Rotating Rayleigh–Taylor Instability as a Model of Sinking Events in the Ocean

M. K. DAVEY†

Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, U.S.A.

and

J. A. WHITEHEAD, Jr.

Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A.

(Received August 8, 1980)

The development of small disturbances in a statically unstable two-layer rotating fluid is investigated. With horizontal eddy viscosity included, there is a maximum growth rate σ_{max} at some preferred wavelength L_{max}. This scale selection mechanism may determine the characteristic size of deep convection events in the ocean following a sudden cooling of the surface. Horizontal scales of 500 m or less are estimated. Unless growth rates are small ($\sigma_{\text{max}} \ll f$) the effect of the Earth’s rotation on σ_{max} and L_{max} is minor.

1. INTRODUCTION

It has been known for some time that substantial mixed-layer deepening can occur during severe winter storms, with subsequent formation of deep water masses. Perhaps the clearest understanding of such events has come from observations by the MEDOC group (1969). The picture as related by Stommel (1972) is of a dramatic deepening of the mixed layer (2000 m in 10 days) over a confined region. In this region the surface density was increased by evaporation and sensible cooling to that of the deep Mediterranean water. The evidence suggests that in this case the lateral structure of the convective region was determined principally by the...
distribution of surface density just prior to and during the cold winter storm.

Deep convection events with strong local preconditioning are undoubtedly the easiest to locate and observe. However, it is by no means certain that all events have this property—there are alternative dynamical mechanisms with inherent scale and structure. One such mechanism involves the growth of a small disturbance in a rotating fluid with a density inversion, and as such is a rotating version of Rayleigh–Taylor instability. (The Rayleigh–Taylor instability problem is discussed in detail by Chandrasekhar 1961.)

Hide (1956) has developed general linear equations and a variational principle for systems with both rotational and viscous effects. Detailed results were given for the special cases of two infinitely deep layers and of exponential stratification with prescribed vertical velocity. In the following theory two layers of finite depth are used. (Note that the two-layer geometry is intended as an approximation to some smoother density profile.) Simple equations for small perturbations are obtained by neglecting vertical viscosity, and dispersion relations are derived from these in the next section.

With viscosity present density inversions are unstable for disturbances of all wavelengths. Growth rates decay to zero in the limits of very long and very short waves, and there is a maximum \(\sigma_{\text{max}} \) with associated wavelength \(L_{\text{max}} \). When growth rates are small (\(\sigma \ll f \), where \(f \) is the Coriolis parameter), rotation effects become important for length scales \(L \) greater than or comparable to the Rossby deformation radius \(L_R \), effectively decreasing \(\sigma_{\text{max}} \) and \(L_{\text{max}} \). (In the limiting case of inviscid rotation, the system is stable for \(L > L_R \)).

Growth rates for a wide range of parameters are given in Section 4, and the results are discussed in Section 5. Due to the many approximations used in deriving a simple analytic theory, only order-of-magnitude estimates can be made for the oceanic application.

2. BASIC EQUATIONS AND DISPERSION RELATIONS

A system with layers of depth \(H_j \) and constant density \(\rho_j \) (\(j = 1, 2 \)) will be considered (see Figure 1). Surface wave effects are neglected, so there is a flat stress-free boundary at \(z = H_1 \). The lower boundary at \(z = -H_2 \) is also flat, and the interface between the layers is at \(z = \eta(x, y) \). (At rest the interface is at \(z = 0 \)). The density difference \(\Delta \rho = \rho_2 - \rho_1 \) is small compared to \(\rho_j \), so the Boussinesq approximation can be used. No background flow is allowed, so the only motion is due to initially small \((\eta \ll H_j) \) wavemakerlike perturbations of the interface. As a first approximation linearised equations and boundary conditions are used.

![Figure 1](image.png)

FIGURE 1 The two-layer geometry.

The general problem is outlined in Appendix A. Even for linear equations the derivation of a dispersion relation is far from simple. With vertical viscosity \(\nu_v \) present there are no-slip and stress-matching boundary conditions to be satisfied. When rotation is included the appearance of Ekman layers further complicates the vertical structure. However, greater simplification can be gained if \(\nu_v \) can be neglected. Some justification for this assumption comes from the comparison of results for \(\nu_v = \nu_L \) and \(\nu_v = 0 \) for a non-rotating system (\(\nu_L \) is lateral eddy viscosity). As described at the end of Appendix A, omission of \(\nu_v \) has negligible effect on growth rates for wavelengths up to several hundred metres. For large scales \((L \gg H_j) \) we expect \(\nu_v \ll \nu_L \), so the influence of \(\nu_v \) should still dominate \(\nu_v \). Support for the neglect of Ekman pumping is given in Appendix C, where it is shown that addition of interface Ekman layers has little effect on \(\sigma_{\text{max}} \) and \(L_{\text{max}} \). Hence vertical viscosity will be omitted in the following theory.

The linearised momentum equations are

\[
\begin{align*}
 u_t - f v &= -\rho^{-1} \phi_x + \nabla^2_L u, \\
 v_t + f u &= -\rho^{-1} \phi_y + \nabla^2_L v, \\
 w_t &= -\rho^{-1} \phi_z + \nabla^2_L w,
\end{align*}
\]

where \(f \) is the Coriolis parameter, \(\phi = p + \rho g z \) (\(p \) = pressure), \(v = v_k \) and \(\nabla^2_L = \partial^2 / \partial x^2 + \partial^2 / \partial y^2 \). (Subscripts for separate layers will be omitted when equations apply to each layer.) The continuity equation is

\[
 u_x + v_y + w_z = 0.
\]
It is useful to obtain equations in terms of vertical vorticity \(\zeta = \nabla_y - u_z \) and vertical velocity \(w \). The horizontal divergence of (2.1) gives
\[
w_{zt} + f \zeta = \rho^{-1} \nabla^2 \phi + \nu \nabla^2 w_z,
\]
and the vertical component of the curl of (2.1) is
\[
\zeta_t - f w_z = \nu \nabla^2 \zeta.
\]
Another relation between \(\zeta \) and \(w \) follows from \(\nabla \times (\nabla \times (2.1)) \):
\[
\nabla^2 w_{zt} + f \zeta_z = \nu \nabla^2 (\nabla^2 w).
\]
Wavelike solutions are sought of the form
\[
\begin{pmatrix}
 w \\
 \zeta \\
 \phi
\end{pmatrix}
= \exp(i(kx + ly)) \exp(\sigma t)
\begin{pmatrix}
 W(z) \\
 Z(z) \\
 P(z)
\end{pmatrix}.
\]
Then, (2.4) and (2.5) become
\[
(\sigma + \nu K^2) Z = f W_z,
\]
\[
(\sigma + \nu K^2)(W_{zz} - K^2 W) = -f Z_z,
\]
where \(K^2 = k^2 + l^2 \). Combining (2.3) and (2.4) gives, for later reference,
\[
[\sigma + \nu K^2 + f^2 / (\sigma + \nu K^2)] W_z = -\rho^{-1} K^2 P.
\]
Eliminating \(Z \) from (2.7) and (2.8) leads to
\[
[(\sigma + \nu K^2)^2 + f^2] W_{zz} - K^2 (\sigma + \nu K^2)^2 W = 0,
\]
so we have
\[
W = a \cosh \lambda z + b \sinh \lambda z,
\]
with
\[
\lambda^2 = K^2 (\sigma + \nu K^2)^2 / (f^2 + (\sigma + \nu K^2)^2).
\]

Three boundary conditions on \(W \) are
\[
W_1(H_1) = 0 = W_2(-H_2),
\]
\[
W_1(0) = W_2(0) \quad (= W_0, \text{say}).
\]
(Note that the bottom boundary could be the ocean floor, or another (stable) interface with relatively large \(\Delta \rho \) where \(w \) is negligible.)
The fourth relation needed to close the problem comes from pressure matching and kinematic conditions at the interface. From
\[
\phi_2 - \phi_1 = g \Delta \rho \eta,
\]
and
\[
w = \eta_t,
\]
we obtain
\[
\sigma (P_2 - P_1) = g \Delta \rho W_0,
\]
near \(z = 0 \). Using (2.9) to substitute for \(P_j \) then gives
\[
\sigma \left[(\sigma + \nu^2 K_j^2)^2 + f_j^2 \right] W_{zz} - \frac{(\sigma + \nu K_j^2)^2 + f^2}{\sigma + \nu K_j^2} W_{zt}
\]

\[
= g' K_j^2 W_0 \quad \text{at} \quad z = 0,
\]
with \(g' = g \Delta \rho / \rho \).
With boundary conditions (2.12) a non-trivial solution requires
\[
\sigma \sum_{j=1}^2 \frac{(\sigma + \nu K_j^2)^2 + f_j^2}{\sigma + \nu K_j^2} \frac{\lambda_j}{\tanh \lambda_j H_j} + g' K_j^2 = 0
\]
which is the dispersion relation we seek. A general property of this equation is that \(\sigma > 0 \) requires \(\Delta \rho < 0 \). As expected, only a density inversion \(\rho_1 > \rho_2, g' < 0 \) can support a growing disturbance.
If rotational effects are ignored \((f \to 0) \) then \(\lambda_j = K \) and (2.15) reduces to the quadratic
\[
\sigma \sum_{j=1}^2 (\sigma + \nu K_j^2) \coth K H_j + Kg' = 0.
\]
For $g'<0$ there is one real positive and one real negative root, corresponding to purely growing and decaying disturbances.

3. SHORT AND LONG WAVE LIMITS, AND COMBINATIONS

When $K \to \infty$ (the short wave limit) both (2.15) and (2.16) reduce to

$$\sigma[2\sigma + (v_1 + v_2)K^2] + g'K = 0. \tag{3.1}$$

With $g'<0$ the growing root is

$$\sigma \sim -g'(v_1 + v_2)^{-1}K^{-1} \to 0 \text{ as } K \to \infty. \tag{3.2}$$

Not surprisingly, the short waves are independent of f and H_j.

For long waves ($L \gg H_j$), λ_j is small and the dispersion relation is approximately,

$$\sigma^2 = \frac{g}{2} \left[\frac{v}{K^2} + \frac{f^2}{(\sigma + vK^2)} \right] / H_j + g'K^2 = 0. \tag{3.3}$$

When $f \neq 0$ the growth rate decreases very rapidly with K. We find

$$\sigma \sim -g'f^{-2}v_1H_1(1 + v_1H_1/v_2H_2)^{-1}K^4 \to 0 \text{ as } K \to 0. \tag{3.4}$$

This limit depends on v_j. For an inviscid system the long wave dispersion relation is

$$(\sigma/f)^2 = (K/K_R)^2 - 1, \tag{3.5}$$

where

$$K_R^2 = f^2(1 + H_1/H_2)/(|g'|H_1).$$

In this special case wavelengths larger than the Rossby deformation wavelength $L_R = 2\pi/K_R$ are stable. Addition of viscosity evidently destabilises the long waves. In Appendix B the dispersion relation (3.3) is derived from the shallow-water equations and an energy equation (as an instructive alternative to the methods of the previous section), and the above behaviour is explained there in terms of energy balance.

When rotation is ignored ($f = 0$) then growth rates decrease much more slowly with K:

$$\sigma \sim (-g'H_1)^{1/2}(1 + H_1/H_2)^{-1/2}K. \tag{3.6a}$$

Note that this limit is independent of viscosity. Interestingly, if σ is scaled by some rotation rate f_0 then we can write (3.6a) as

$$\sigma/f_0 \sim K/K_R. \tag{3.6b}$$

From the above limits we see that $\sigma \to 0$ for long and short waves, so there will be a maximum σ_{\max} for some intermediate wavenumber K_{\max}.

Rotation restricts the growth of long waves. However, we expect this effect to be unimportant with regard to σ_{\max} if the fastest-growing waves have $L_{\max} < L_R$.

Results using the full dispersion relation are presented in the next section. Some simple and useful estimates of σ_{\max} and K_{\max} (denoted σ_{est} and K_{est}) can first be obtained by naively combining the limits, however. This method only yields order-of-magnitude approximations, but does reveal analytic behaviour. For simplicity we set $v_1 = v_2 = v$ and $H_1 = H_2 = H$ in the following relations.

For $f = 0$ the short and long wave limits (3.2) and (3.6) intersect at

$$K_{\text{est}} = 2^{-1/4}|g'|^{1/4}v^{-1/2}H^{-1/4}, \tag{3.7a}$$

with

$$\sigma_{\text{est}} = 2^{-3/4}|g'|^{3/4}v^{-1/2}H^{1/4}. \tag{3.7b}$$

Due to the relatively weak dependence of σ on K this should be a reasonable estimate as long as rotation effects are minor, i.e. $\sigma_{\text{est}} > f_0$. (Note that this implies $L_{\text{est}} < L_R$, according to (3.6b).) If $L_{\text{est}} > L_R$ ($\sigma_{\text{est}} < f_0$ however, then the rapid long-wave attenuation of (3.4) may be more appropriate. This predicts

$$K_{\text{est}} = f^{2/5}v^{-2/5}H^{-1/5}, \tag{3.8a}$$

$$\sigma_{\text{est}} = 2^{1/2}|g'|^{1/2}v^{-3/5}f^{-2/5}H^{1/5}. \tag{3.8b}$$

The dominant factor in the growth rate is the density over-burden $\Delta \rho$, as expected. For small $\Delta \rho$ growth is slow and the fastest-growing wavelength is independent of $\Delta \rho$, depending mainly on the effective viscosity. As $|\Delta \rho|$ increases σ_{est} increases and, with a transition from (3.8) to (3.7), L_{est} begins to decrease.
4. CALCULATIONS FOR OCEANIC SCALES

We are interested in the effect of rapidly cooling an ocean surface layer, and choose order-of-magnitude scales to simulate such an event. There is considerable uncertainty in these scales, so results for a wide range of values will be given. The only reliable parameter is \(f \), and we use \(f = 10^{-4} \text{ sec}^{-1} \). For the sinking event described by Stommel (1972), surface cooling rates in excess of 2000 gm cal cm\(^{-2}\) per day were estimated. With this figure as a guide, cooling the upper 10 metres gives \(g' = -4 \times 10^{-5} \text{ m sec}^{-2} \), and cooling spread over 100 m has \(g' = -4 \times 10^{-6} \). A representative figure \(g' = -10^{-5} \) is chosen.

Estimation of \(v_L \) is difficult. A lateral eddy viscosity \(v = 1 \text{ m}^2 \text{ sec}^{-1} \) will be used as a standard. (This may be regarded as background turbulence with, for example, a mixing length of 10 m and velocity scale 0.1 m sec\(^{-1}\).) In practice we expect \(v \) to vary with wavelength, but this effect is ignored in the theory. Depth scales \(H_1 = 100 \text{ m}, H_2 = 1000 \text{ m} \) are used, to simulate sinking in a very weakly stratified upper ocean. Scales \(H_1 = 10 \text{ m}, H_2 = 100 \text{ m} \) are also considered, and may better represent initial stages of sinking.

Figure 2 shows growth rates (scaled by \(f_0 = 10^{-4} \text{ sec}^{-1} \)) as a function of wavelength, with rotation neglected and \(v_1 = v_2 = 0.1, 1 \) and 10. There is a definite maximum, with the peak broadening and lowering with increasing \(v \). The e-folding time varies from 0.8 to 6 hours over the range considered, with \(L_{\max} \) ranging from 100 m to 1200 m. The long and short wave dispersion relations are indicated by dashed lines in Figure 2, showing that they give reasonable order-of-magnitude estimates for \(L_{\max} \approx H \).

Values of \(\sigma_{\max} \) and \(L_{\max} \) for a wider range of \(v \) and \(g' \) are given in Table Ia. These confirm the trends predicted by (3.7); \(\sigma_{\max} \) depends more on \(g' \) than \(v \), vice-versa for \(L_{\max} \).

Corresponding results with rotation included are shown in Figure 3 and Table Ib. Beyond the Rossby radius \(L_R = 1890 \text{ m} \), growth rates decrease rapidly, particularly when viscosity is small. The maxima in Figure 3 have \(L_{\max} < L_R \), however, and rotation has little effect on \(\sigma_{\max} \), as can be seen by comparing Tables Ia and Ib.

When \(\Delta \phi \) is relatively small growth rates are lower and rotation has more effect. Growth rates for \(g' = 10^{-6} \), with and without rotation, are shown in Figure 4 for \(v_1 = v_2 = 1 \). Inclusion of \(f \) changes \(L_{\max} \) from greater to less than \(L_R \) and decreases \(\sigma_{\max} \) by about 20%. The short and long

FIGURE 2 Growth rate (scaled by \(f_0 = 10^{-4} \text{ sec}^{-1} \)) as a function of wavelength for \(g' = -10^{-5} \text{ m sec}^{-2} \), \(H_1 = 100 \text{ m}, H_2 = 1000 \text{ m}, f = 0, v_1 = 0, v_L \) (m² sec⁻¹) as indicated. Long and short wave limits are marked by dashed curves.

FIGURE 3 \(\sigma/f \) as a function of \(L \) for \(g' = -10^{-5} \text{ m sec}^{-2}, H_1 = 100 \text{ m}, H_2 = 1000 \text{ m}, f = 10^{-4} \text{ sec}^{-1}, v_1 = 0, v_L \) (m² sec⁻¹) as indicated.

TABLE 1a
Maximun growth rates σ_{max}/f_0 and wavelengths L_{max} for $H_1 = 100\, m$, $H_2 = 1000\, m$, neglecting rotation

<table>
<thead>
<tr>
<th>g'</th>
<th>ν</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10^{-2}</td>
<td>39</td>
<td>0.1</td>
<td>100 m</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10^{-4}</td>
<td>8.5</td>
<td>0.3</td>
<td>220 m</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10^{-5}</td>
<td>1.8</td>
<td>0.52</td>
<td>8.6</td>
<td>0.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10^{-6}</td>
<td>0.33</td>
<td>0.8</td>
<td>20 m</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 m</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 m</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 m</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1300 m</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500 m</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1b
As for Table 1a, including $f = 10^{-4}\, sec^{-1}$

<table>
<thead>
<tr>
<th>g'</th>
<th>ν</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>L_{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10^{-2}</td>
<td>39</td>
<td>0.1</td>
<td>100 m</td>
<td>8.5</td>
<td>18900 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10^{-4}</td>
<td>8.5</td>
<td>0.3</td>
<td>200 m</td>
<td>-</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10^{-5}</td>
<td>8.5</td>
<td>0.52</td>
<td>1.7</td>
<td>0.076</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10^{-6}</td>
<td>1.8</td>
<td>0.49</td>
<td>400 m</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000 m</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2800 m</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1890 m</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>480 m</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 m</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

wave limits with rotation are shown as dashed lines in Figure 4. The long wave approximation is strongly dependent on L so σ_{max} is greatly overestimated, but a reasonable value of L_{max} is defined.

The above results use $v_1 = v_2$. In the lower, deeper layer v_2 may well be comparatively small. To see how this affects the system, growth rates for $v_2 = 1$ and 0.01 (with $v_1 = 1$) are compared in Figure 5. Only a small change is found, much less than that produced by reducing v_1 and v_2 to 0.1 for example, so a good estimate of the largest ν is far more important than details of viscosity variability.

Table II shows σ_{max} and L_{max} for the smaller depths $H_1 = 10\, m$ and $H_2 = 100\, m$, and can be compared with Table I. For relatively large g' and small ν the tenfold decrease in vertical scale reduces σ_{max} and L_{max} only slightly. The effect increases as $|g'|$ increases and ν decreases, however. For the standard case ($g' = -10^{-5}, v_1 = 1$) σ_{max} is approximately halved by the scale change.

FIGURE 4 σ/f_0 as a function of L for $g' = -10^{-6}\, sec^{-1}$, $H_1 = 100\, m$, $H_2 = 1000\, m$, $v_1 = 0$, $v_2 = 1$ (a) without rotation, $f = 0$ (b) $f = 10^{-4}\, sec^{-1}$. $v_1 = v_2 = 1$ (a) without rotation, $f = 0$ (b) $f = 10^{-4}\, sec^{-1}$.

FIGURE 5 σ/f as a function of L for $g' = -10^{-5}\, m\, sec^{-1}$, $H_1 = 100\, m$, $H_2 = 1000\, m$, $v_1 = 0$, $v_1 = 1\, m^2\, sec^{-1}$, v_2 as indicated.
Other aspects not included in the model are the overturning time and depth and entrainment effects. The linear theory only estimates initial growth rates for small perturbations. If several e-folding times are needed for convective overturning, then a large density anomaly can build up, and may sink to great depths on a small length scale. If the turnover time is small, however, then $\Delta \rho$ is relatively small and sinking is less dramatic.

Acknowledgements

This work was initiated while both authors were participating in the Advanced Study Program at the National Centre for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

Appendix A

GENERAL LINEAR THEORY

For simplicity we assume $v_x = v_y$ in this section. Equations (2.3) to (2.5) relating ζ and w are then slightly modified by replacing V_x^2 by V^2. As in Section 2, wave-like disturbances are assumed and Z is eliminated to get an ordinary differential equation for W. In place of the second-order Eq. (2.10), the following sixth-order equation is obtained:

$$
\left[\frac{d}{dz} \left(\frac{d^2}{dz^2} - (\sigma + iK^2) \right) \right] \left(\frac{d^2}{dz^2} - K^2 \right) W + f^2 W_{zz} = 0.
$$

(A1)

For this two-layer system, twelve boundary conditions are needed. At the flat stress-free upper surface

$$
w = u_z = v_z = 0,
$$

which implies

$$
W_1 = W_{1zz} = Z_{1zz} = 0 \text{ at } z = H_1.
$$

(A2)
No-slip conditions at the bottom boundary give

$$\begin{align*}
W_2 &= W_{2z} = Z_2 = 0 \quad \text{at} \quad z = -H_2 .
\end{align*}$$

(A3)

At the interface, velocity matching requires

$$\begin{align*}
W_1 &= W_2 , \\
W_{1z} &= W_{2z} , \\
Z_1 &= Z_2 .
\end{align*}$$

(A4)

Tangential stress matching gives

$$\begin{align*}
\mu_1 (u_{1z} + w_{1x}) &= \mu_2 (u_{2z} + w_{2x}) , \\
\mu_1 (v_{1z} + w_{1y}) &= \mu_2 (v_{2z} + w_{2y}) ,
\end{align*}$$

where $\mu_j = \rho j v_j$. In terms of W and Z we find

$$\begin{align*}
\mu_1 (W_{1zz} + K^2 W_1) &= \mu_2 (W_{2zz} + K^2 W_2) , \\
\mu_1 Z_{1zz} &= \mu_2 Z_{2zz} .
\end{align*}$$

(A5)

The twelfth condition is obtained by normal stress matching, analogous to the pressure matching in Section 2.

The algebra required for a general dispersion relation is too cumbersome to be worth attempting for our purpose. As a compromise we consider the effect of v_ν on the non-rotating system. In this case the flow is irrotational ($Z \equiv 0$) and a fourth-order equation for W is obtained. For each layer

$$W = a \cosh K z + b \sinh K z + c \cosh \alpha z + d \sinh \alpha z ,$$

where

$$\alpha^2 = K^2 (1 + \sigma v K^2) .$$

For further simplification $v_1 = v_2$ is assumed. The dispersion relation is still complicated, so only the result for one case is presented. Growth rates as a function of wavelength are given in Figure 6 for $H_1 = 100$, $H_2 = 1000$, $g = -10^{-5}$, $v_\nu = 1$. The curves with $v_\nu = 0$ and $v_\nu = 1$ are almost identical for $L \lesssim 300 m$. At longer wavelengths, growth rates are slightly lower when $v_\nu = 1$.

Appendix B

SHALLOW-WATER EQUATIONS

The momentum Eqs. (2.1a, b) apply with u and v independent of depth. Vertical velocity is a linear function of z, and continuity requires

$$\begin{align*}
u_{1x} + v_{1y} - \eta_0 / H_1 &= 0 , \\
u_{2x} + v_{2y} + \eta_0 / H_2 &= 0 .
\end{align*}$$

(B1a)

(B1b)

The vorticity Eqs. (2.4) become

$$\begin{align*}
\zeta_{1z} + f \eta_0 / H_1 &= v_1 \nabla^2 \zeta_1 , \\
\zeta_{2z} - f \eta_0 / H_2 &= v_2 \nabla^2 \zeta_2 .
\end{align*}$$

(B2a)

(B2b)

Wavelike solutions are

$$\begin{align*}
\eta &= A \exp (i k \cdot x) \exp (\sigma t) , \\
u_j &= U_j \exp (i k \cdot x) \exp (\sigma t) .
\end{align*}$$

(B3)

The potential energy averaged over a wavelength is

$$\bar{PE} = \frac{1}{2} g \rho A^2 \exp (2 \sigma t) .$$

(B4)

Expressions for U_j in terms of A can be easily obtained from (B1) and
(B2). Kinetic energy is then given by

$$KE_j = \frac{1}{2} \rho |A|^2 \left(\sigma^2 + f^2 \frac{\sigma^2}{(\sigma + v_j K_j)^2} \right) \frac{1}{H_j K_j^2} \exp(2\sigma t).$$ \hspace{1cm} \text{(B5)}$$

When averaged over a wavelength the energy equation is

$$\frac{dE}{dt} = \frac{d}{dt}(KE_1 + KE_2 + PE) = -v_1 K_1^2 KE_1 - v_2 K_2^2 KE_2,$$$$

\text{where } E = KE_1 + KE_2 + PE \text{ is total energy.}$$

Substituting (B4) and (B5) into (B6) gives the shallow-water dispersion relation

$$\sum_j \left(\sigma + v_j K_j \right)^2 \left(\sigma^2 + f^2 \frac{\sigma^2}{(\sigma + v_j K_j)^2} \right) \frac{1}{H_j K_j^2} + g' = 0,$$$$

\text{which is equivalent to (3.3).}$$

When $\Delta \rho < 0$ potential energy decreases as the interface displacement increases. Though total energy must decrease due to dissipation effects, kinetic energy can increase as long as the increase is less than (or equal to, if inviscid) the potential energy change. For very long waves only very small growth rates can be accommodated. The effect of rotation is to add to the KE produced by interface displacement, by vortex stretching of the background vorticity f, so lower growth rates are required. For the inviscid case, KE production exceeds PE reduction when $L > L_E$. Note that lateral viscosity attenuates the influence of rotation in each layer by effectively replacing f by $f \sigma/(\sigma + v_j K_j)$ in (B7).

The shallow-water result does not apply as $K \to \infty$. Equation (B7) predicts

$$\sigma \to -g'/\left(v_1/H_1 + v_2/H_2\right) \text{ as } K \to \infty.$$$$

\text{(B8)}$$

This is a maximum with respect to K. Shallow-water theory does not define a fastest-growing wave at finite wavelength because the short-wave effects that decrease σ to zero as $K \to \infty$ are omitted. However, (B8) does give a useful upper bound for the general theory. It confirms the intuitive feeling that σ increases as $|\Delta \rho|$ increases, v_j decreases and H_j increases.

Appendix C

INCLUSION OF INTERFACE EKMAN LAYERS

To obtain a crude estimate of vertical viscosity effects on a rotating system we can add interface Ekman layers. We assume that such layers are established instantly, and that they have depth $H_E \ll H_j$. [Ekman layer depth is $(2v_f/f)^{1/2}$, so the second assumption is good for $v_f \gtrsim 10^{-2} \text{ m}^2 \text{sec}^{-1}$, if $H_j \gtrsim 10^2 \text{ m}$. The first assumption should overestimate the influence of v_f.] The effect is to add a vertical velocity

$$W_E = \frac{1}{2} H_E (Z_1 - Z_2)$$

\text{at the interface } z = 0, \text{ which changes the condition (2.13) to}$$

$$\sigma (P_2 - P_1) = g \Delta \rho (W_0 - W_E).$$

\text{(C2)}$$

Consequently the term $g K^2$ in the dispersion relation (2.15) becomes

$$g K^2 \left\{ 1 + \frac{1}{4} H_E \sum_j \frac{f}{\sigma + v_j K_j^2} \frac{\lambda_j}{\tanh \lambda_j H_j} \right\}.$$

\text{(C3)}$$

For $\sigma > 0$ the term $\{\}$ is greater than 1, so vertical viscosity in this form effectively increases $|g'|$ and hence increases growth rate. (This result is similar to the destabilising effect of v_L on long waves found earlier.)

The long-wave approximation simplifies (C3) to

$$g K^2 \left\{ 1 + \frac{1}{4} \sum_j \frac{f}{\sigma + v_j K_j^2} \frac{H_E}{H_j} \right\}.$$

\text{(C4)}$$

With $H_E \ll H_j$ and K small we see that the Ekman effect is small unless $f \gg \sigma$. Numerical calculations with $|g'| = 10^{-6}$ and $v_f = 1$ show an increase of about 2% in σ_{max} when $H_E = 10 \text{ m}$ is added.