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Hydraulic control by a wide weir in a rotating fluid 

By E. SAMBUCO 
Department of Meteorology, Massachusetts Institute of Technology, 

Cambridge, Massachusetts 02 139t 

AND J. A. WHITEHEAD 
Department of Physical Oceanography, Woods Hole Oceanogaphic Institution, 

Woods Hole, Massachusetts 02543 

(Received 8 May 1975 and in revised form 3 November 1976) 

Blow control by a wide, deep weir in a rotating fluid is investigated theoretically 
and experimentally. A strong (vertical) vorticity constraint due to frame rotation 
is combined with conservation of the Bernoulli function along streamlines and 
a standard hydraulic control assumption to show that the volume flux over the 
barrier is 

where H is the depth of the fluid column upstream, b, is the crest height, f is 
the Coriolis parameter, and I is a length-scale measure of the breadth of the weir. 
The component of the velocity parallel to the weir crest is computed from con- 
servation of potential vorticity to be v = -fl; perpendicular to the crest, we 
recover the standard hydraulic relation u = (qh,)*. 

Experimental investigations of upstream height and streamline deflexion as 
functions of rotation are described. It is found that agreement with theory is 
good up to a certain rate of rotation, above which the finite width of the experi- 
mental weir becomes important. 

1. Introduction 
Some of the oldest and most widely used solutions to the equations for inviscid 

nonlinear flow have been derived for the case of fluid motions over large barriers 
such as weirs. The simplest example, that of homogeneous fluid flowing over a 
deep, ‘ broad-crested’ weir in an inertial frame of reference, was developed in 
the 18th century; much more recent work by Long (1954) extended the analysis 
to include a density stratification in the fluid. Another obvious extension of the 
classical hydraulic solutions - that of inertial flows in a rotating fluid - has 
only recently been examined by Whitehead, Leetmaa & Knox (1974) for the 
special case of flow through a long, straight channel. In  this paper we present 
theoretical and experimental evidence that the classical problem of flow over a 
‘broad-crested’ weir can be extended to include the effects of a strong frame 
rotation. It is shown that a steady-state solution can be obtained for inviscid 

t Present address : Eydronautics, Incorporated, Laurel, Maryland 20810. 
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522 E. Sambuco and J .  A .  Whitehead 

x= -a .u=o 

FIGURE 1. A sketch of the geometry. The notation is explained in the text. 

nonlinear flow over a large barrier in a rotating fluid, subject to the usual depth- 
averaging assump tion. 

There are some obvious phenomena in geophysics and engineering where 
such rotating, nonlinear flow regimes may be important. One thinks immediately 
of water flow through oceanic sills, or airflow over long mountain ranges in the 
atmosphere. Perhaps there are applications in civil or hydraulic engineering. 
There may even be analogues in rotating fluids for the peculiar effects introduced 
into these hydraulics problems by stratification, such as upstream blocking, etc. 
But these are left as topics for future study. For the time being, we restrict our- 
selves to the presentation of a simple theoretical and experimental analysis of 
fully nonlinear flow over a barrier in a rotating fluid. 

2. Theoretical development 
We consider the simplified geometry of figure 1. The fluid upstream flows in 

a column of thickness H with speed U. The barrier, which extends infinitely in 
the y direction, has its base at 2 = -a, and the crest (of height b,) is at z = 0. 
z = b(x) describes the form of the obstacle, h(x) is the thickness of the fluid 
column, and z = b(z) + h(x) denotes the free surface. The rotation vector S2 = if 
and the gravity vector - g lie in the z direction. 

We start with khe frictionless Navier-Stokes equations in a steady state: 

v.u = 0, (2.1) 

u.Vu+f&x u = -p-lVp, (2.2) 

where u is the velocity vector, fk is twice the (vertical) frame rotation, p is 
density and p is pressure. 

The well-known inertial-rotational equations, used for instance in Charney’s 
(1955) inertial Gulf Stream theory, can be derived from the above equations by 
assuming that the ratio of total depth of the fluid H is very much smaller than 
a typical horizontal scale of the variation of the boundaries, L. In  the limit 
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Hydraulic control by a wide weir in. a rotatilzgJluid 523 

H / L  4 1 ,  it is well known (see Stern 1975, pp. 31-33) that the potential vorticity 
is conserved, i.e. 

where w is vertical vorticity of the fluid. The Bernoulli function 

G = g[h(x) + b(x)]  + +(u. U) 
is conserved along streamlines, with cross-stream variations in G being deter- 
mined by the vorticity constraint. Likewise, from (2 .3)  we can see that the 
potential vorticity 

is conserved along a streamline. Obviously, P and G are not independent; it  
can be shown that for a mass-transport stream function $, defined by 

Vx$k = hu,  

the relationship dG/d$ = P must hold (see Charney 1955). Thus, in order to 
obtain a consistent solution, we must specialize upstream conditions so that 
dG/d$ = 3’ everywhere. To do this we shall make the weir very deep, so that H 
is large with respect to the height at the crest h,, but we shall assume that L is 
even larger, so that H / L  < 1. The former assumption enables UB to set P = f /H ,  
which we shall assume is close to zero so that G becomes a constant, which we 
shall set equal to gH. 

Since there are no variations across the weir, (2 .3)  becomes 

To integrate (2 .3a)  it is convenient to introduce the length scale 

( 2 . 3 ~ )  

There are two particularly interesting upstream cases. The f i s t  and simplest 
results when there is absolutely no cross-stream tilt so that [dv/dx]_,  = -f 
and hence 1 = x + a .  The second results when there is a geostrophic balance 
with an accompanying but small cross-stream tilt, so that [dv/dx]-, = 0. Using 
H N b,, 1 becomes 

N ‘j” b(x’) ax’. 
b, --a 

The last integral is always less than z + a. 
The cross-stream velocity thus integrates to 

v = -fl(z). (2.5) 

(2.6) 

Substitution of the expression (2.5) into Bernoulli’s equation gives 

u2 +f2E2 + 2g(h + b )  = ZgH, 

or U ( X )  = [2g(H - h(x)  - b(x))  - f 2 Z 2 ( ~ ) ] J ,  (2 .6a)  
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and the volume flux is 

E. Sambuco and J .  A .  Whitehead 

Q = uh = h(x) [2g(H - h(x)  - b(x))  -f2Z2(x)]*. (2.7) 

To close the problem, we need a further relationship to connect the variables 
u and h. If the barrier is to act as a hydraulic control, the results of non-rotating 
hydraulics tell us that there is an explicit relationship among Q,  u and h such 
that if one of these three quantities is known, the other two are uniquely deter- 
mined (the critical condition). Several such relationships have been developed; 
all have been shown to be equivalent to each other in non-rotating hydraulics. 
The most convenient relation for use here is that 

aQ/ah = 0 a t  the crest. (2.8) 

We apply this criterion to (2.7) to obtain 

and 

Frame rotation thus acts as a block to  steady flow: for fixed volume flux Q,  
H must increase as f is increased if a steady state is to be maintained. Note that 
when f = 0 we recover the classical formula for steady discharge per unit width 
over a broad-crested weir. 

It has been pointed out by a referee that if (2.7) is written as 

then the 'control point' occurs at that value of x for which 

and therefore the control point will shift from the place where db/dx = 0 as 
rotation increases. Using the approximation that dl/dx N 1, the control point 
will exist at db/dx = - f 21/2g. The parameter group 8 f 21/g is always smaller 
than ( H -  b,)/Z by virtue of (2.10), and ( H -  b,)/Z is a small number for the 
approximation considered here where H / L  4 1. It may be possible to conduct 
experiments to observe this feature but it has not been done here. 

3. Experimental evidence 
The theoretical predictions deduced in 0 2 were tested experimentally in the 

tank system shown in figure 2 (plate 1). The tank measures 90cm long by 
25.7 cm wide by 50 cm deep. Built onto the bottom is a large paraboloidal 
barrier, 60 cm long with an apex 16 cm above the base. A submersible pump 
downstream recirculates the fluid to an upstream diffusion system of horsehair 
fibre and a sprinkler encased in a packed gravel rockbed. 

In  experimental runs the entire tank system was mounted on a variable-speed 
rotating turntable. Two measurements will be described here: (i) upstream fluid 
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0.001 L I I 1 1 1 1 1 1 1  I I I I I I I I I  

1 .o 10.0 

FIGURE 3. A H ( f )  wa. f(F/Ap)*: plot of equation (3.2). Experimental points: x ,  water 
flow under air [(F/Ap)* = 11; 0, water flow under kerosene [(p/Ap)* = 2.161. The data 
have been corrected to remove centripetal distortions of the interface. The arrow marks 
our estimate of the upper limit of the applicability of  the ‘wide-weir’ assumption to our 
tank system. The dashed line is a plot of the theoretical relation (3.2); the slope of the 
solid line is + 1.8. 

height as a function of the rotation rate, and (ii) streamline deflexions as a func- 
tion of the rotation rate a t  the obstacle crest. In  these experiments, the ‘wide- 
weir’ assumption is valid only for sufficiently low rotations; if the rotation rate 
is high enough, trajectories will be so curved that fluid parcels will reach the 
rotation-lagging side wall before they reach the crest. In that case, the volume 
flux over the barrier is the result of a narrow, fast current pushed up against the 
rotation-lagging side of the tank. This transition to another hydraulic-control 
regime for higher rotation rates is evident in the experimental data. For water 
under air, the transition occurs at around f = 1.2 s-l, and less for water under 
kerosene. 

3.1. Upstream height measurements 
If, in (2.10), Q is fixed and f varies, then in order to maintain the critical steady 
state, we must have 

(3.1) H ( f )  = H (  f = 0 )  + *q-- l f212,  
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526 E.  Sambuco and J .  A .  Whitehead 

where H (  f )  is the upstream thickness of the fluid column (not including centri- 
petal distortions of the free surface) and I = l ( O ) ,  or the length-scale measure of 
the weir breadth. Define 

A m @ )  = Wf) -H(O). 

Then AH(f) = $g-'f2Z2. (3.2) 

Equation (3.2) can be tested directly through micrometer readings of the 
free-surface heights for various values off with the pump discharge held constant. 
In  the experiments, the micrometer's position was carefully noted so that correc- 
tions for the centripetal distortions of the free surface could be made. The data 
presented here have been corrected for the centripetal distortions. 

Figure 3 presents the results of several experimental runs: some that measure 
free-surface elevations of water under air (gAp/p = g = 980 cm s - ~ )  and others 
that measure interface elevations of water under kerosene (gAp/p = g' = 210 cm 
a+). The independent variable f has been replaced by the quantityf(p/Ap)* 
so that all data could be plotted together. In  the experiments, 1 = l(0) = 12.7 cm, 
using the second definition of 1. 

It is easily seen by inspection of figure 3 that a pronounced increase in the 
upstream height is necessary to maintain the critical steady-state flow over the 
weir in the presence of frame rotation. Upstream height values for the water-air 
interface fall on an f line, and for higher values of f (p/Ap)* (water-kerosene 
interface), with fluid-parcel trajectories more curved and the wide-weir assump- 
tion less valid, the data points fit an f l8 line better. However, even in the rapidly 
rotating limit, the height dependence on the rotation rate is much more pro- 
nounced than would be expected from a cross-stream geostrophic balance like 
that formulated by Whitehead et al. (1974). In  their rapidly rotating limit, 
A H  ~ j * .  Thus we can assume that the flow regime in the laboratory model is 
always highly nonlinear. 

3.2. Streamline deJlexions 
Streamline deflexions can be easily calculated: we have 

ds/dx = tan8 = V / U ,  (3.3) 
where y = ~ ( x )  is the equation for streamline paths. At the crest, this becomes 

If 

as --- -f 1 
dx - [#g(H - bo) - f 212]* a 

fZZ2 g 1, 
*g(H - bo) 

which holds in the case of the experiments reported here, 

(3.4) 

or tan8, cc f [tan 4 = ( ~ s / ~ ~ ) , , , , , i .  
Thus the quantity f -l tan 8, should be a constant. 

The angle 8 was measured by photographing the angle of four long wooden 
floats attached to small threads which held them over the crest of the weir. 
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f C3-Y 

FIQURE 5. tan 8, V.Y. f. 8, is the angular streamline deflexion from a line perpendicular to 
the crest. The lower line (slope 0.38) is a best fit to the data; the upper line (slope 0.5) 
gives the slope from equation (3.5). 

Figure 4 (plate 1) shows deflexion of the floats at progressively greater rates of 
rotation, the rates being f = 0, 0.35, 0.84, 1-29 and 2-05 s-l. Since Ap/p  = 1, 
only the first three photographs correspond to the limit in which the wide-weir 
approximation can be expected to be valid. Figure 5 shows measurements of 
the angles as a function off as compared with the prediction (3.5). There is 
reasonable agreement, especially in the lower range off. However, the slope of 
the data-fit line ( -  0.38) is lower than the theoretical value, which is 0.5. We 
attribute this to the effects of finite tank width. 

4. Summary and conclusions 
It has been shown that a solution for steady fluid disoharge over a wide, 

broad-crested weir in a rotating frame does exist. The theoretical predictions 
have been corroborated by laboratory experiments. 

To obtain a solution, it has been necessary to make the assumptions that the 
upstream fluid is very deep and stagnant, and that the pressure distribution is 
everywhere hydrostatic. If the fluid were not deep or the pressure not hydro- 
static, a solution driven solely by an upstream potential head could not be 
derived: the vorticity constraint could not be accommodated. Of course, forced- 
flow solutions with an imposed upstream Froude number and cross-stream geo- 
strophic balance would constitute an interesting extension of this work. 

It is possible that nonlinear rotating flows exist in nature. Previous studies 
of hydraulic applications in geophysics (especially meteorology) neglected 
Coriolis accelerations (Long 1954; Houghton & Kasahara 1968). Such a simpli- 
fication is valid in some cases; however, it  is entirely plausible that the flow 
regime through an ocean sill or over a mountain range adjusts itself so that 
steady-state discharges in the presence of strong vorticity constraints may be 
maintained. Such a nonlinear rotating flow is especially likely in cases where 
density imbalances are the principal driving force; i.e. where there is little 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

BL
W

H
O

I L
ib

ra
ry

, o
n 

21
 N

ov
 2

01
7 

at
 1

7:
04

:5
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
76

00
14

81

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112076001481


528 E.  Sambuco a d  J .  A .  Whitehead 

kinetic energy (low speeds) in the upstream basin. The theory developed here 
indicates that frame rotation would lead to significant differences in flux over 
the weir when the parameter group pj2Z2/2gAp(H - b,) is of order one or larger. 
This condition may be satisfied occasionally for atmospheric flows over long, 
high mountain ranges, the Andes being the best example of such a barrier in the 
atmosphere. This condition is certainly satisfied in the ocean, but it is not clear 
whether any oceanic obstacle is wide enough to satisfy the two-dimensional 
assump tion. 

We close by cautioning that since this flow does not occur in an inertial frame, 
towed-obstacle experiments similar to those conducted by Long (1954) are not 
equivalent to the experiments conducted above, and the theory would have to  
be reformulated. 

The authors are indebted to Dr George Veronis for suggestions about improving 
the manuscript. The work reported in this paper was originally submitted by 
one of us (E. S.) to the Department of Meteorology at the Massachusetts Institute 
of Technology in partial fulfilment of the requirements for the degree of Master 
of Science. Laboratory experiments were done at the Woods Hole Oceano- 
graphic Institution with the assistance of Mr Robert Frazel. This work was 
funded by the National Science Foundation, Oceanography Section, under grant 
DES 72-01562, and is contribution no. 3545 of the Woods Hole Oceanographic 
Institution. 
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Journal of Fluid Mechanics, Vol. 73,  p,art 3 Plate I 

FIGURE 2 .  A photograph of the experimental apparatus. 
The lower fliiid is water: the iipper layer is kerosene. 

FIGURE 4. Visualization of streamline deflexions far f = 0, 0-35, 0.84, 1.29 and 2-05 s-l 
at  a water-air interface. The viewer is looking down from straight above the crest: 
water flows from top to bottom. A hydraulic jump is evident a t  the bottom of the 
photograph. Floats are located approximately a t  the crest of the weir. 
SAMBUCO AND WHITEHEAD (Pacing p .  528) 
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