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Observations are reported on the stability and structure of Rayleigh-Bénard convection in a fluid
with a Prandtl number of 8,600, and Rayleigh numbers between 50,000 and 760,000. Under
carefully initiated and controlled conditions, stationary bimodal convection was observed, even at
the highest Rayleigh number. Unstable bimodal patterns broke down in a way that tends to
reduce the wavelength of the cells. Oscillating spoke-shaped convection was observed in
convection started from random initial conditions. The gradual increase in the occurrence of
oscillations and the dependence on the initial conditions probably accounts for previous
disagreements about the onset of time dependence. A square convection planform was found
which was stable at the highest Rayleigh numbers but unstable for lower Rayleigh numbers. The
observations demonstrate the existence of different possible solutions at a given Rayleigh number.

1. INTRODUCTION

During the past 20 years, it has become clear that Bénard convection exhibits a
series of discrete transitions to a more complex state as the Rayleigh number is
increased. The first manifestation of such a process to be observed experimen-
tally was a discrete change in slope of the heat transfer curve for a fluid layer in
which convection was known to already be occurring [Schmidt and Saunders
(1938)]. Subsequent studies concerned the position of the first and additional
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transition points [ Malkus (1954); Willis and Deardorff (1967); Krishnamurt
(1970a, b)], and the structural changes in the flow at various transition points,
Clear transitions are reported for fluids with Prandtl numbers greater than 6,
In moderate (>6) to large (>100) Prandtl number fluids, two-dimensional
rolls, stable at low Rayleigh number, give way to a three-dimensional pattern
[Krishnamurti (1970a)], which consists of two sets of rolls at right angles
[Busse and Whitehead (1971)] and has been called bimodal flow. A second
transition occurs when the convective motions become time dependent
[Krishnamurti (1970b)]. There is good agreement as to the Rayleigh number
above which motion is time dependent between various experiments at low
Prandtl numbers, but poorer agreement between experiments at Prandtl
numbers greater than roughly twenty [Krishnamurti (1970b); Willis and
Deardorff (1970); Busse and Whitehead (1974)]. More specifically,
Krishnamurti reports the observation of periodic time dependent flow above a
Rayleigh number of 52,900 4+ 5,290 at Prandtl numbers of 100, 200, 860, and
8,500. Willis and Deardorff (1970) report seeing no oscillations until a
Rayleigh number of roughly 100,000 is exceeded in a fluid of Prandtl number
57. In contrast, Busse and Whitehead (1974) controlled the initial conditions
starting with a uniform bimodal planform. It was observed that the transition
to oscillatory behavior varied with Prandtl number; the transition occurred at
Rayleigh numbers of approximately 4 x 10%, 7 x 10*, 1.3 x 10°, and 3.3 x 10°
for Prandtl numbers of 16, 46, 63, and 126 respectively. It was noted that the
transition to oscillations was severely affected by the inhomogeneity of the
convection structure in flows which evolve from uncontrolled initial
conditions.

The purpose of this paper is to report upon further investigations into the
interdependence between structure of the convection and the transition to
time dependent flow that was observed by Busse and Whitehead (loc cit).
Because previous experiments disagree mainly for larger Prandtl numbers, a
series of experiments are reported here for fluid with a Prandtl number of 8,600
using apparatus capable of attaining Rayleigh numbers up to approximately
7.6 x 10°; the apparatus will be described in section 2. It was observed that
convection can exist in two distinct states—one stationary and one
oscillating—at the same Rayleigh number. In section 3 data will be shown
which demonstrate that a stationary flow could be obtained up to the
maximum Rayleigh number observed, which consisted of flawless bimodal
convection lying within a certain area of wavenumber space. They also
demonstrate that if the parameter of the bimodal structure lies outside of this
space, the structure breaks down to a stationary bimodal flow with
wavenumbers within the stable space.

It was further observed that this convection pattern evolved into a more
random convection pattern if a large dislocation in the perfectly aligned
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convection pattern was present. Such a dislocation, once emplaced, jogged the
neighboring patterns severely and the random pattern composed of structures
similar to the spoke-shaped pattern described by Busse and Whitehead (1974)
spread throughout the fluid. The spoke pattern often oscillated. If the
experiment was started from random conditions, as the experiments of the
other investigators are, it was observed that the statistical nature of the
packground noise generated natural flow regions where neighboring patches
of bimodal flow fitted together poorly. These regions began to show a
tendency to break down into the spoke pattern at Rayleigh numbers
comparable to those at which Krishnamurti (1970b) and Willis and Deardorff
(1970) reported the emergence of oscillations. The percentage of fluid which
possesses a bimodal flow pattern, the percentage of fluid which has a spoke
pattern, and the percentage of fluid which oscillates, is estimated from
shadowgraphs. The estimates exhibit arelatively smooth transition as Rayleigh
number is progressively increased.

The paper ends with a brief discussion of the implications of these results
upon our understanding of turbulence.

2. APPARATUS AND PROCEDURE

A sketch of the apparatus is given in Figure 1. Itis based on the apparatus used
by Busse and Whitehead (1971), and has been fully described by Richter and
Parsons (1975). Hence only a brief description will be given here.
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FIGURE 1 Sketch of the experimental apparatus.
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A horizontal layer of Dow Corning 200 silicon oil was bounded above and
below by transparent, -inch plate glass water manifolds with a 1 meter by |
meter square working area. Thermostatically controlled water flowed through
each manifold such that the drop from inlet to outlet was less than 0.2°C. The
oil has the following properties: kinematic viscosity, v=10 cm?sec™ !; ther-
mometric diffusivity, k=1.16x107*cm?sec”!; thermal expansion coef-
ficient,  =9.6 x 10~*°C~!; Prandtl number, v/k =8.6 x 10°.

The Rayleigh number, R, is defined by

ATd?
R EATE
KV

where g is the gravitational acceleration, AT is a calculated temperature
difference between the boundaries, and d is the depth of the fluid. In most of the
experiments d was 7 cm, enabling a Rayleigh number of approximately 8.10°
to be reached. A few preliminary experiments were attempted with d=12cm
and R up to 2.10°.

To obtain the temperature difference across the fluid a correction for the
temperature drop across the glass boundaries was subtracted from the
temperature difference between water in the two manifolds. For this calcu-
lation, it was assumed that the Nusselt number of the convecting oil obeyed
the law Nu~0.19R%282 which was the best fit curve observed by
Sommerscales and Gazda (1969). The largest correction was about 20 9; of the
temperature difference between the baths.

A shadowgraph technique was used to visualize convection in the oil layer.
It consisted of light from a 5 mm aperture which passed through a series of
mirrors, upward through the layer of oil, into another mirror, and onto a
frosted screen. The convection bends light of the beam such that cold regions
cause the upward passing light to converge like a convex lens, and hot regions
cause the light to diverge. The frosted screen was placed so as to intercept the
beam at the distance which gave the most satisfying shadowgraphs, and the
shadowgraph was photographed with a 35mm still and a 16 mm movie
camera.

For some of the experiments the method of Chen and Whitehead (1968) was
used to induce convection of a prescribed pattern, as described elsewhere
[Busse and Whitehead 1971, 1974; Whitehead and Chan 1976]. This
method consists of placing a grid made up of alternating blocked and clear
areas over the top transparent channel, shining a 300 watt incandescent lamp
down through the pattern, so the test fluid lying below was slightly radiatively
heated in the desired pattern, and leaving the system for at least one hour. This
time is a little less than the thermal time constant d?/n?k = 1.25 hrs, which is
the smallest conductive thermal time constant of the system. After this
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interval, the temperature of the top bath is decreased and the temperature of
the bottom bath is increased at the equal rates of 2°C/min until the desired
Rayleigh number was reached. It was important to change the bath at the
same rates in order to exclude “asymmetric or hexagonal modes” of flow.
Although the preheating is only on the order of 0.001°C, the growing
convection will adopt the pattern if it is close to the region of stable finite-
amplitude patterns. . .

Various precautions were taken to climinate lateral inhomogeneities. The
area for which observations on convection were made was bounded on the
sides by walls of 2"-thick polyvinylchloride, whose thermal conductivity is
close to that of the silicon oil. This provided a working-area 80 cm by 80 cm.
Outside of these walls was another region of convection approximately 20 cm
in width so that the temperature gradients on both sides of the walls were
similar. The apparatus was levelled to one partin 107 with a Starrett precision

~ level, and the top channel was spaced above the bottom channel by the walls,

which were accurate to +0.002". Hydrostatic pressure of water in the two
channels was adjusted to counteract the hydrostatic pressure of the test fluid
and the weight of the glass sheets, so that the glass plates would not bulge
ypward or downward. In all cases temperature was recorded periodically with
thermometers at the inlet and outlet which were accurate to better than 0.1°C.
The temperature drop from inlet to outlet was less than 0.1°C in all cases, and
the flow directions in the bottom and top manifolds were opposite each other,
so that vertical temperature difference was constant.

Two types of experiments were conducted. In the first, a convection pattern
was induced as described above, the system was brought to the appropriate
Rayleigh number, and the pattern was recorded by photographing the
shadowgraph with either a motor-driven 35mm camera or a 16 mm movie
camera for an interval of many hours. In the second type of experiment, the
convection was allowed to develop without inducing. After the fluid had been

convecting for a period of about 8 hours, a movie camera was then run at .

1/300th normal speed to make time lapse movies for at least another eight
hours. These films were used to determine the transition to time dependence, the
structure of the convection, and the frequency of the time dependent motion. A
movie showing the results is available from either of the authors. _

A probe device consisting of two thermistors 7 mm apart, one over the other,
was constructed to determine the temperature field within the layer, and
especially to get a measure of the heat flux. The thermistors were isotemp
thermistors from Fenwall, Inc., calibrated to 0.001°C, and their resistance was
measured by means of a DC bridge circuit, containing resistors whose
accuracy was equivalent to an accuracy of 0.01°C. In all such measurements,
the probe was left in place for sufficient time to allow transient effects to die
down before data were recorded.
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3. OBSERVATIONS
Artificially initiated flow

First of all, it is useful to discuss the two different ways that such convection
patterns have been observed to evolve in time in past experiments. One way is
by breaking down in a spatially uniform manner. A sequence of photographs
showing such a breakdown is shown in the left-hand sequence of Figure 5. We
presume that when such a breakdown occurs, either the pattern is not a
solution to the Navier-Stokes equations, or the pattern is unstable to
infinitesimal perturbations, and we will use the word stable if it does not break
down in the above manner, and unstable if it does break down. The second way
that such convection patterns evolve in time occurs because the sides of the
tank generally trigger dislocations in the induced flow pattern, and dislocations
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FIGURE 2 Stability range of bimodal flows with two wavelengths unequal. The cross
wavenumber was 5.8. Dumbbell-unstable, square-stable.

are always observed to work their way into the pattern and break it down. This
took some ten hours or longer in our experiment, which corresponds to
approximately one hundred cell rotations, based on overturn times measured
with neutrally buoyant particles. This places an upper limit on the time that we
could observe the stability of uniform cells. Therefore, our use of the words
stable and unstable can properly be interpreted as being subject or not subject
to significant uniform changes which are observed within ten hours or so.
It was relatively difficult to induce bimodal flow with two different
wavelengths because each wavelength had to be induced separately as
described in Whitehead and Chan (1976). When attempts were made to induce
two wavelengths simultaneously, one mode would grow faster than the other
and one or the other mode would predominate causing the field to break down
into a random pattern. The stability range is shown in Figure 2 as a function of
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the wavenumber of the long wavelength o; and Rayleigh number R for the case
o, =2mnd/A, =5.8 with 1, the wavelength of the shorter wavelength and d the

depth of the fluid. The double cross denotes stable bimodal flows—stable in
the sense that the bimodal flow had not broken down after 5 hours. The double
circles connected by a line denotes that the flows were observed to break down
to a new pattern which we call the dumbbell pattern, shown in Figure 3, in
which sheets of ascending and descending fluid develop lumps which initiate
new sheets of fluid at right angles to the original sheet. The dumbbells do not

: oscillate although they were reported by Busse and Whitehead (1974) to
oscillate in a fluid with the lower Prand# number of 126. In the present

FIGURE 3 Photograph of the metamorphosis of bimodal flow by a dumbbell breakdown. R
=372,000, o, = 2.88, o, =5.8. Times left to right are (first row) 0, 0.5, 1.3 and (second row) 2, 2.6,

and 7.6 hours, respectively.

experiments the dumbbells seem to be a mechanism to make cells with a

smaller wavelength.

It was far easier to induce bimodal flow with both wavelengths the same,
especially above a Rayleigh number of approximately 300,000. This was done
by using as a grid a sheet of paper with square holes cut outina checkerboard
pattern. Figure 4 shows the region of square convection studied. Various sized
square arrays were stable up to the highest Rayleigh numbers observed
(760,000), as denoted by a square in the figure, although the squares were

observed to break down below a certain Rayleigh number, denoted by a
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diamond in the above figure. Photographs of the breakdown of this flow are
shown in the sequence of close up pictures in Figure 5, which shows a rapidly
developing instability at a Rayleigh number of 168,000 and stable flow at g
Rayleigh number of 370,000. The unstable square cells broke down in a
manner which in some respects resembles the zig-zag instability of Bénard
rolls observed by Busse and Whitehead (1971). In the present instability,
adjacent sheets of ascending and descending fluid begin alternately to zig-zag.

108— T T
- o _
L o H .
R e a
[m} lo
105 e < |
8 10 12

FIGURE 4 Map of the stability of square convection. The wavenumber o is defined as

2\/571(1//1. Diamond-unstable, square-stable.

Random flow

The time lapse movies, filmed so that one second of movie corresponds to 300
seconds of experiment time, were started after the apparatus had been held at
the desired temperature for at least the previous eight hours. It was desired to
determine whether such flow resembled the artificially initiated flow. Figure 6
shows photographs of typical convective patterns at various Rayleigh
numbers. It was found that the flow bore a close resemblance to bimodal flow
with two different wavenumbers at Rayleigh numbers below approximately
150,000, but that above this value regions of spoke-shaped convection would
become more prevalent [see Busse and Whitehead (1974) for a description of
the collective instability which leads to spoke-shaped convection]. In addition,
the first time dependent oscillations were observed in spokes at 150,000 and
became more prevalent as R was increased. These oscillations always occurred
in the spoke-shaped regions, but such regions did not always have oscillations.
In addition, the convection pattern was observed to be perpetually shifting
around and changing when spoke patterns existed in any number. This
metamorphosis was considerably slower than the oscillation periods and also

was slower than the cell overturn times which will be shown in Figure 9. This
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FIGURE 5 Squares with wavenumber o, =0, =06.9 exhibiting instability on the left at a
Rayleigh number of 168,000, and stability on the right at a Rayleigh number of 370,000. Time
sequence is downward at 3 hour intervals.
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FIGURE 6 Photographs of convection after having cvolved randomly for 24 hours. Top to
bottom: Left R = 120,000, 170,000, and 240,000; Right R = 680,000 and 780,000, The first three
photographs encompassed an area of 40 x40 om?, the last two encompassed an area of 60
% 60cm?. -
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seems to correspond to the slow drift in temperature observed by
Krishnamurti (1970b, Figure 6), and was always observed to be a feature of the
spoke-shaped convection for experiments up to 24 hours in duration.
Figure 7 shows the estimated percentage of area which contained spoke-
shaped convection. These estimates were obtained by inspection of the time-
lapse movies taken over the space of eight hours, and exhibit scatter due to the
limited data base. The fifty percent crossover Rayleigh number for the
emergence of spoke flows is shown in Figure 8, in comparison with the fifty
percent crossover point observed by Whitehead and Chan (1976) in fluids with
a Prandtl number of 16 and 126. It is evident that the dependence of the
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FIGURE 7 Percentage of area observed to possess spoke-like flow {denoted by squares) and
time dependent flow (denoted by circles).

transition to oscillatory flow on Prandtl Number is getting weak, but there still
may be some dependence. The diamond in Figure 8 denotes the Rayleigh
number above which more than fifty percent of the convection was observed to
be oscillating.

Figure 9 shows estimates of the turnover time, and oscillation frequencies
deduced by observation of the movies with a stop watch. The times were scaled
with respect to the thermal diffusion time d?/k. Observations of the turnover
time varied by a factor of approximately 4 at the same Rayleigh number and
this was clearly attributable to the variation of velocities in different cell sizes
and structures. It is clear that the lowest frequency of the oscillations is the
turnover frequency, in agreement with observations by Krishnamurti (1970b),
but it is not possible to observe the existence of discrete higher harmonic
structures due apparently to the interrelation between convection oscillations
and the fluid structure.
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FIGURE 8 Fifty percent crossover point of the emergence of spoke-like flow as a function of
Prandtl number. Data at Prandtl numbers 16 and 126 are taken from Whitehead and Chan (1975).
The diamond at Prandti number 8600 denotes the 50%, crossover point for oscillation.
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FIGURE 9 Overturn time of cells (cross hatched area) and observed oscillation frequencies of
randomly oriented convection measured on films. The spread occurs because various cell
geometries have differing overturn speeds and oscillation periods.
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Measurements were made of temperature within the fluid by emplacing the
temperature probe in the fluid, waiting for five minutes, and then taking a
reading. The shadowgraph enabled us to observe that moving the probe
through the fluid distorted the structure slightly, but that the convective
thermals had a remarkable ability to quickly rebound back to their original
position, so that within two minutes the convection had resumed its
undisturbed state. By the end of five minutes, all transient effects had gone
from the temperature readings.

1t was possible to determine the vertical structure of the features which are
depth-averaged in the shadowgraphs. Many obvious aspects were confirmed
by the probe, such as that the white lines denote cold detached boundary
layers which are descending from the top surface, and vice versa for the black
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FIGURE 10 Temperature field from the bottom to 4 cm above the bottom at a point where a
white line on the shadowgraph crossed a black line (dots), and above a point midway between lines
(circles) where there are presumably no rising thermals. Errors of the temperature reading are less
than 0.001°C. and errors of the depth reading are less than 1 mm.

lines. Other aspects were clarified, although they are more difficult to picture
and describe because of the inherent three-dimensionality of the flows. For
instance, there actually are rising and sinking sheets of fluid at the point where
black and white lines cross in square convection, as shown in Figure 5. The
probe revealed that the white line is generated by a sheet of cold fluid sinking
from the top while the black line is generated by a sheet of warm fluid rising
from below at right angles to the cold sheet. It was apparent that the two sheets
split apart to avoid each other, so that a stagnation point apparently exists
midway between the top and bottom surfaces. The temperature observations
from the bottom to four centimeters above the bottom over a point where
white and black lines cross are shown as dots in Figure 10, along with
observations (circles) over another point midway between white and black
lines where there appears to be little descending or ascending motion. Both
boundary layers merge with a region of uniform temperature, but there is an
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excess thickness of the boundary layer above the crossing lines (dots). There is
a substantial isothermal core in these cells away from the boundary layers in
both cases. In spoke structures, it was clear that the spokes were sheets of fluid
which protruded out of the temperature boundary layer significantly. Dye
injection and observation of trace particles in movies revealed that fluid within
the spokes moves as much laterally toward the central spout area, as it moves
vertically. Much of the interior temperature variation occurred in the central
spout.

Finally, it was possible using this two thermistor probe to assess the degree
to which the finite conductivity of the glass boundaries results in departures
from a constant temperature boundary condition. The greatest temperature
gradients were consistently observed at stagnation points near the
boundary—for instance, at the point below a descending cold sheet or spout
where the fluid stagnates as it encounters the bottom boundary. The smallest
were observed at separation points, for instance at the point where an
ascending warm sheet or spout rises from the bottom boundary.

We ask, if the true boundary condition is represented in dimensionless form
as

cT
iz
at every point of the glass-fluid interface, how big is y?
Obviously if y is very much greater than one, the boundary condition is well
approximated as a constant temperature, while if y is very much less than one,
a constant heat flux condition is a better approximation. To determine 7, use

+7y7T =constant, (1)

was made of the approximation

so that (1) is approximated as

(T, — )
% %:constant, 2)

where d is depth of the fluid, AT1s temperature difference between the top and
bottom baths, h is distance between the two temperature probes (7 milli-
meters). Values of T and T, were determined by taking values of the top and
bottom thermistors in the probe when the bottom thermistor was lying on the
bottom glass. Many readings were taken, and pairs were combined to solve for
y with the use of (2). y was found to vary from 5 to 20. The variation appears to
be principally due to the fact that T, was not really taken in the conduction
boundary layer. Since the effects of poor boundary conductivity predominate
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" when this number is less than one, the large size of this number indicates that

the boundary conditions can be well approximated as a constant temperature
boundary condition.

Another indication that the finite conductivity of the glass does not
significantly affect the oscillations is that the time constant of the glass is
approximately d*/k=80 seconds (using k=35x%10"3cm?/sec.) while the
oscillation times are from 14 minutes to 2 minutes.

4. DISCUSSION

The observations reported here support the observations of Busse and
Whitehead (1974) that the transition to oscillations is strongly dependent
upon the structure of the flow. Indeed, it appears safe to say that there are at
least two distinct states which the convection can take, which are equally valid
solutions of the governing equations. One solution is space-periodic, sta-
tionary, and stable to infinitesimal perturbations. The second solution is
observed to be nonstationary in two different ways. First, it sometimes exhibits
clearly periodic oscillations. Second the cell-structure constantly changes its
disposition, although it is characterized by spoke-shaped cells. It has not been
possible to induce space-periodic, non-migrating spoke convection which
oscillates as was done by Busse and Whitehead (1974) by a collective
instability. It appears that the two states can exist simultaneously in a
statistical sense over some range of Rayleigh numbers. In such a case, it was
observed that the regions with a bimodal structure never oscillated even
though there were oscillations in adjacent regions of spoke convection. The
question of the exact nature of the process which generates the oscillation
continues to be clouded by our observations of a weak Prandtl number
dependence. Using the scaled, overturning time tr/d? as given in Figure 9 to be
0.01 or larger, a Reynolds number can be approximated as d?/tv, which
reduces to 100/8600=0.012, a small Reynolds number indeed. It therefore
seems unlikely that the nonlinear operators of the Navier-Stokes equation
play a major role in the above processes.

The results presented here have two particular implications upon the work
as reported by Krishnamurti (1970b and 1973). First, in a span of 16 hours no
oscillations were seen in movies at Rayleigh number of 98,000 and 120,000,
and only one oscillation was seen at 158,000. Krishnamurti reported seeing an
oscillation at approximately 60,000 in an experiment with smaller aspect ratio,
but run for a much longer time. It is not clear whether the difference between
Krishnamurti’s and our bottom boundary conditions or side boundary
conditions is responsible for this quantitative disagreement. In view of the
random nature of the oscillations as Rayleigh number is increased, it appears
that the exact transition number is difficult to determine, and is not too
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meaningful physically, since only a tiny percentage of fluid oscillates when this
number is exceeded. Secondly, even if the transition does occur at R = 150,000
the low Reynolds number suggests that a thermal type of instability is causing
the oscillations, as suggested in the 1973 paper.

An interesting feature which this experiment shows is that one dislocation in
an otherwise flawless and stable field of motion can trigger new flows which
otherwise wouldn’t exist, although perhaps they can be generated by a finite
amplitude perturbation. At lower R flaws do not do this (Whitehead, 1976). In
the random flow, these dislocations exist in many places and seem to allow the
bimodal and spoke flows to coexist. It can be conjectured that randomness in
turbulence plays a role similar to that which the dislocation plays, and enables
different flow structures to coexist, and in fact sustain each other. These
structures may mathematically be expressed as noncontiguous manifolds of
solutions. We speculate here that perhaps the flaws provide a mechanism for
coupling between the different solutions.
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