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ABSTRACT 

Whitehead, J.A., 1976. Convection models: laboratory versus mantle. In: O.L. Anderson 
and B.A. Bolt (editors), Theory and Experiment Relevant to Geodynamic Processes. 
Tectonophysics, 35 (l-3): 215-228. 

A general comparison is made between some laboratory convection experiments and 
behavior which the mantle appears to possess. The structure of convection of a uniform 
viscosity fluid heatened evenly from below is reviewed, and is seen to exhibit pronounced 
three-dimensionality at Rayleigh numbers which are believed to apply to the mantle. 
Some features which resemble tectonic features are described, but the convection is gen- 
erally much more complex than the lithospheric plate motions which the earth appears to 
possess. It is advocated that a new class of problems must be addressed involving surface 
plateinterior convection interaction. A theoretical stability analysis along these lines is 
described where each convection cell pushes a rigid plate at the upper surface. Under 
suitable conditions cells with a large width to depth ratio are predicted to be the most 
expected form. A second class of experiments and theory is described which is aimed at 
the problem of a moveable energy source. Under some circumstances the convection in 
this case goes unstable to a drift which is of the same magnitude as the overturning time 
of the convection. 

INTRODUCTION 

In recent years it has become clear that convection is a prime candidate 
as a mechanism to generate the movement of lithospheric plates. A con- 
siderable amount is known about the movement and structure of the plates, 
while knowledge of movement within the mantle is principally limited to 
the descending plates under trenches. There are a number of numerical 
studies being conducted now involving “convection models”, of a two- 
dimensional vertical slice of fluid. Since most of the descriptive knowledge 
of our mantle motion involves the structure and motion of the surface 
plates, it is difficult to find an overlap between these numerical calculations 
and geophysical observations. In the laboratory it is possible to observe con- 
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vection at high Prandtl and Rayleigh numbers. In the following section some 
features of laboratory convection will be reviewed. Similarities and differen- 
ces of the horizontal structure with the mantle convection will be pointed 
out. In particular, it will be emphasized that the structural features of labora- 
tory convection bear little resemblance to the plate-structure of the mantle 
problem. It is advocated that it appears necessary to study the interaction 
between surface features and interior convection. Two such studies, still in 
their early stages, will be described. In the third section a theoretical 
study of the stability of convection cells under semi-rigid moveable plates 
will be reported. Finally, the effects of moveable energy sources on the sur- 
face of a fluid will be reviewed. 

RAYLEIGH-BliNARD CONVECTION 

This problem has been reviewed in the context of mantle convection by 
many, including McKenzie, Roberts, and Weiss (1974), Richter (1973a, b), 
and Richter and Parsons (1975). It has become clear that Benard convection 
exhibits a series of discrete transitions to a more complex state as tempera- 
ture difference is increased. In moderate and large Prandtl number fluid, 
where Prandtl number is the ratio of dynamic viscosity to thermal diffusivi- 
ty, two-dimensional rolls adopt a three-dimensional pattern (Krishnamurti, 
1970a), which consists of two rolls at right angles (Busse and Whitehead, 
1971) and has hencefo~h been called bimodal flow. A second transition oc- 
curs when the convective motions become tie-dependent (K~shn~urti, 
1970b, 1973). There is good agreement as to the Rayleigh number above which 
motion is time-dependent between various experiments at low Prandtl num- 
bers but Krishnamurti reports the observation of periodic time-dependent 
flow above a Rayleigh number of 52,900 k 5290 in fluids with Prandtl num- 
bers of 57,100,200,860,8600, while Willis and Deardorff (1970) report 
seeing no oscillations until a Rayleigh number of roughly 100,000 is exceed- 
ed in fluids with a Prandtl number of 100. Busse and Whitehead (1974) ob- 
served that the oscillations are strongly a function of the structure of the 
convection planform and that artificially initiated bimodal convection is 
stationary up to approximately 70,000,130,000 and 320,000 in fluids with 
Prandtl numbers of 46,63, and 126 respectively, while convection which has 
been allowed to grow from a random background pattern is clearly nonsta- 
tionary and has a spoke-pattern convection. The only observations of the 
structure of very high Prandtl number convection are by Richter and Parsons 
(1975) in which the convection is observed to have a spoke structure. No ob- 
servations are made of the time-dependent structure. They found that under 
sufficient shear the convection reverted to rolls aligned with the shear. 

In order to clarify the interdependence between structure of the convec- 
tion and the transition to time-dependent flow, an extensive series of ex- 
periments have been recently conducted by Whitehead and Parsons (in pre- 
p~ation) on fluid with a Prandti number of 8,600, in an apparatus capable 
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of attaining Rayleigh numbers up to approximately 106. During the course 
of this study it became clear that the convection can exist in two distinct 
states - one stationary and one non~ation~, 

It was further observed that the time-dependent convection pattern was 
always spoke-shaped (see Busse and Whitehead, 1974), but spoke-shaped con- 
vection was not always timedependent. We will briefly describe the observed 
flow here. 

The apparatus used is described by Richter and Parsons (1975), and 
patterned after an apparatus described in Busse and Whitehead (1971). 
It consisted of a horizontal layer of Dow Corning 200 silicon oil, of vis- 
cosity 10 cm2/sec, thermometric conductivity - 0.00116, coefficient of 
expansion - 0.0096, which was bounded above and below by transparent 
plate glass water manifolds one meter by one meter square. Thermostati- 
cally controlled water flowed through each manifold, and thus provided 
controlled temperature above and below the layer of oil. 

A shadowgraph technique was used to visualize convection in the oil layer. 
It consisted of light from a 5 mm aperture which passed through a series of 
mirrors, upward through the layer of oil, into another mirror, and onto a 
frosted screen. The convection bends light of the beam such that cold re- 

Fig. 1. Photogkaphs of the convection at a Rayleigh number of approximately 500,000. 
Depth of the fluid layer (7 cm) is marked by the white marker. 
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Fig. 2. The estimated percentage of area which contained spoke-shaped convection pat- 
terns (squares) and oscillating convection (circles) at various Rayleigh numbers. 

Fig. 3. Observations of the turnover time (hatched area), scaled with the time scale d/K, 

and oscillation times of the cells. l = observed oscillations. 

gions converge the upward passing light like a convex lens, and hot regions 
diverge the light like a concave lens. The frosted screen was placed so as to 
intercept the beam at the distance which gave the most satisfying shadow- 
graphs, and the shadowgraph was photographed with a 35 mm still and a 16 
mm movie camera. 

Time lapse movies, filmed at 1/300th normal time, were taken of convec- 
tion after the apparatus had been held at the desired temperature for at least 
the previous eight hours. Figure 1 shows a photograph of a typical convec- 
tive pattern at a Rayleigh number of 780,000, which is within the parameter 
range of mantle convection. It was found that some regions of the flow had 
a bimodal structure while other regions had spoke-shaped convection (see 
Busse and Whitehead (1974) for a description of the collective instability 
which leads to spoke-shaped convection). In addition, time-dependent 
oscillations occurred in many spoke-shaped regions. Lastly, the convection 
pattern was observed to be perpetually changing when spoke patterns 
existed in any number. 

Fig. 2 shows the estimated percentage of area which contained spoke- 
shaped convection and estimated percentage of the area which had oscil- 
lating flow. These estimates were obtained by inspection of time-lapse 
movies taken over the space of eight hours, and exhibit scatter due to the 
limited data base. 

Fig. 3 shows observations of the turnover time, and oscillation times deduced 
by observation of the movies with a stop watch. Observations of the turnover 
time varied by a factor of approximately 4 at the same Rayleigh number and 
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this was clearly attributable to the variation of velocities in different cell 
sizes and structures. The time scale is normalized by the factor d2/K where d 
is depth of the fluid and IC is thermal diffusivity. It is clear that the lowest 
frequency of the oscillations is the turnover frequency, in agreement with 
observations by Krishnamurti (1970b), but it is not possible to observe the 
existence of a discrete higher harmonic structure. 

Measurements were made of temperature within the fluid by emplacing 
the temperature probe in the fluid, waiting for five minutes, and then taking 
a reading. It was clear that the spokes were not merely a local boundary 
layer structure, but protruded out of the boundary layer to more than half 
the total depth of the fluid. Experiments using injected dye revealed the 
same structure. Comparison of the turnover times in Fig. 3 with turnover 
times in experiments with lower Prandtl number fluids, and with theoretical- 
ly predicted turnover times revealed good agreement. The values, when ex- 
trapolated to Rayleigh numbers which are believed to exist in the mantle of 
the earth (105-106), can yield times of the order of hundreds of millions of 
years using reasonable values of the mantle viscosity. 

It is difficult to determine whether the oscillations should be expected 
for Prandtl numbers typical of the mantle (10”) from these data. Compari- 
son of these experiments with experiments at lower Prandtl number reveal 
a weak Prandtl number dependence for the transition to oscillations, while 
Krishnamurti reports observing no such dependence. There seem to be three 
possible causes of the disagreement. One is that the disagreement could be 
caused by the fact that Krishnamurti’s metal boundaries above and below 
the fluid provide a more uniform temperature boundary condition than our 
glass. If this is the reason, it means that the oscillations are rather sensitive 
to boundary conditions (see Fig. 4). Another possible reason is the fact that 
lateral boundaries tend to be characterized by more oscillations, and Krish- 
namurti’s experiment was in a smaller container. The extra oscillations ap- 
pear to occur because more spoke-shaped flow exists near boundaries, which 
can trigger dislocations in bimodal flow. The third possible reason is that the 
temporal extent of one or both observations are just not adequate, and that 
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Fig. 4. Sketch of the idealized “floating slab” boundary condition. 
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we missed a rare, but possible oscillating event at the Rayleigh numbers of 
50,000 or so that Krishnamurti reports the emergence of oscillating flow. 

Irrespective of the transition to oscillations, the structure of spoke-shaped 
flow is more complicated than the relatively two-d~ensional plate move- 
ments observed on the surface of the earth. In addition the distance between 
spokes was at most a factor of two greater than the depth of the fluid, but 
it never approached the aspect ratio of cells (order Ben or so) which is neces- 
sary to satisfy the geophysical observations. It would therefore appear that 
convection in uniform viscosity fluid is an inadequate first-order model for 
mantle convection. Many candidates for processes which must be included 
in this first approximation exist, such as the variation of viscosity, non- 
Newtonian fluids, phase changes, chemical fractionation. Many of these 
processes have been parameterized in computer calculations, but the calcula- 
tions are of a two-dimensional flow and tell nothing about the horizontal 
planform of the flow. There are cases, however, where greater aspect ratios 
are found to exist. 

In the rest of this paper I will describe two attempts to dynamically 
couple interior convection to some surface process, as a fundamental stabili- 
ty problem that might lead to an underst~ding of the existing planform. 
The motivation is simply that we have and are likely to continue to have 
more observational information about surface features than about convec- 
tion with depth, and that basic linearized processes must be understood 
before we can make pr~ictions about horizontal structural planfo~s. 

THE EFFECT OF A RIGID PLATE BEING ADVECTED BY THE FLUID 

Richter (1973a, b) has theoretically studied and Richter and Parsons 
(1975) have experimentally studied the consequences of shear generated by 
a moving rigid lid upon high Prandtl number convection in a layer of fluid 
heated from below. It was found that the shear would stabilize roll convec- 
tion at right angles to the direction of shear, so that the underlying convection 
would line up along the direction of shear. The author and John Skilbeck 
(see Appendix) have recently worked upon the problem of the stability of 
convection in which infinitesi~nal pe~urbation convection cells are subjected 
to boundaries which impose a basic wavelength plus higher harmonics. Moti- 
vation was to determine the effects of plat,es upon underlying convection, 
plates being manifested by a flow of the form : 

11 = c Cr,l sin(2n - 1) CXX. 
!1 = 1 

In practice, the stability of finite sums were found, and the net stress exerted 
upon the fluid by this flow: 
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was set to zero. The results of the neutral stability c~culat~ons are shown in 
Fig. 5, which also shows the lateral flows which were imposed. 

A condition which is most like a “rigid plate” is shown in Fig. 5A, it con- 
sisted of the series: 

M 

U,(x) = C V;, sin(2n -1)&x. 
n=l 

where U,, = (212 - 1)-l. The neutral stability curves for M = 2, 3 and 4 are 
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Fig. 5. Neutral stability curve for convection perturbations subjected to the boundary 
conditions. A. U, = (2n - 1)-l. 

1800 
I 

1600 - 

1400 - 

R 1200 - 

1000 - 

600 ’ I , I 

B 1.0 10.0 

o( 

Fig. 5R. r7, = (2n - l)-“, 



222 

1800 

1400 - 

3 

1200 - 

1000 

4 
800 - 

600 L 

01 I0 100 

cx 
Fig. SC. U,, = 1. 

The above cases are shown ior M = 2, 3, 4. 
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Fig. 5D. VI = 1, all other U, = 0 except for l3, which equals 7-l, 7-lA, 1, 7”, respectively, 

wider than the neutral stability curves for “free slip” boundaries, but the 
wavenumber of the minimum neutral Rayleigh number remained centered at 
approximately 2. Figures 5B and C show curves when U, = (2n - 1)-l’, and 
1, respectively, for M = 2, 3 and 4, and it is evident that the critical wave- 
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number is lower for greater n in the latter cases. Lastly, Fig. 5D shows a 
function iT, (x) = U, sin x + U, sin 7x, where U4 = 7-l, 7-“‘, 1, and 7’/‘, 
respectively. 

The calculations indicate that to get wide cells (small wavenumber) we 
must depart from a rigid plate ]U, = 1/(2n - l)] condition. 

SURFACE MODULATION OF HEAT FLUX 

A second class of surface-interior feedback processes occurs when convec- 
tion patterns significantly modify surfaces insulation or heat-source materi- 
als. It appears that Elder (1967) was the first to suggest that the continents, 
in acting as an insulating shield, could generate a new class of lateral mo- 
tions. A extreme idealization of such a process was analyzed theoretically 
and studied in the laboratory by Howard et al. (1970), and later by White- 
head (1972). In these studies the insulation-heat source mechanism was re- 
placed by heat sources alone, the heat sources being free to move laterally, 
and in some cases, up and down. 

It was found theoretically and experimentally that such emplaced heat 
sources in a fluid could generate convective motions which in some circum- 
stances could move the sources laterally. One heat source that readily adopt- 
ed a lateral motion is shown in Fig. 6. It consisted of a Styrofoam float 20 
cm long with a 2 cm X 3 cm deep triangular cross-section with a fine heating 
wire stretched approximately 1 cm below the float. The float in the figure 
was traveling to the right at a speed of approximately 1 cm/minute. The later- 
al motion of this float occurs because a thermal tail streams behind the 
moving float, so that the center of gravity of the density anomaly due to 

Fig. 6. Photograph of a floating heat source which goes unstable to lateral drifts. 
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heating lies behind the float. Upwelling which is centered about this center 
of gravity then pushes the float along. 

It was not necessary to have discrete heaters floating in a fluid to predict 
such effects. An analysis in Whitehead (I972 part 2) predicted that a uni- 
form layer of heat-producing material, when entrapped in downwelling 
thermals, will generate an oscillating motion. Unfortunately the problem 
could only be solved approximately because of non-constant coefficients 
in the equations. The mechanism is schematically shown in Fig. 7. Sup- 
pose there is a layer of heat-producing fluid above a deep fluid without 
internal heat generation. Ultimately the interior fluid would approach an 
isothermal interior state, with a cooler conductive region above, as shown in 
the top left. The top boundary layer would then go unstable and plunge 
downward. The cold heat-producing fluid would then begin to warm up, as 
there is no boundary close to it to conduct heat away as shown in the lower 
left. Ultimately it would get warmer than the interior and begin to move up- 
ward again, as shown in the lower right. 

Koenigsberg (1974, 1975) has recently studied the stability and finite-am- 
plitude properties of a number of different continuously distributed heaters. 
It was found (1974) that convection with a strong heat source concentration 
near the bottom would generally tend to uplift the heat sources toward the sur- 
faces while convection with a strong heat source near the top would generally 
tend to move the heat source downward. In the 1975 study, oscillatory solu- 
tions similar to the ones described above were predicted when heat-producing 
materials on the top surface were free to move only laterally, and it was possi- 
ble to do the most complete theoretical analysis to data of convection in fluid 
with a continuously distributed heat source. It was shown that oscillating con- 
vection can exist at a lower Rayleigh number than steady convection, and that 
in one limit a finite-amplitude travelling wave has more heat flux than a 
standing wave. The travelling wave as analyzed by Koenigsberg is sketched 
schematically in Fig. 8. The concentration of heat source is sketched in the 
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Fig. 7. Idealized scheme of a standing oscillation which is predicted to result from vertical 
entrapment of heat sources. 
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Fig. 8. Sketch of the traveling wave solution found by Koenigsberg. The heat-source dis- 
tribution is sketched in the top. The heat source is concentrated by surface convergence 
over the region where fluid is plunging downward. The streamlines are sketched below 
and exhibit a tilt due to a phase lag generated by the finite time it takes for the thermal 
signal from the heat sources to travel downward. The pattern is traveling to the left. 

top, a few streamlines are sketched on the bottom. The bold arrows denote 
direction of travel of the convection pattern. It was found that the heat 
source becomes concentrated in regions where horizontal velocity in the 
direction of propagation is largest, and that the cold downwelling thermal 
plunges under the moving source at an angle reminiscent of the trenches 
plunging under South America and Asia. 

CONCLUDING REMARKS 

Although this paper opened with a description of the three-dimensional 
structure of Rayleigh-Benard convections, the two studies of surface-inte- 
rior feedback mechanisms have not yet been refined to the point of attack- 
ing the question of three-dimensional finite-amplitude convection. The above 
analyses serve as a fundamental building-block towards the above goal, and 
quite possibly only when the area of surface-interior interaction has been 
thoroughly studied will the true processes governing the structure of our pres- 
ent plates, and their interaction with interior convective processes be rec- 
ognized. 
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APPENDIX 

Stability of a motionless fluid underperiodic, rigid plates which are free to moue laterally 
by J.A. Whitehead, Jr., Department ofphysical Oceanography, Woods Hole Oceano- 
graphic Institution, and John Skilbeck, Department of Geodesy and Geophysics, Univer- 
sity of Cam bridge 

The stationary perturbation to a motionless infinite horizontal layer of fluid heated 
from below obeys the well-known dimensionless equations (see Chandrasekhar, 1961, 
Chapter II): 

(D2 - a2)3w = -Ra2w (1) 

where D z a/&?, z is the direction of gravity, a is the horizontal wavenumber, and w is 
vertical velocity of the fluid. We will assume that the perturbation is subjected to the zero 
vertical velocity and zero temperature boundary conditions: 
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and that a horizontal sinusoidal velocity is imposed above and below each cell: 

Ctw=+aUsinaxatz=~1/2 (2b) 
where U is a constant. We imagine for the moment that we impose this forced flow by 
some suitable mechanism. A general solution of eq. 1 is: 

~=Acosq~z+Bcoshqz+Ccoshq*z (3) 

where : 

go = a(7 - 1)1/2 

Re(q) = a[i(l + T + 72)1/Z + l/2(1 + &))1/2 
2 2 

Inn(q) = a[$(1 + 7 + Q-~)I/~ -f(l + $~)]l/~ 

T = (R/a4 )113 

and the constants A, B, C are solutions to the matrix equation generated by substituting 
solution (3) into the boundary conditions (2), i.e.: 

90 
cos - 

2 
cash % 

4* cash -2- A 

(4; -tl2)2 co,: (q2 -a2) cash; (q*2 -a2)2 cash 9 B 

Qo 40 
- - sin -2- %sinh: $sinh$ c a a 

0 

= 0 

u 

The force that our imaginary external mechanism must exert to keep a stationary state is: 

where p is viscosity. 
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After solving for A, B, and C above, and using these values in (3), and taking the second 
derivative, the above equation reduces to : 

F 
T’P- Usinax 

Rd 

where F is the function of R and a which is ordinarily set to zero to solve for the stability 
of a fluid with zero stress (so-called “free”) boundary conditions, and Rd is the function 
of R and a which is ordinarily set to zero to solve for the stability of a fluid with a zero 
lateral velocity (so-called “rigid”) boundary condition (equation 216 in Chandrasekhar). 
The parameter group F/R, can be determined analytically to be: 

and is plotted in Fig. 9. Three regions are evident. Below the bottom bold curve, F/R, is 
negative, which means that if a velocity is imposed, the fluid exerts a resistance to that 
flow. One must put energy into the mechanism to keep a stationary flow pattern. Be- 
tween the bottom and top bold curves, F/R, is positive, due to the function F changing 
sign across the bottom bold curve. This means that if a velocity is imposed the convecting 
fluid pulls that displacement. One must brake the mechanism to keep a stationary flow 
pattern, and take energy out of the flow pattern. 

Let us suppose now that there exists some mechanism which drives a number of wave- 
lengths, all multiples of some basic wavelength. We will specify the mechanism as a finite 
sum of modes: 

M 

U,= C U,sin(2n-1)ax (5) 
,1=1 

Since the equation set (1) and (2) are linear, the stress diagram Fig. 9 remains valid for 
each mode upon the substitution of U, for U, and (2n + 1) 01 for o. We can now solve 

for the positive or negative stress that each mode exerts upon the mechanism between the 
interval of the longest wavelength, and it is: 

n/a 

rdx = 
F[(2n - 1)&R] ______ 

&$ Rd[(2n - l@,R] Un 

It is possible for us to use Fig. 9 to determine this stress. Lastly, in order to make this a 
stability problem, we assume that all the forces upon the mechanism add up to zero. This 
defines a curve in R,a space for each different mechanism, which can be interpreted as a 
neutral stability curve of perturbations subjected to the stated kinematic boundary condi- 
tion. We have solved this problem for a number of different boundary mechanisms, and 
some of the results will be given here. The first mechanism was defined by U, = l/( 2n - 
1). This function approaches a train of step functions as M goes to infinity. Figure 5A 
shows the neutral stability curve for M = 2, 3, and 4. The most prominent feature is that 
the width of neutral solutions gets wider as M is increased. Figures 5B and C show the 
neutral stability curves for U,, = (2n - l)*, and 1, respectively, with M = 2,3, and 4. 
These mechanisms have more energy in the higher harmonics, and the surface velocities 
U~are sketched in the figures. The bandwidth of the solutions is wider, and a low 
wavenumber minimum (implying a long wavelength) develops. Figure 5D shows the 
neutral stability curve for a boundary condition U,(a) = Ur sin x + U4 (a) sin 7x, where 
Ud was made to be 7-l, 71”, 1, and 71/: respectively. Again long wavelengths were seen 
when U, was large. 

If finite-amplitude convection with rigid upper slabs prefer this mode of flow, it is a 
possible explanation for the large size of plates on the earth relative to the depth of the 
mantle. 


