleigh number R, for the onset of regular oscillations 
on the wavenumbers a1 and u2 of bimodal convection in the case P = 64. The upper curve 
corresponds to u1 = 2.40, the lower to a, = 2.04. 

An easily measurable property of regular as well as irregular oscillations is the 
period 7. The observed periods made dimensionless by the thermal time constant 
have been plotted in figure 5 .  Periods of regular oscillations of bimodal cells are 
shown as well as periods corresponding to oscillations in irregular patterns. Some 
data obtained for lower Prandtl numbers have not been included. They continue 
to fall along the line indicated by the data a t  the upper left of the graph. Within 
the scatter of the data the periods agree with those observed by Rossby (1966) 
and Krishnamurti. Rossby has pointed out that a power law of the form 

roc B-8 (3.3) 

fits the data well. This power law can be derived for Howard’s (1966) simple 
model of a periodically unstable thermal boundary layer. The Prandtl number 
dependence of the onset of oscillations does not favour Howard’s model since 
the thermal boundary should be fairly independent of Prandtl number as is 
indicated by the heat transport. The observations by Krishnamutri (1970b) 
and the theory by Busse (1972) agree on the fact that the oscillation period cor- 
responds to the circulation time of fluid elements in the convection cell. Since the 
velocity amplitude increases with Rayleigh number, the period must decrease 
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X 

* x  
* %  

* x *  
* X  
A *  
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A 0  

El 
A 
0 

* O  

A 
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1 
t I I I I I I I I I 1 1 1 1 1 1 1 1 1 I  I I I I I I  

I 2 3 4 5 6  

R x 10-5 

FIGURE 5. Period r of oscillations based on the thermal time scale K / d 2  as a function of R'ay- 
leigh and Prandtl number. Regular oscillations are given as function of the bimodal wave- 
numbers (al,az). P = 126: A, (2-1,4-2); 0, (2.54,4.2); 0, (3.1,4*2). P = 63: *,(2*40,4*08); 
x , (2.04, 4.8); +, (2.04, 5.45); A, (2.4, 4-8). Irregular oscillations: 0 ,  P = 63; @, P = 44. 

and a power law of the form (3.3) may well be expected. This interpretation is also 
in agreement with the most obvious feature of the measured oscillation periods, 
namely their independence of the Prandtl number. Experimental measurements 
(Deardorff & Willis 1967) and theoretical solutions (Clever & Busse 1974) in- 
dicate that the velocity amplitude based on the thermal time scale depends little 
on the Prandtl number P for P 2 1.  Hence, it is not surprising that the period of 
oscillation is relatively independent of the Prandtl number. The periods observed 
by Willis & Deardorff (1970) in air appear to contradict this property when com- 
pared with the periods observed in water by Krishnamurti (1970b). This dis- 
agreement can be explained, however, by the fact that oscillations in air occur as 
an instability of convection rolls, while oscillations in water are preceded by the 
transition to bimodal convection. Hence the difference in wavenumber rather 
than a change in the mechanism explains the difference between air and water. 

A considerable effort has been made to determine the dependence of the periods 
of regular oscillations on the wavenumbers a1 and a2 of the bimodal cells. The data 
of figure 5 show that the dependence on 05, is not negligible. The period tends to  
increase considerably with the wavelength of the oscillations, which is given by 
the wavelength A, = %/a, of the basic mode in the bimodal convection. There 
seems to be little dependence on the wavenumber 0 5 ~ .  A comparison with the 
theoretical calculations of Clever & Busse (1974) shows that a similar dependence 
on the wavenumbers is exhibited by the oscillations of convection rolls. This 
tends to emphasize the interpretation given above that oscillating bimodal 
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convection can be regarded as a standing wave on the boundary of the second 
mode with a wavelength given by the first mode for which the theory of oscilla- 
ting convection rolls applies qualitatively. The change in appearance of the 
oscillations as the Prandtl number and the Rayleigh number increase indicates 
a modifying influence of the thermal boundary layer. A process like that en- 
visioned by Howard (1966) may contribute to the oscillatory instability. The 
smooth dependence of the measurable parameter suggests, however, that for the 
Prandtl numbers investigated in the experiment the origin of the oscillations is 
predominantly the same as in the case of low Prandtl number convection. 

A secondary property of the oscillations is the correlation length of the phase 
of oscillation. This length became remarkably large in some experiments although 
the phases never became coincident over the entire domain of regular oscillations. 
Instead the phase of oscillation gave the impression of a large-scale wave propa- 
gating in the direction of the basic rolls as shown in figures 9(b)-(j'). There ap- 
peared to be little relation between the wavelength of the phase correlation and 
and the wavelength of the collective instability to be discussed in the following 
section. 

4. Transition to spoke-pattern convection 
The experimental results presented in the preceding section clearly demon- 

strate that the onset of the oscillating instability is very sensitive to small in- 
homogeneities. This property is even more true for the collective instability which 
effects the transition to spoke-pattern convection. We have chosen the term 
' collective ' since between three and six bimodal cells are collected by this in- 
stability into one large cell of spoke-pattern convection as shown in figures 6-10 
(plates 2-6). The mechanism of this instability is of particular interest since i t  
represents a subharmonic response of the convection system. A new wavenumber 
several times smaller than the basic wavenumber a2 in the same direction appears. 
This contradicts the intuitive notion that increasingly higher wavenumbers 
are introduced in the transition to turbulence. Since no theoretical analysis of 
spoke-pattern convection or of a similar subharmonic response in other situa- 
tions is available, we have to restrict ourselves to a purely phenomenological 
description. 

Although the onset of collective instability is triggered most often by in- 
homogeneities, the observations also indicate that the instability occurs when 
the amplitude of regular oscillations of bimodal cells exceeds a certain amplitude. 
In  fact, as is evident from figure 6, the collective instability appears to set in first 
in places where the amplitude of oscillations is largest. Although the details of the 
collective instability vary with the wavenumber az,  it generally starts with a 
modulation of the amplitude of oscillation. When the amplitude of oscillation 
of a particular cell is sufficiently large it combines with the neighbouring cells on 
the same basic roll. A spoke structure is formed when the knots corresponding 
to the intersections of the bimodal cells with the basic rolls gravitate towards a 
common centre on the boundary of the basic rolls. The boundaries of the short 
wavelength mode form the spokes while continuing to oscillate a t  roughly the 
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same frequency. The spacing of the spoke pattern is surprisingly regular even 
though individual spoke structures vary considerably, and the oscillations of 
spokes tend to have a random phase. The form of the oscillations also shows 
considerable variation and looks sometimes more like a ‘breathing blob ), a t  
other times more like a ‘waving sheet’. The shadowgraph method emphasizes 
the dark spokes which correspond to hot sheets of rising fluid. In  each of the 
centres between four dark spoke structures there is, however, a light spoke 
structure of falling sheets of cold fluid. 

Unlike steady bimodal cells, oscillating bimodal cells cannot be generated 
in a strictly homogeneous pattern. Because of the sensitivity of the collective 
instability to small inhomogeneities no attempt was made to determine a critical 
Rayleigh number for the onset of this instability. It appears, however, that this 
Rayleigh number is close to R,since the amplitude of oscillations tend to increase 
rapidly with Rayleigh number. 

It was not always possible to observe the collective instability as a relatively 
homogeneous phenomenon. In  cases for large values of a2 and P for which the 
Rayleigh number R, for the onset of oscillations is relatively high, disturbances 
propagating in from the boundaries introduced spoke-pattern convection before 
the oscillations became large enough to be unstable with respect to the collective 
instability. Those cases are shown in figures 9 and 10. In  the case of figure 10) 
even the oscillatory instability did not set in in a homogeneous form because the 
bimodal pattern disintegrated into spoke-pattern convection before the critical 
value R,of the Rayleigh number was reached. Hence it could not be demonstrated 
that the oscillatory instability will necessarily occur in the case of high values of 
a2, as a homogeneous phenomenon. The oscillations associated first with in- 
homogeneities of the bimodal pattern and later with the spoke structure were 
observed in this case just as described above. 

Because of disturbances propagating in from the side boundaries of the 
convection layer and because of inhomogeneities in the pattern itself, the regular 
spacing of spoke-pattern convection tends to disappear within a period of several 
thermal time constants. As is shown in the last pictures of figures 8 and 9, a 
random spoke pattern is established in which individual spokes change in time 
with the oscillation period while the larger-scale structure continues to change on 
a much longer time scale. The pattern is indistinguishable a t  this stage from the 
pattern of convection started from random initial conditions, which exhibits 
spoke-like structures a t  Rayleigh numbers considerably below Rt. Our observa- 
tions agree in this respect with those reported by Willis & Deardorff (1970) for 
the case P = 57. 

Spoke structures are ubiquitous in turbulent high Prandtl number convection 
a t  high Rayleigh number. They persist as relatively steady features in a randomly 
oscillating environment. The organization of sheets and plumes of falling and 
rising fluid in a system of spokes appears to make the convective heat transport 
more effective. Whether primarily dynamical effects are responsible for the spoke 
structure, as suggested by the Prandtl number dependence of the transition from 
bimodal convection, or whether thermal effects are equally important cannot be 
decided on the basis of the present evidence. The general conclusion can be drawn, 
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however, that in a system increasingly characterized by small-scale phenomena 
originating from thin thermal boundary layers, large-scale patterns persist as a 
dominant feature. 

5. Concluding remarks 
In the experiments described in this paper and in I we have exhibited four 

different kinds of spatially periodic convection flows, each of which represents a 
stable solution of the convection problem for consecutive ranges of the Rayleigh 
number. Each solution is characterized by a new degree of freedom. Three- 
dimensional convection in the form of bimodal cells replaces two-dimensional 
convection rolls. Time-dependent convection is introduced by oscillating bimodal 
convection. After the flow has become dependent on all four of the basic dimen- 
sions, a new subharmonic wavenumber is introduced by spoke-pattern convec- 
tion. While the occupation of all available degrees of freedom by turbulent motion 
is a well-recognized idea, the discrete transitions by which this is accomplished 
differ drastically from the concept of random processes generally assumed in 
theories of turbulence. Undoubtedly, random processes are as important in 
thermal convection as in other cases of turbulence. However, they tend to 
modify the properties of discrete, qualitatively different solutions rather than 
to dominate the development of turbulence exclusively. We shall try to explain 
this in the following. 

Because of the many degrees of freedom realized in convection flow, the mani- 
fold of solutions is greatly increased even if only those solutions which are stable 
with respect to infinitesimal disturbances are counted as physically significant. 
Convection rolls show a one-dimensional continuum of stable solutions in the 
wavenumber space in addition to the continuum of possible horizontal orienta- 
tions (Busse 1967). Bimodal convection exhibits a two-dimensional continuum 
in wavenumber space (Whitehead & Chan 1974), and the manifold of realizable 
spoke-pattern convection flows may be even larger. Because of the large spectrum 
of available solutions it is not surprising that complex random patterns are 
realized in general from uncontrolled initial conditions, and that a small amount 
of noise in the experimental conditions causes continuous variations of the con- 
vection pattern. Thus the realizability of a continuum of solutions occupying 
all major degrees of freedom tends to amplify small amounts of noise, while in the 
case when the statistically stationary solution is unique, i.e. in the case of the 
static solution for R < 1708, the experimental noise is depressed. 

Since the amplification of random noise in ordinary experiments on turbulence 
tends to obscure the qualitative differences in turbulent flows in different ranges 
of the external parameters, experiments with controlled initial and boundary 
conditions are of particular importance. We believe that the convection experi- 
ment described in this paper can serve as a model in this respect for the general 
problem of turbulence. By separating the properties of the discrete transitions 
from the randomizing effects of noise, the importance of both effects in general 
cases of moderately turbulent convection has been demonstrated. Moreover, 
the results presented here together with the evidence of discrete transition in the 
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turbulent heat transport (Malkus 1954) suggest that both effects are of compar- 
able importance in general cases of turbulence. While convection allows a re- 
latively simple experimental investigation, new observational methods may 
demonstrate in the future the interaction of both elements of turbulent flow 
in other cases of turbulence. 

The point we intended to make in the above discussion can be illustrated by 
an analogy from solid-state physics. From the photographs shown in this paper 
and in I the similarity between the pattern of bimodal convection and a two- 
dimensional crystal lattice is quite striking. This similarity includes various 
kinds of irregularities found in the lattice such as edge dislocations. Figure 
2 ( c )  shows some typical examples. The phenomenological analogy between the 
crystal structure and convection patterns suggests a physical analogy. The 
transitions in convection can be seen to correspond to phase transitions from 
one kind of lattice structure to another. It is well known in solid-state physics 
that both phase transitions and random lattice irregularities profoundly influence 
the properties of solids, such as electrical conductivity. Similarly, the heat trans- 
port in turbulent convection depends on transitions from one type of convection 
to another as well as on random effects. Thus an analogy can be seen between the 
microscopic physics of the solid state and the more complex problem of turbu- 
lence. 

The research reported in this paper was supported by the Atmospheric Science 
Section of the National Science Foundation under Grants GA-19605 and GA- 
31247. 
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FIGURE 11. Prints from a 16 mm movie of oscillating bimodal convection in the case P = 126.  
Pictures were taken at 30 s intcrvnls, corresponding to  one complete cycle. The oscillation 
is best seen by following the pillsation of the light fcatures in the centre of tllc cells a n d  thc 
dumbcll-shaped bonndarics, especially on the riglit side. 
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