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The propagation of dislocations in Rayleigh-Benard 
rolls and bimodal flow 
By J. A. WHITEHEAD 

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 

(Received 30 October 1975) 

When Rayleigh-Bknard convection is generated under random conditions, the 
finite amplitude rolls and bimodal flow are observed to possess randomly placed 
dislocations where the rolls fit together poorly. The dislocations move into the 
small wavelength convection, and hence provide a size-adjustment mechanism. 
It is observed that the dimensionless speed of the movement is smaller for larger 
Prandtl number fluid. 

1. Experimental observations 
Rayleigh-Bknard convection rolls exist as a stable flow in a closed region of 

Rayleigh number, wavenumber space as predicted by Busse (1967) and observed 
by Busse & Whitehead (1971). It has been observed, however, that laboratory 
convection starting from random initial conditions generally does not fill the full 
bandwidth predicted by the above theory (Koschmieder 1966, 1969, 1974; Chen 
& Whitehead 1968; Rossby 1969; Krishnamurti 1970; Willis, Deardorff & 
Somerville 1972). In  addition, three-dimensional numerical calculations predict 
a wavelength of convection in approximate agreement with laboratory observa- 
tions (Lipps & Somerville 1971). The departure from uniformly aligned rolls in 
most experiments and the presence of side walls in all experiments apparently 
make new size-adjustment mechanisms available and we report here observations 
of the properties of one such mechanism. The one selected is the ‘junction’ or 
‘pinch’ mechanism in which two pairs of cells are locally constricted to one by 
means of a sudden contraction along their axis. This is described in Busse & 
Whitehead (Zoc. cit .) ,  and other such contracting structures are described by 
WilIis et al. (1972). Figure 1 (plate 1) shows a set of induced rolls where the wave- 
length makes a sudden contraction from 3 to 2 by means of pinches. 

Experimentally, the above flow pattern was generated using the controlled 
inducing procedure of Chen & Whitehead (1968). In  this procedure, a horizontal 
layer of test fluid in a transparent glass container is held below the critical 
Rayleigh number while being subjected to bright light from above, which passes 
through a grid so as to produce a pattern of alternately heated and unheated 
regions in the test fluid. After a period of time corresponding to at least one 
thermal time scale d2/K-, where d is the depth of the fluid and K is the thermal 
diffusivity, the temperature difference across the fluid is increased so that the 
critical Rayleigh number is exceeded. Shortly thereafter the lamp is turned off, 
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FIGURE 2. Speed of propagation of pinches as a function of Rayleigh number; Pr = 126. 
The point a t  R = 20 000, which lies furthest off the R1 line, is the case photographed in 
figure 1, where one set of rolls has bimodal flow while the other does not. In  all other cases 
the two sets of rolls were both of the same type. The star represents a point where the 
pinches transformed to a spoke-shaped convection pattern which did not propagate in one 
direction, but instead nucleated additional spoke-shaped flows which spread in all direc- 
tions. The vertical bars indicate the extent of the most extreme velocity observations 
while the solid circles indicate the average velocity from at least 20 samples. 

the grid is removed, and observation of the evolving pattern commences using 
shadowgraph illumination. Generally the pattern observed at that time corre- 
sponds to the controlled pattern. 

It was possible to use this technique to generate a planar, ordered roll-pinch- 
roll pattern. The wavenumbers of the two rolls were 3.69 and 2.46, and corre- 
sponded to the wavelengths in Busse & Whitehead (1971). In  all cases the pinch 
was observed to move slowly into the small rolls, and hence pinch one pair of 
rolls out, thus providing a size-adjustment mechanism. The velocity of the pinch 
was observed to approach a constant value shortly after the final temperature 
difference across the fluid layer was reached, and was determined by measuring 
the position of pinches in successive photographs. Figure 1 shows a typical migra- 
tion. In this case the Rayleigh number was almost exactly 20 000 and the large 
rolls were in the roll-stable region while the small rolls were in the bimodal 
stable region. Figure 2 shows the dimensionless velocity of pinches ud/K as a 
function of Rayleigh number in silicon oil of Prandtl number 126. The vertical 
bars indicate the extent of the most extreme velocity observations while the solid 
circles indicate the average velocity observations from at least 20 samples. 
A jump in the velocity occurs when the longer wavelength rolls have bimodal 
flow while the shorter ones do not, as was the case in the photograph, but else- 
where it exhibits a relatively constant logarithmic slope proportional to Rl.0. 
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100 
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FIGURE 3. Dimensionless speed of propagation of pinches as a function of Prandtl number 
at a Rayleigh number of 18 000 1000. 

A line with slope R1.0 is drawn in for visual comparison. At a value of R of above 
55 000 the pinch developed into a spoke-shaped structure as described by Busse 
& Whitehead (1974) and the lateral movement stopped. 

A series of experiments was conducted to observe the velocity of pinches for 
silicon oils with two other Prandtl numbers, 16 and 8600, at Rayleigh numbers 
of 18 000 k 1000 and with the same wavenumbers as in the previous case. In the 
former case, five runs were conducted using both the same apparatus and the 
same fluid depth as in the experiments at a Prandtl number of 126. The speeds of 
the central 8 pinches were measured, yielding 40 data points, which were con- 
sistent to within 5 15 %. The scatter arose principally because the front of 
advancing pinches appears to become unstable to one pinch pushing out ahead 
of its neighbours, and therefore destroying the uniformity of the front. In  the 
latter case, it was necessary to construct a larger apparatus and use a fluid depth 
of 5 cm because of the large viscosity of the fluid. Three runs were conducted and 
the velocity of four pinches was measured each time, although the pinches were 
not as well structured and tended to break down easily in this parameter range. 
For the three Prandtl numbers, the dimensionless speed of propagation ud/K is 
plotted as a function of Prandtl number in figure 3. It is clear that the speed 
steeply drops off as the Prandtl number is increased. 

2. Discussions about dynamics 
If length, time and temperature scales of d, d2/K and AT respectively are used, 

where d is depth of the fluid, K is its thermal diffusivity and AT is the temperature 
difference between the bottom and top fluid, the Boussinesq equations become 

v.u = 0, 

P F ~ (  au/at + u . V U )  = - Vp + V2u + RTk, 
a q a t  +U . VT = V ~ T .  
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FIGURE 4. Calculated values of the heat flux, kinetic energy and r.m.8. temperature as 
a function of the wavenumber a. Coefficients were supplied by Busse from the calculation 
described in Busse (1967). The magnitudes are normalized to fit the data on one graph. 

Here, R is the Rayleigh number gad3ATI~v and Pr is Prandtl number V/K, where 
g, a and v are the acceleration due to gravity, the coefficient of thermal expansion 
and the viscosity, respectively. The velocity of propagation of the pinch on 
figures 2 and 3 is given using the above scaling. The Prandtl number dependence 
is evident in figure 3 in conjunction with the above scaling, which implies that 
acceleration is an important dynamical ingredient in the propagation of the 
pinch mechanism. Therefore, although it is customary to say that acceleration is 
completely negligible in fluids with a Prandtl number close to lo4, this evidence 
shows the contrary. 

One can take the curl of the above Navier-Stokes equation to arrive at a 
vorticity equation. The vertical vorticity, in the k direction, can be only of order 
Pr-1 because it can be produced only by nonlinear terms, the curl of the body 
force due to the temperature having no component in the k direction. Quite 
possibly vertical vorticity is in fact generated by such dislocations. Relevant to 
this is the fact that Chen & Whitehead described some size-adjustment 
mechanisms due to walls a t  the edge of the container and it is known that such 
walls do produce a component of vertical vorticity. If vertical vorticity does play 
an important part in these problems, a degree of freedom which is not liberated 
by uniform BBnard convection planforms to the lowest order is liberated by 
flaws, and hence they serve a particularly interesting purpose. 

One might inquire whether there is any gross characteristic of the system 
towards which the pinches drive the convection. Krishnamurti (1970) reports 
that rolls tend to cluster around the left-hand stability curve derived by Busse 
(1967) if the system is given enough time to come to a steady state. This is 
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Dislocations in Raybigh-Bdnard rolls and bimodal flow 719 

compatible with our observations that pinches drive rolls towards large 
wavelengths. 

We can estimate the heat transport, kinetic energy and temperature variation 
as a function of wavelength, using coefficients for the various harmonics of finite 
amplitude convection between rigid boundaries calculated by Busse (1967). The 
actual constants were kindly supplied by Busse. E’igure 4 shows the estimated 
values of these properties, suitably normalized, as a function of wavelength at 
a Rayleigh number of 10 000. The values of the heat transport, kinetic energy 
and temperature fluctuation were estimated using the formulae 

8 

v = l  
H N un-bop, 

(8’) = gZb:,,. 
Symmetry dictates that even terms contribute to the first series. Busse showed 

that inclusion of the tenth term changes the heat transport by less than 1 %. The 
second formula, for kinetic energy, contains an integral which was integrated 
numerically on a computer in two different ways after checking both programs 
against a test function with a known integral. The function v, is given after 
equation (4) in Busse’s paper. All terms for which h + v  < 8 and h+l  < 8 were 
included in the summation. The third formula, for (P), is obtained by straight- 
forward integration of Busse’s equation (4). Again, all terms with h+v < 8 are 
included in the summation. 

In  order to enhance the visualization of the maxima, constants have been 
subtracted from the kinetic-energy and temperature-fluctuation terms. 

We remind the reader that heat transport, total entropy production, 
buoyancy work and viscous dissipation are all equivalent for the steady-state 
convection. The arrow corresponds to the wavenumber cc = 2.36, below which 
the rolls become unstable as predicted by Busse (1967). It appears that pinches 
drive rolls towards this point. In  view of the fact that others have observed wave- 
lengths of random convection in this region, it appears that dislocations drive 
the convection parameters off both the heat-transport and the kinetic-energy 
maximum towards a region of parameter space where the fluid possesses a greater 
variation of temperature. It also appears that nonlinearities in the Navier-Stokes 
equation play at  least some role in this. 

REFERENCES 

BUSSE, F. 1967 On the stability of two-dimensional convection in a layer heated from 

BUSSE, F. & WHITEHEAD, J. A. 1971 Instabilities of convection rolls in a high Prandtl 

BUSSE, F. & WHITEHEAD, J. A. 1974 Oscillatory and collective instabilities in large 

CHEN, M. M. & WHITEHEAD, 5. A. 1968 Evolution of two-dimensional periodic Rayleigh 

below. J .  Math. & Phys. 46, 140-150. 

number fluid. J. Fluid Mech. 47, 305-320. 

Prandtl number convection. J. Fluid Mech. 66, 67-79. 

convection cells of arbitrary wave-numbers. J .  Fluid Mech. 31, 1-15. 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

BL
W

H
O

I L
ib

ra
ry

, o
n 

21
 N

ov
 2

01
7 

at
 1

7:
05

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
76

00
04

87

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112076000487


720 J .  A .  Whitehead 

KOSCHMIEDER, E.L. 1966 On convection on a uniformly heated plane. Be&. Phys. 
Atmos. 39, 1-11. 

KOSCHMIEDER, E. L. 1969 On the wavelength of convective motions. J .  Fluid Mech. 35, 

KOSCHMIEDER, E. L. 1974 BBnard convection. Adv. Chem. Phys. 26, 177-212. 
KRIsHNmmm, R. 1970 On the transition to turbulent convection. Part 1. The transition 

LIPPS, F. B. & SOMERVIL~, R. C. J. 1971 Dynamics of variable wavelength in finite- 

ROSSBY, H. T. 1969 B6nard convection with and without rotation. J .  Fluid Mech. 36, 

WILLIS, G. E., DEARDORFF, J. W. & SOMERVIILE, R. C. J. 1972 Roll-diameter dependence 
in Rayleigh convection and its effect upon the heat flux. J .  Fluid Mech. 54, 351-367. 

627-530. 

from two- to three-dimensional flow. J .  Fluid Mech. 42, 205-307. 

amplitude BBnard convection. Phye. Fluids, 14, 759-765. 

309-335. 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

BL
W

H
O

I L
ib

ra
ry

, o
n 

21
 N

ov
 2

01
7 

at
 1

7:
05

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
76

00
04

87

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112076000487


Journal of Pluid Mechanics, Vol. 75, part 4 Plate 1 

(b) 
FIGURE 1. Photographs of rolls with a wavenumber of 2.46 which contract to rolls with 
wavenumbers 3.69 by means of the pinch mechanism. ( a )  The convection just as it is 
approaching the final steady temperature difference to give a Rayleigh number of 20 000. 
(6) The convection 41 min later, with bimodal flow in the smaller wavelength rolls. The 
thermal time constant dZ/K of this fluid is 21 min. 

WHITEHEAD (Facing p .  720) 
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