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ABSTRACT 

Flierl, G.R., Stern, M.E. and Whitehead, Jr., J.A., 1983. The physical significance of modons: 
laboratory experiments and general integral constraints. Dyn. Atmos. Oceans. 7:233 264. 

A barotropic jet emerging from a point source in a rotating fluid is deflected to the right 
(northern hemisphere) and starts to accumulate in an anticyclonic vortex. This gives rise to a 
cyclonic neighbor, and the dipole (modon) then propagates away from the source in a circular 
path. A modification of Batchelor's (1967) solution, which takes into account the different 
strengths of the anticyclonic-cyclonic pair, is able to account for the path curvature. The 
experiment shows that highly organized modons can be realized in the laboratory with rather 
nondescript forcing. The/3-effect (not noticeably present in the experiment) should enhance 
the realizability of these structures in geophysical flows. Therefore, it is suggested that the 
modon model captures certain essential features of geophysical eddies. This is based on a 
derived theorem which shows that any slowly varying (not necessarily uniformly propagating) 
and isolated disturbance on the beta plane must have zero net relative angular momentum, so 
that the dipole is the simplest dynamically consistent representation of such a disturbance. 
Some interesting aspects of two-dimensional turbulence in a rotating fluid are also indicated 
by the laboratory experiments and by the general integral theorems presented. 

1. INTRODUCTION 

In  the mid- la t i tude  a tmosphere  and oceans,  synopt ic-scale  d is turbances  

domina t e  the flow pat terns,  and  th rough  their t ranspor t s  of  heat, vort ic i ty  or 

m o m e n t u m ,  regulate the general  circulation.  While  m a n y  of these flows 

appea r  r a n d o m  to some degree, there are also str iking examples  of coherent  
and  apparen t ly  isolated features which seem relatively stable to the f luctua- 
t ions occur r ing  a round  them. A tm osphe r i c  blocks,  while showing somewha t  
of  a " w a k e "  s t ructure  are no t  s t rongly corre la ted with the mot ions  a round  

the globe (Dole,  1982). Hur r icanes  and  other  severe weather  systems seem 
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even more independent of nearby fluctuations. In the oceans, current rings 
(cf. The Ring Group, 1981) and small-scale strong eddies (McWilliams et al., 
1983) are oft-quoted prototypes of isolated features. Finally, of course, there 
is the most colorful example of an independent eddy- - the  Great Red Spot 
of Jupiter, a vortex which has existed in a region of strong shears and 
fluctuations for over 300 years. 

The study of isolated synoptic-scale structures such as is undertaken here, 
may also be useful in constructing a hierarchy of models applicable to the 
"great outdoors". The results of surface gravity wave dynamical studies, for 
example, indicate that solitons are the basic building blocks from which 
more complex patterns are constructed. Perhaps a similarly useful decom- 
position could be found for the oceanic or atmospheric synoptic eddy field. 

The search for consistent isolated solitons has led to the discovery of a set 
of strongly non-linear solutions on the beta plane. All of these are form-pre- 
serving solutions and all have a multiple vortex structure (Stern, 1975; 
Larichev and Reznik, 1976a, 1976b; Flierl et al., 1980), with zero net relative 
angular momentum. In this paper, we will relax the condition that the 
disturbance be steadily moving, and we shall show that any isolated, slowly 
evolving disturbance in a stratified fluid (with arbitrary background flows) 
on the beta plane must have no net relative angular momentum. 

The qualifying terms "isolated" and "slowly varying" are important 
caveats which we shall define more fully below. However, they are not at all 
inconsistent with our usual conceptions of synoptic-scale dynamics. The 
basic result of our analysis is 

fl f f  dxdy qJ(x, y, t) = 0 

where + is the streamfunction for the depth-averaged flow and fl is the 
northward gradient of the Coriolis parameter. This applies to isolated eddies 
(in the absence of topography, cf. Rizzoli and Hendershott, 1980), whether 
or not the motion is steady or evolving; whether or not the fluid around the 
eddy is at rest or moving with horizontal or vertical shears. This condition on 

is equivalent to requiring that the net relative angular momentum of the 
eddy must be zero. 

The simplest structure satisfying this requirement is the modon. The 
theorem suggests that, on the beta plane, such features may be dynamically 
natural and significant, particularly in the barotropic flow field. Likewise, 
modons may also be important in determining the distributions of many 
properties, such as salinity in the ocean, since they are capable of transport- 
ing material large distances from the formation region. However, there is 
some question about the conditions under which highly organized dipole 
structures can arise. We feel that some illumination has been cast upon this 
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question both by the theoretical studies of Frederiksen (1982) and Baines 
(1983), and perhaps even more convincingly by the laboratory experiments 
of Griffiths and Linden (1981), where modons can be seen quite distinctly. 
Here, we shall describe some even simpler laboratory experiments in which 
modon structures are generated by rather nondescript forcing--strong jet-like 
intrusions into a rotating fluid. Modons are formed as the jet is deflected 
azimuthally, and a large fraction of the radially outward transport of the 
entering fluid is accomplished by dipole formation and the propagation of 
these structures through the surrounding water. To a first approximation, 
these eddies are modeled as a Batchelor (1967) dipole, the main difference 
being that the center of the experimental dipole moves in a curved path. This 
behavior will be accounted for by a modification of Batchelor's solution. We 
emphasize that the vanishing of the angular momentum can be achieved with 
patterns other than a simple dipole; in particular, the compensating counter- 
rotating flows could occur at depth (for baroclinic motions) or around the 
outside of an eddy. 

2. ZERO NET ANGULAR MOMENTUM--A THEOREM 

There are many possible derivations of this basic theorem, depending on 
the particular equations chosen as a starting point. We shall state here the 
most general case of interest to atmospheric and oceanic dynamicists. 
Consider a fluid satisfying the "anelastic" equations (Batchelor, 1953; Ogura 
and Phillips, 1962) in which the density term in the horizontal momentum 
and the mass equations is replaced by a hydrostatically balanced density, p.~ 
(z). This approximation filters out the sound waves. We need consider only 
the northward (y)  momentum equation 

-~TpsV+ V "(vpsv)+fup s Oyp-  O~rxy-~y'(~.y-~zrZy 

and the mass conservation equation 

v-(Vps)=0 

where f ( y )  is the Coriolis parameter, (u, v, w) are the (x, y, z) components 
of the total relative velocity, v, p is the normalized pressure and the 
(turbulent) stresses are denoted by r. 

The motion will be divided into two parts, one of which is a background 
flow denoted by v, p and ~, satisfying the above equation by itself. A simple 
example would be a laminar zonal flow varying with latitude and depth. The 
second component  is a superimposed isolated eddy field, v', p '  and ~-'. When 
the equations for v, p and ¢ are subtracted from the equations above, we get 
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0 
-~ o #  + v . [~ OsV' + ,/Os~ + v' o# ]  + / o #  

, 8 , 8 r , 8 r  , 

v (0s') = 0 

Note that no linearization or small amplitude assumption has been made 
here. Furthermore, the background field (~, p and ~) need not be zonally 
symmetric (or even steady). The formalism can be applied to as diverse 
phenomena as the motion of a Gulf Stream ring in the ocean or the motion 
of the Red Spot in the highly sheared flow on Jupiter. In either case, the 
natural assumption is that these features are isolated spatially so that they 
could be understood by a model with (v', p') going to zero far from the 
center. We shall vertically integrate both of these equations, applying the 
boundary condition 

psw' = 0 

at the top and bottom of the domain. These conditions restrict us to 
flat-bottomed geometries and also filter out external gravity waves. In 
addition, the restrictive upper boundary conditions alter the form of very 
long barotropic Rossby waves in ways which will be discussed more thor- 
oughly below. 

The integrated mass conservation equation states that the horizontal mass 
transport is nondivergent, and therefore a streamfunction ~ (x, y, t) can be 
defined by 

fdzpsu'=-~bv, fdzpsv'=+~ 
From these definitions, it follows immediately that the net linear momenta  
in the horizontal directions will vanish 

f f  dxdyfdzosu'=O, f f  dxdyfdzp~v'=O 

as long as the streamfunction vanishes faster than l/r far from the eddy. 
This is one of the restrictions which will specify precisely what we mean by 
"isolated". 

The integral of the momentum equation over all three dimensions is 

o_9_ ffdxdyfdzosv' +fid;fdz[(n. *)v'+ (, .  , ')~ + (~" v')~'] Os ~t 

+ ffdxdyffdzos,'= -~dlfdzp'¢.fi-~dlfdz.i,/ ,  

- ffdxdy'r;y(tOp)+ ffdxdyr/y(bottom) 
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where the line integral (d/)  is over a curve at large radial distances from the 
isolated eddy, and fi is a unit vector normal to this curve. The momentum 
advection terms vanish, provided v' ~ 0, faster than l / r ,  which is certainly 
consistent with the requirement placed on the barotropic component  (~  = 
o(1/r)) and which places a similar restriction on the baroclinic component.  
The term involving the stress at the lateral boundary  will also vanish. The 
key term is the one with the time derivative which vanishes according to the 
previous kinematical result that the net linear momentum vanishes at all 
times. This is the content of the "slowly varying" restriction: not only is 
required to be o ( 1 / r )  initially, but  also q~, is required to be o ( 1 / r )  so that the 
integral of the time derivative terms vanishes. Finally, we assume p '  decays 
as o (1 / r ) ,  which is consistent with a dominant  geostrophic balance in the far 
field of the eddy. Thus we see that the only non-vanishing terms in the 
y -momentum equation are the Coriolis term and the b o t t o m / t o p  viscous 
stress. Since f equals a constant plus fly, we have 

[jj 1 fl j j dxdy y j d z & u '  f f - dxd yrzy 
b o t t o m  

Under  typical modeling assumptions for evolution of oceanic mesoscale or 
atmospheric synoptic-scale motions, the right-hand side will vanish. Often, 
these stresses are dropped completely, and at most a horizontal stress term is 
included (e.g., layer models or inviscid models). However, we can also show 
that the contribution of the right-hand side vanishes when the bot tom 
friction is obtained using the well-known Ekman layer parameterization, 
whereby the stress is proportional to a linear combination of the geostrophic 
velocities directly above the viscous boundary  layer. Since these velocities are 
in turn proportional to the horizontal pressure derivatives, the horizontal 
integrals of the bo t tom stress will vanish for our isolated solutions, and thus 
we concluded that 

fffdxdyyfdzosu'=O 

to a very good approximation. This is equivalent to 

fl f f +dxd y = o 

provided we use a somewhat stronger condition on the behavior of the 
stream function at infinity, viz. + = o(1 / r2) .  Alternatively, we can use the 
net relative angular momentum 

M= f f  dxdy f dzpsIxv'-yu')= -2 f f  dxdy+ 
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and conclude 

M = 0  

if ~-~ 0 faster than 1/r 2. This conclusion is a generalization of the results 
obtained previously for uniformly propagating eddies, and the most im- 
portant assumption is + = o(1/ r  2) as r ~ ~ .  

If the latter condition is satisfied, a monopole on the beta plane is 
impossible because the net Coriolis force in the north-south direction would 
be non-zero, and there is no other force which can compensate for the 
imbalance. The dipole modon solutions and the approximate solutions 
discussed by Larichev and Reznik (1976b) clearly satisfy the integral con- 
straint. For other cases, the proof is more difficult, but can still be obtained: 
for the barotropic solitary wave in a shear flow discussed (for application to 
the Red Spot) by Maxworthy and Redekopp (1976), the cross-stream struc- 
ture q,(y) is set by the solutions of the stability equation for long dis- 
turbances, 

This can be integrated to show that flfdyq~ -- 0 as long as the eddy is isolated 
(not reaching to the north-south edges of the domain). The barotropic 
solutions, therefore, do not seem to be appropriate for representing the Red 
Spot, and these authors go on to describe a baroclinic solution. For the 
stratified case (and also for the stratified eddy models of Redekopp (1977) or 
Flierl (1979), the eddy has a baroclinic mode vertical structure so that 
although there is net relative angular momentum in the upper levels, there is 
opposite flow in the deep fluid with precisely canceling angular momentum. 
The model of Ingersoll and Cuong (1981) did not explicitly consider the 
deep flow field; however, if this field is also isolated, it must have opposite 
circulation to the upper level flow. All these theoretical considerations seem 
to imply the existence of an "antispot" deeper within Jupiter's atmosphere. 
Finally, the barotropic "rider" solutions of Flierl et al. (1980) also have 
angular momentum in the exterior which cancels that in the interior. 

The clearest motivation for adopting the isolation concept comes from the 
observation of ocean eddies, many of which have water mass characteristics 
distinctly different from their surroundings. Moreover, the observer is fre- 
quently compelled (for obvious reasons of data limitation) to implicitly 
regard his eddy as self-contained, due regard being made for an occasional 
jostle by a neighboring eddy or a slow drift associated with the mean 
circulation. Likewise, one approach to modeling such structures is to mini- 
mize far field eddy motions. 
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3. THE ADJUSTMENT PROCESS 

Despite these remarks which indicate the restrictions on the use of our 
general theorem, there is a paradoxical element to it which must be resolved. 
Surely one can conceive of an initial state on the beta plane having non-zero 
angular momentum (a monopole) and the question is how such a state can 
be reconciled with our theorem. 

The answer seems to be that an initially isolated eddy with non-zero net 
angular momentum must have a tendency field which is not isolated so that 
there will be finite boundary integrals which balance the non-zero Rossby 
vortex force. The signals necessary to set up these flows at the boundaries 
can be carried by acoustic, gravity or Rossby waves, and we now argue that 
the la t ter - - ( long barotropic) Rossby waves- -a re  the most important mecha- 
nisms in the monopole adjustment problem. 

First, we note the key role played by the /~-effect in the proof of the 
theorem. Without the variations of f ,  the net Coriolis force on a monopole 
would vanish, and the momentum equation would be balanced identically. 

Second, we can consider the case of the barotropic flow 

a 
a t  V2~ + J(@, V 2 @ + ~ y )  = 0 

where only Rossby waves can exist. If we multiply this equation by x and 
integrate horizontally, we find 

- ~ d l + v @ ~ "  fi + ~ d l ~ .  fi v+12 ~ - B j j dxd  [ 

For an eddy isolated at all times, the boundary integrals must vanish, 
implying that f f+ = O, as before. But if the latter condition is not satisfied in 
the initial state, then we shall show that the tendency field, ~b,, will not be 
isolated; and will yield finite boundary terms, so that the first two integrals 
above will not vanish. 

This can be demonstrated easily from the integral form of the equation for 
the tendency, @t 

@, (r') - 2Tr l f f  dxdy ln l r ' - r l [ f l+x+J(q~ '  V'%)]  

If we evaluate ~b, as r '  ~ oc by expanding in r/r ' ,  we find 

f f  cosO, f f  f f  +,(r ' )  - In r '  sin O' 
2rr dxd  yG(r) 2~rr' dxdy  xG 2~rr' dxdy  yG + 



240 

+ -  cos 
4err '2 

where G =/3+x + J ( + ,  V2tp). For  an isolated initial field, we can evaluate 
the integrals above by partial integrations to derive 

n cos o f f  2n cos 2 0 '  ffx+dxdy 
2err' . .  t~dxd y 4~rr,2 

sin 28' [ iS iS( ] + - -  fl y~dxdy+ ~by2-}~)dxdy + 
4~rr,2 •.. 

F rom this we can see that if the disturbance is isolated at all times so that 

= o(1 / r2) ,  not only will f f ~ d x d y  = 0, but also 

f x ~ d x d y = O  

f f ( nyq~ + q,~- q>x)dxd y = O 

(This can also be shown directly for isolated features by taking x 2, xy and y2 
moments  of the vorticity equation.) If the initial state has f f~dxdy  ~ O, the 
tendency field is clearly o ( 1 / r )  so that the eddy cannot remain isolated, and 
the boundary  integrals cannot be zero. The evolution of the eddy in this case 
will be influenced by far field effects: it may radiate energy or split into 
several vortices or evolve in some more complex fashion. This derivation 
proves that the initial condition, ffq~dxdy = 0, is necessary for isolation, but  
not  sufficient. 

The reason why there is an important  contribution to the boundary  terms 
when f f d x d y ~ *  O, even if ~b is initially isolated, is due to the infinite 
propagat ion speed 

B 
c -  

k 2 + l 2 

for Rossby waves when the wavenumbers k and l go to zero. The Fourier 
amplitude for this mode (k, l -+ 0) is proportional to ffq~dxdy. 

On the other hand, in a fluid with a free upper surface, the propagation 
velocities are all finite and therefore we would expect the results above to be 
modified. We can illustrate the changes in our basic theorem due to 
free-surface effects by  considering the shallow water equations 
a O 8 3 1 
D vh + -~x uvh + -~y vvh + fuh = - 3--7 2 gh2 

8hot ~ O + uh + =--vh = 0 oy 



241 

F o r  a fluid with a free surface,  the con t inu i ty  equa t ion  no longer  requires  

tha t  the net  l inear  m o m e n t a  be zero. In this case, however,  we are assured 
that  an init ially isolated d i s tu rbance  will remain  isolated for  all finite times. 
In tegra t ing  these equa t ions  leads to 

ffdxdyh + ffdxdy/,h=O 
 ffdxd,h=O 
In order  to indicate  the modi fy ing  effect  of a free surface, it suffices to 
cons ider  on ly  steadily t rans la t ing d is turbances  for  which 

0 0 
(.  

0t 0x 

and  

a 0 
( uh - ch ) + ~ v h  = 0 

ax  

This  defines a t r anspor t  s t r eamfunc t ion  in the moving  reference  frame: 

vh = [ ~/ + c h ~ y  ] x, uh = - [ ~b + c h ~ y  ] v + ch 

The  t ime der ivat ive te rm in the m o m e n t u m  equa t ion  will vanish, and vo lume  
in tegra t ion  gives 

B f f + d x d y  = -cffJlh-h )dxdy 
SO that  the mean  of  + clearly is not  necessari ly  zero *. But we can show that 
the term on the right is small by  using a geos t rophic  scaling [~b[ = g h o /  
fol h o - h ~[. We then get 

f f ~ d x d y  c 

g h o / f o l h o  - h~ l  f l g h o / f  2 

where  h 0 is an average dep th  scale. Since the p ropaga t ion  speed f l g h o / f o  2 is 
100 m s-~ for the ocean,  whereas  c is closer to 0.05 m s-1, it is clear that  the 

* This formula explains why Nof (1981) and Ingersoll and Cuong (1981) can obtain purely 
cyclonic eddies: they are considering only an upper layer overlying a very deep lower layer. 
Since the speeds obtained are much smaller than the external Rossby wave speed, our 
theorem shows that either the deeper fluid will have a compensating anticyclonic spin (with 
weak flows because the layer is thick) or the eddy will not remain isolated. Flierl's (1983) 
investigation of the full two-layer version of Nof's model showed that under most conditions, 
the eddy radiated energy as barotropic waves and was not isolated. 
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net angular momentum must still be nearly zero, so that the theorem is still 
an extremely good approximation. 

The relevance of these ideas to the oceanic eddy complex lies in the fact 
that dynamical consistency (the angular momentum theorem), as well as 
kinematical (mass continuity), requires us to recognize the motions in the 
surrounding water through which an eddy moves. If we want to analyze or 
model oceanic eddies as isolated entities, then the simplest dynamically 
consistent unit is the dipole. Naturally, we have no a priori assurance that 
such a conception will be sound, but one hopes that only near-neighbor (and 
not the whole ocean!) interactions will suffice for a start. 

4. EXPERIMENTAL STUDIES OF EDDY PAIRS 

The question naturally arises as to whether the realization of a modon 
requires a very special kind of excitation, or whether such structures would 
evolve naturally under rather general forcing conditions. A partial answer to 
this question is already provided by the experiments of Griffiths and Linden 
(1981) who observed a vortex pair evolving from the baroclinic instability 
wave on a density front. This section describes our attempts to realize a 
modon in the simpler context of a barotropic fluid. 

The experiment (Fig. 1) consists of forcing a jet of water to flow 
horizontally into a 2 m diameter rotating tank of water, and observing the 
motion downstream from the nozzle. The qualitative pattern to be described 

©,,, 

lOcm ~ ~m~ Q 
Fig. 1. Sketch of the experimental apparatus. 

4.5cm 

----2 

(~  #Ocm 

20cm 
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is independent of the azimuthal and radial position of the nozzle, provided it 
is far from the rim of the tank, and the pattern is also independent of the 
vertical height of the nozzle above the bottom. Indeed, in one run we used 
four parallel nozzles equally spaced throughout the depth of the fluid and 
obtained qualitatively similar dye patterns. In the quantitative runs (Figs. 3 
and 7), the nozzle (0.13 cm i.d.) was 3 cm long in the horizontal direction, 
and was fed via a graduated cylinder in which the head of water was 40 cm 
above mean sea level. A pinch valve on the feeding hose allowed us to squirt 
a small amount  of fluid into the tank. 

This water had a one percent (by volume) food coloring dye~ and the 
inflow rate was sufficiently large so that a conically symmetric turbulent ,jet 
was formed when the tank was not rotating. 

The experiment was started by filling the tank to the desired depth, taking 
care to keep the water temperature below wet bulb room temperature to 
avoid surface cooled convection currents. After insuring that the water was 
fully spun up at a counterclockwise period of 15 s, an eddy was generated by 
releasing the pinch valve and allowing the dyed water to emerge from the 
nozzle for 15 s. 

The incoming conical jet is deflected by the Coriolis force and starts to 
accumulate in an anticyclonic vortex (Fig. 2a, b) *. A Tay lo r -Proudman  
adjustment at this stage is also visible in the columnar structure of the 
spreading dye in the vortices, i.e., the three-dimensional turbulent motions in 
the jet  give way to two-dimensional and more-ordered motions. The jet feed 
has been turned off before Fig. 2c, and we see the beginnings of a large 
cyclonic vortex on one side of the original anticyclone, together with the 
emergence of a smaller cyclone. The subsequent figures show a fully formed 
modon pair moving away from the source region and detaching from the 
small cyclone. The modon invariably moves in a curved path, and sometimes 
collides with the small cyclone (Fig. 2h, i). In some runs the small cyclone 
would pair up with the anti-cyclonic vortex in the modon. 

Although we do not know why the "mother"  vortex (the anti-cyclone) 
gives birth to the "fa ther"  vortex (the larger cyclone) or to the "son"  of 
modon (the smaller cyclone), we may note that the incoming jet has equal 
amounts of cyclonic and anti-cyclonic shear, so that there is a source region 
for the cyclones which form outside the circumference of the anti-cyclonic 
eddy. The turbulent entrainment on the outside of the clockwise turning jet 
might provide the mechanism for the relatively low pressures in the father 
and the son. Furthermore,  we note that in the absence of rotation, the 

* For the qualitative runs, (Figs. 2 and 8), the nozzle was only 4 cm above the bottom. Other 
conditions were similar. 
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C 

Fig. 2. The evolution of a typical eddy pair generated by a turbulent jet. When the inflow is 
started, a three-dimensional jet (a and b) emerges and curves to the right in approximately an 
inertial circle. The inflow is stopped (c) and a large cyclonic vortex is formed on the left side 
of the anticyclone. The fully formed two-dimensional eddy pair (e) then propagates away 
from the source (f and g), and finally collides with the eddy left behind, severely distorting it 
in the process (h and i). The times for the above frames are 7.5, 15.1, 30.2, 45.3, 60.4, 105.7, 
151.0, 170, and 196.3 s after start, respectively. The period of rotation was 15.1 s. 

e n t r a i n m e n t  b y  the  je t  w o u l d  c rea t e  t wo  re la t ive ly  w e a k  s e c o n d a r y  c i rcu la -  

t i ons  on  e i ther  s ide o f  the  je t  a n d  e x t e n d i n g  ove r  the  en t i re  bas in ,  A p -  
p a r e n t l y ,  the  r o t a t i o n  m o d i f i e s  these  s e c o n d a r y  c i r cu l a t i ons  so tha t  their  
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lateral dimensions are not controlled by the walls of the tank, but appear 
instead as a modon and a vorticity-compensating son. 

The resulting modon is remarkably regular considering either the turbu- 
lent jet or the nebulous anti-cyclone which first forms. The time of modon 
formation is only about two tank revolutions, which suggests that the 
fl-effect is not important.  This inference is supported by the observation that 
the qualitative structure is the same even if we place the nozzle at the center 
of the rotating basin. Therefore, Batchelor's (1967) solution for a vortex pair 
might provide a model of the fully developed modon, except for the fact that 
the latter moves in a curved path and leaves the son behind. 

Measurements of the velocity structure of the modons were obtained as 
follows. The tank was covered with a Plexiglas lid before spin-up to 
minimize surface stress due to air drag. After the water was fully spun up, 
the run was started by carefully removing the lid over the quadrant  of the 
tank with the nozzle, strewing some paper pellets on the exposed free 
surface, and releasing the pinch valve for the 15-s interval. The flow was 
recorded by taking movies of the floats against a black tank bottom. The 
form of the eddies was also further revealed by dye as in Fig. 2, but this time 
the dye was a fluorescent one. 

Figure 3 shows six different float paths. The outline of the dyed region at 
the initial instant is shown as a lightly drawn curve. The anticyclonic eddy 
was well developed as could be seen from the dye. Also, the cyclonic eddy 

/ +4 .  7 + "" 
e ~ I e 2 

/ 
; "~-~,~/ ~ /  .~ 

t y,,,: ,i +:x././ l 
• " ~.'~i~.~ / ~i" t. ~. 

l l~ l  t / i °  

• l • ~ t  + I ~ l /  

10 cm 

Fig. 3. Paths  for six floats in the modon.  Dots  were made  every 3.1 s. Star t ing time was 60 s 
after  the start  of the experiment.  The outl ine of the dyed region at the initial ins tant  is shown 
as a light curve. 
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was almost completely formed. Float  5 was in the anticyclonic eddy and 
showed the largest epicyclic motion. Float 6 is nearer to the center and 
exhibited a smaller epicyclic path. Both stayed in the anticyclonic eddy for 
the duration of the obse rva t ion- -more  than three revolutions. Float 4 was 
left behind in the tail after one rotation. Floats 1, 2 and 3, on the other hand, 
show the motion in the cyclonic eddy. Float  2 ended up near the axis of the 
modon. Floats 1 and 2 exhibited weaker epicyclic flow than the floats in the 
anticyclonic eddy. 

The difference between the circulation of the two eddies is particularly 
illustrated by the two trajectories, W4 and $5 in Fig. 4. (The nomenclature is 
purely for reference to the original films.) We selected these tracks as being 
representative of the maximum epicyclic motion. Float $5 is in the cyclonic 
and W4 is in the anticyclonic eddy. The initial time for all trajectories in this 

j /  
. - f 

i l l  / $4 
/ '  • 

j / /  / 

o ~ •  ~ ~ o ~  ~ - . . . . .  ~ 

Oo/~ • 

10 cm 
L J 

Fig. 4. Two trajectories which exhibit the typical epicyclic motion of the two vortices. The 
light curve outlines the position of the dye at the initial instant (52 s after start). Time 
between dots was 35.1 s. 
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figure is 52 s after the start. Also shown is Float $4 which has no epicyclic 
motion. It was consistently located outside, but  near the trailing edge of the 
modon and is a good indication of the mean motion of the modon. 

Figure 5 shows three particles which were originally outside the eddies. 
One particle (No. 9), was initially at the nose of the leading edge of the 
modon (almost exactly at the interface between the d y e d / n o n - d y e d  region). 
This particle was entrained by the anticyclonic eddy. Another particle (No. 
7) which started out in a region before the eddy pair, was not entrained, but 
instead was pushed aside and exhibited a little loop as the modon passed. 
Also shown in Fig. 5 is the outline of the dye at the last frame. Note the tail, 
where particle No. 7 ended up. Figure 5 also shows a particle (No. 8) which 
is initially ahead of the anticyclonic eddy and which also ended up left 
behind in the tail. The S-1 and W-1 floats in Fig. 6a, b, together with the dye 
outlines, illustrate the correspondence of the epicyclic motion to the dye 
patterns. The starred points 1, 2 and 3, give the float positions in relation to 
the dye outlines at these times. The entire data set is consistent with an 
isolated and coherent pair of eddies propagating through the surrounding 
fluid. 

Figure 7 shows an instantaneous picture of the velocity vectors for the 
entire field. This was obtained by recording the position of pellets at one 
instant in the movie (at approximately 60 s after the jet  was first turned on), 

~ f - - ° ~ o  • • --•-°'•, - -  i / 

• /6"-- + y~ 

~ ,  , ~ o o e  ~lloO• 

, /  

* I ©  c m  
i J 

Fig. 5. The trajectories of three particles which were near, but possibly in front of the eddies. 
Particle 9 was entrained into the anticyclonic eddy. Particles 7 and 8 were deflected around 
the eddy and ended up in the region near the tail. Time between dots was 3.86 s. 
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Fig. 6. Particle trajectories and their relation to the dyed region of the modon. The light 
outlines labeled start, (60 s into the run), 1, 2, and 3 correspond to the outline of the dye at 
particular times. The position of the particles at times 1, 2 and 3 are indicated by numbered 
stars. 
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Fig. 7. Velocity vectors obtained by recording the traverse of the pellets over a 10-frame 
interval. This is a typically mature modon, approximately 60 s after the start of the 
experiment. 

and then advancing the movie ten frames, recording the position with 
another colored pen, and connecting the centers of the two pellet images. 
Great care was taken to eliminate frame jiggle by carefully overlaying 
selected pellets far from the modon,  which had been observed to be motion- 
less in the movie. The error in measurement is estimated to be less than two 
thicknesses of the cross line. A larger error arising from the decoupling of 
the surface flow and the interior flow by surface tension is possible, this 
effect being most extreme in float stagnation regions of high divergence or 
convergence. However, inspection of the movies and comparison of the 
movement  of pellets with motion of the dye when the flow has become 
two-dimensional,  indicate the pellets follow the interior flow closely. The 
data in Fig. 7 will be compared with theoretical models later. 
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There is a striking difference between this kind of free jet flow and the 
flow from a source located near a vertical wall (coast). In the latter case, the 
flow can easily proceed away from the source in a geostrophic coastal 
current because of the pressure support afforded by the boundary. No such 
support exists for our free jet, and the line integral of the pressure gradient 
along circles surrounding the nozzle vanishes. The preceding experiment 
suggests that dipole interactions are very important for transporting the 
incoming water away from a "free" source; otherwise the incoming jet would 
accumulate in a large anti-cyclone near the nozzle, and only Ekman friction 
would be available to spread the water over the rest of the tank. 

The question then arises as to the nature of the outflow from the nozzle 
when the inflow is maintained continuously (Fig. 8). Upon starting this run, 
a first modon pair (Fig. 8a) forms in the same fashion as in the pulsed cases 
(Fig. 2). Some time later, a second modon pair is observed to form and move 
off to the left (Fig. 8b, c). This appears to originate with the "son" giving 
birth to his own wife. Subsequent eddies form from the jet but do not 
generally pair as systematically (Fig. 8d-k),  and we have a truly two-dimen- 
sional turbulent region in which much of the transport occurs through 
stochastic vortex pairing rather than by Ekman friction. An important 
integral constraint pertaining to this turbulent flow will be derived in Section 
7. 

5. A VORTEX PAIR MOVING IN A CIRCULAR PATH 

The qualitative and quantitative experiments give convincing evidence 
that a coherent dipole is formed in the initial stages, and we shall now show 
that the path curvature is consistent with the observed asymmetry between 
the high and low pressure centers. The experiments suggest, as previously 
mentioned, that neither the free surface deformations nor the fl-effect 
induced by the mean parabolic shape of the surface are particularly im- 
portant. Furthermore, the parameter which measures the quantitative impor- 
tance of the fl-effect in the vorticity equation is 

f lL  2 1 f R  L 2 

U 4 R d 2  U 

modon has moved off to the right (b) and travels in a circular path (c). The second modon 
moves to the left (d). Other interesting events are the intersection of the first modon and jet 
(d, e and f), the collision of two modons (g and h) and the effect of the wall (i and j). 
Although the excessive dye (and the wall) obscures the pattern (k), the picture we get is that 
the scale of the two-dimensional eddies increases with distance from the source within a 
"wake" angle considerably larger than without rotation. Times after start for a-k  are, 
respectively, 75, 105, 150, 195, 210, 225, 240, 270, 285, 360 and 540 s. 
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where R is the tank radius of 1 m, R d is the radius of deformation (1.6 m), 
and U is the typical particle velocity in the modon. Using values of the latter 
obtained from Fig. 7, we find that flLZ/U-0.01 and conclude that the 
B-effect is negligible. 

Therefore, we need only consider the two-dimensional vorticity equation 

2~ 0-Tv2 +J(+,v )=0 
The simplest case which is relevent to the laboratory experiment consists of 
three-point vortices: an anticyclone paired with a slightly weaker cyclone 
and a third cyclone representing the son. Since no net relative vorticity is 
transported with the jet, the sum of the strengths of the three vortices will be 
chosen to be zero 

3 

Es,=0 
i=1  

where the streamfunction can be expressed as 

3 

= - Y'. S, ln[x - x i I 
i=1  

The evolution of the positions x i of the vortices, calculated in the standard 
way, is shown in Fig. 9 for the case when the three-point vortices are 
originally arranged in a triangle. Note how the pair moves away from the 
weaker "son"  vortex and translates in a circle with little influence from the 
son, which becomes almost stationary. The subsequent evolution is also 
interesting: the pair returns from behind to interact with the son which 
makes one loop about the mother  and diverts the pair into a different 
direction, with the whole sequence beginning again (Fig. 9c). Perhaps this is 
analogous to the more complex interaction seen in the laboratory (Fig. 2h). 

The next simplest case corresponds to a modon with a continuous 
distribution of vorticity but with non-zero circulation around the exterior, 
and we will obtain a dipole solution with unequal strength low and high 
centers. The point vortex model suggests that this solution, which has, as yet, 
no feature corresponding to the son, should be satisfactory during the phase 
of the motion where the pair is widely separated from the son and is moving 
steadily in a circle. The suggestion is confirmed by a subsequent argument. 

Let us, therefore, start by constructing an exact solution to the vorticity 
equation which is stationary in a coordinate system rotating clockwise with 
angular frequency [2. Using polar coordinates (R, 0) relative to the center of 
rotation in the vicinity of the son, the solution sought is 

g,=~(R,O+at) 
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Fig. 9. Tracks of three point vortices. (a) The circled positions are the initial locations of the 
vortices with the labels being the strengths s i. (b) Continued tracks showing the circular track 
of the pair with the "son" being almost stationary. In this regime, the continuous models 
shown in Fig. 11 should be accurate representations of the flow field and the motion of the 
pair. (c) Subsequent interactions of the pair with the "son", 

and  the vor t ic i ty  equa t ion  becomes  

J Y + - - T - '  v = 

I f  a is the m o d o n  radius,  R = a/~ the m o d o n  center  (Fig. 10) and ( r ,  ~)  
den o t e  polar  coord ina tes  relat ive to this center ,  then  

j ( ~ +  f~a  f~r 2 ) 
r sin ~ + ~7 2 4 = 0 

e --2-- '  
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Rewriting f~ in terms of the speed of motion along the track ¢, f2 = ¢E/a  

gives 

( or2 2~) 0 
J q~+cr sin q~+~-~-a, ~7 = 

For any function, F(z) ,  a solution of this equation is (  r2) 
V 2~ = F ~ + cr sin d~ + e-~a 

In the exterior of the modon (r  > a), the vorticity is zero so that 

a . r 
~ = B -  sm ~, + M l n -  

r a 

The quantity ~ + cr sin ~ + e c r 2 / 2 a  gives the streamfunction for the velocity 
relative to an observer rotating with the modon, and since this streamfunc- 
tion must be constant on r -- a, we have 

B sin ~ + ca sin ~ + c c a / 2  = constant 

and therefore 

B = - ca 

constant = e c a / 2  

In the interior of the modon, we can choose F arbitrarily and will follow 
the usual simple procedure of selecting a linear function, viz. 

F ( z )  = - k 2 ( z -  Eca /2 )  

The constant term here matches the interior vorticity to the exterior value 

Fig. 10. Geometry of solutions for a modon moving in a curved path, showing radius of track 
(A  = a / e ) ,  radius of modon (a) and the tank-centered (R, 0), or modon-centered (r, if), 
co-ordinate systems. 
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( F  = 0) at the bounding streamline z = ~ca/2. The solution to the interior 
equation 

c k  2 
( v Z + k 2 ) ~ / , =  - k 2 c r s i n e o + e  ( a Z - r  2) 

z a  

is 

ec 2ec 
+= - c r s i n ~ + D J , ( k r )  s i n ~ +  ~-~a ( a 2 -  r2) + - -  +EJo(kr  ) 

k2a 

The first matching condition, that r = a be a streamline in the rotating 
system 

f-ca f .ca [ - c a +  D J l ( k a ) + c a  ] s i n O +  2'--5-c + EJo(ka)+ - 
k Z a  2 2 

leads to the dispersion relationship 

J l (ka)  = 0 ~ ka = 3.83 

and to 

2f-c 
E -  

k 2aJo ( ka ) 

a positive constant. 
Finally, we match the tangential velocity to satisfy continuity of pressure, 

leading to 

2 ca 
D -  

kaJo ( ka ) 

M = - f-ca 
so that the final solution is 

= ca z j l ( k r  ) r sin q5 + 2f- Jo(kr)  E r 2 

kM-~o (-~a ~ a k-~a 2 1 Jo ( ka ) + ~ 1 -  ~ r < a 

where ka = 3.83 and E is the ratio of the modon radius to the radius of its 
track. In Fig. 11, we show contours of the streamfunction + in the tank 
frame and in the modon frame [q, + cr sin ~ + ~rZ/2a 2] for various f- values 
(c = 1). These show clearly the asymmetry of the mother and father and the 
curvature of the modon path which obviously depend upon the finite value 
of the circulation about  an exterior contour, i.e., in the region where the 
vorticity is zero. 

It only remains for us to remark on the connection (as indicated previ- 
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= 0 . 3  

< = 0 . 5  

C = I 

Fig. 11. S t reamfunct ion  of the flow for various e values. The  lef t -hand contours  are in the 
tank  f rame of reference while the contours  on the right show streamlines relative to the eddy. 
No te  the intensif icat ion of the high and  weakening of the low as the path  curvature  becomes 
greater.  Con tour  intervals are 0.25. 
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ously) of this solution with the continuous three vortex problem. An asymp- 
totic expansion ({ << 1) has been found (but not included herein) when the 
separation between the modon and the son is large (order 1/{) compared to 
the radius of the modon. Under these circumstances, the currents induced by 
the son, which itself is basically a simple cyclone of strength {, will be very 
weak [0({ :)] near the modon. The solution given above is then valid to order 
{2 near the modon; including the next order gives the small effect of the son 
on the propagation of the modon and vice versa. To examine further the 
structure of the flow or to consider the case when { -  1, numerical work 
seems necessary (perhaps using the methods of Deem and Zabusky, 1978). 

6. COMPARISONS WITH THE EXPERIMENTS 

The laboratory experiments we have described clearly involve many 
different and complex phenomena: the 3-D turbulent jet turning in an 
inertial circle; the formation of 2-D Taylor columns; the geostrophic adjust- 
ment; the evolution of a vortex pair from the amorphous cloud; the motion 
of the pair; and (in the continuous inflow cases) the formation of successive 
vortices with their irregular pairing and separating. The simple model 
discussed above is relevant to only a very small part of the whole problem, 
viz., the description of the motion of the vortex pair. We cannot, therefore, 
expect detailed quantitative agreement between the model flow field and the 
observed fields, but we will show that certain essential features of the 
laboratory modons are described by the simple model. 

In this section, we shall show that the laboratory modons: 
(1) are strong vortices which carry fluid with them in their motion; 
(2) translate due to the internal dynamics of the eddies; and 
(3) move in curved paths because of non-zero net vorticity within the 

pair. 
The first property, transport of a volume of water, is clearly shown in the 

dye photographs. A large fraction of the injected dyed fluid is carried away 
from the nozzle by the modon. In addition, entrained clear fluid also appears 
to be transported with the eddy in the father vortex. The dipole volume is 
approximately 2400 cm3--about  100 times the volume actually injected into 
the tank. The float tracks (Figs. 3-6) also show the cycloidal tracks char- 
acterizing a particle caught within a circulating and translating body of fluid. 

The second point, that the translation is a dynamical result of the vortex 
pair interaction, is more difficult to demonstrate. Particle number 7 in Fig. 5 
shows clearly the translation of the pair relative to the surrounding fluid. For 
a more quantitative comparison, we first show that the period for the floats 
is consistent with those predicted by the modon model. The periods of the 
floats shown in Figs. 3-6 range from 16.4 to 41.5 s. In the model solution, 
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this period depends on the distance of the float trajectory from the high or 
low center (as viewed in the frame of reference moving with the eddy). We 
have calculated the circulation time for the simple Batchelor vortex by 
integrating the Lagrangian equations; the results are that 

a 
T >  1 . 3 -  

¢ 

which corresponds to a lower bound on T of 18 + 3 s using a = 6.1 _+ 0.5 cm 
and c = 0.45 + 0.5 cm s-1. This period pertains to floats located near the 
high or low center. For  particles farther out, the period may be a factor of 
two larger if the maximum excursion of the float is about  90% of the radius; 
thus the observed periods are quite consistent with the theoretical periods. 

Another calculation which indicates that the currents in the pair are 
strong enough to account for the vortex movement  is a comparison of the 
flow speed in the center of the eddy with the translation rate. From the flow 
vectors in Fig. 7, we estimate the maximum particle speed is 1.8 cm s - l ,  
while the eddy moves at 0.45 cm s-~. The ratio of these two is in reasonable 
agreement with the value 

1 

Umax/C ~--- Jo(k------ ~ + 1 = 3 . 5  

predicted for the Batchelor modon (c = 0 case). 
These calculations suggest that the currents are indeed strong enough to 

account for the translation of the dipole. The fact that it moves in a circle 
appears to be associated with negative net vorticity within the modon. Our 
theory suggests that the net circulation on a contour enclosing the modon 
will be 

~ u- dl = -27rcaE 

as computed from the logarithmic term in +. For  this experiment, we obtain 

- 2~rcac = - 8.4 + 4 c m  2 S- 1 

using a----6.1 _+0.5 cm and A = 11-16 cm, giving a value of ~ = a / A  of 
0.3-0.5. The circulation integral in the above equation has been computed 
using the velocity vectors in Fig. 7 and a circular contour of radius 7.6 cm. 
The resulting directly measured net circulation is 

~ u -  d l  = - 10.6 c m  2 S - 1  

The agreement of the last two equations is again encouraging: it is clear that 
the vortex pair has net negative vorticity of the right size to account for the 
circular paths. These order of magnitude comparisons suggest that even our 
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highly idealized model does capture many features of the evolution of the 
flow. Modons appear to be easily realizable and natural elements of inertial 
flow in a rotating system. 

7. S U M M A R Y  A N D  SUGGESTIONS 

We have shown that a modon consisting of opposing vortices with 
unequal strength is able to account for the evolution of the motion when a 
small amount  of fluid is squirted into the rotating tank. We are confident 
that similar results would be obtained using a vertical line source (rather 
than a point or nozzle), in which case the motion would be two-dimensional 
from the start. 

It is interesting to recall that the two-dimensional vorticity equation 
"governs" the motion on the f-plane, and the Coriolis parameter  does not 
appear in this equation. The boundary conditions at the nozzle or at a 
vertical line source are also the same as in a non-rotating system, and we 
have an interesting paradox because the solutions of the vorticity equation 
do not "know"  that the fluid is rotating! Something is clearly missing from 
the vorticity equations (and the aforementioned inlet conditions) because the 
following simple argument (based on the momentum equation) is indeed 
sufficient to explain the observed circular path of the incoming jet and its 
obvious dependence on f .  We balance the Coriolis force with centrifugal 
force, assuming a laminar flow u = v(r)O with no net pressure difference 
across the radial ( r )  extremities of the jet. Thus, the integrated momentum 
equation across any section of the jet yields 

f v2 /f d r - -  + dry  = 0 
F 

from which we obtain the important  scale length 

ffdrv 
R f  

f dr v 

as a function of the input velocity profile and the Coriolis parameter. This 
determines not only the radius of curvature of the jet, but also the lateral 
dimension of the first (anti-cyclonic) vortex which forms. It probably also 
determines the scale of the smallest eddy in the two-dimensional turbulent 
jet  which results (Fig. 8) when there is a continuous inflow, as discussed 
further at the end of this section. 

Although we have no firm explanations of the process by which the 
"fa ther"  vortex forms from the "mother" ,  one speculation has already been 



0 

\ 
/ 

/ / 

/ 

½
 

E 
/ 

/ 

t 
• 

i 

f /
,f

-~
 

F
ig

. 
12

. 
In

st
ab

il
it

y 
of

 a
n 

in
it

ia
l 

st
at

e 
sh

ow
n 

in
 t

he
 f

ir
st

 f
ra

m
e.

 S
tr

ea
m

fu
nc

ti
on

 c
on

to
ur

s 
ar

e 
pr

es
en

te
d 

ev
er

y 
20

0 
ti

m
e-

st
ep

s.
 T

he
 p

er
io

di
ci

ty
 o

f 
th

e 
do

m
ai

n 
is

 n
ot

ic
ed

 i
n 

th
e 

la
st

 t
w

o 
fr

am
es

 w
he

re
 t

he
 m

od
on

 i
s 

di
sa

pp
ea

ri
ng

 t
o 

th
e 

so
ut

h 
an

d 
re

ap
pe

ar
in

g 
fr

om
 t

he
 n

or
th

. 



261 

o f fe red - - tha t  the entrainment process produces a cyclonic circulation. 
A second possibility is that the mother  vortex is unstable. A preliminary 

numerical experiment, integrating the 2-D vorticity equation forward in time 
from the initial state shown in Fig. 12, does show the formation of a dipole 
pair with a son vortex left behind. The initial condition was chosen to 
represent a geostrophically adjusted mother  vortex with some perturbations 
left from the inflow. Since we suspected the scale of the modon would be 
closely related to the width of the initial azimuthal current (and mindful of 
the Rayleigh stability criterion), we chose to try a fairly stagnant, high-pres- 
sure interior with a somewhat narrow band of current around the outside. 
The total length of integration shown is about seven turn-around times of 
the initial vortex. The numerical calculations are performed with a 32 × 32 
pseudospectral model in a periodic domain with biharmonic friction. Other 
initial conditions give similar results: the vortex breaks up into several 
eddies. Obviously, there are many questions and further experiments sug- 
gested by this calculation; we only show this example as evidence of the 
plausibility that instability may lead to dipolar structures. In addition, we 
note that Firing and Beardsley (1976) generated experimentally an initial 
state similar to this and observed that the flow field relaxed to a more 
dipolar structure. 

Finally, we would like to exhibit an important  integral constraining the 
statistically steady turbulent jet in a rotating System (Fig. 8). Using polar 
coordinates centered on the nozzle, with u as the radial and ~ as the 
azimuthal component,  we have the constancy of mass flux 

{j02"d0jd..s..} 
where the z integral is over the entire depth and the brackets denote a time 
average over the statistically steady state. Integrating the azimuthal momen- 
tum equation yields 

{~rrfo2~dOfdz(psUV))+{fo2'~dOfdz(psuv))=-fM+{~) 
where ~ is the net friction (Ekman) force in the azimuthal direction. If we 
neglect ~ (for a deep inertial fluid with largely compensating cyclonic and 
anti-cyclonic viscous forces) as a first approximation, then the solution of 
the differential equation above is 

{j02"d0jdz.su.} 
where we have used a boundedness condition at the origin ( r - - 0 ) .  This 
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equation, which merely expresses the constancy of the outward flux of total 
angular momentum, supplies a prediction of the turbulent Reynolds stress at 
moderate distances from the nozzle when the outflow is continuous and the 
tank is large (e.g., Fig. 8). Clearly, the mean flow (M)  is not geostrophic, 
although the velocities which contribute to the eddy stress term may be 
quasi-geostrophic. 

If the u, v correlation is independent of viscosity, then a similarity 
argument (assuming a turbulent wake angle 0 independent of r) yields 

Lu ' l~ lv ' l~ / fM 
PsH 

for the r.m.s, horizontal velocity, where H is the depth of the fluid and the 
coefficients of proportionality are universal. These velocities are large com- 
pared with the mean, u ~ M / p s H r ,  at large r (r > Rf), a result which is 
consistent with Fig. 8. In this turbulent run, we suggest that the outward 
transport of dyed fluid occurs as the strong eddies intermittently pair and 
jostle each other outwards. The effect is quite different from that which 
would be observed with monopolar eddies having no self-propulsive mecha- 
nism and being much less effective in tracer transport. The differences 
between our experiment and non-rotating turbulent jet flow are striking, 
since there are no constraints on the mean radial outflow in the latter case 
and the fluctuating velocities are a smaller fraction of the mean flow than in 
the rotating case. 

The vortices in our experiment produce eddies of larger size as the 
distance from the nozzle increases. Often, intermittent dipole formation can 
be seen, and the "cascade to larger scales" appears to be connected with 
dipole structures. Although such structures need not be ubiquitous, we 
believe that our experiment demonstrates that modons are important in 
certain, homogeneous f-plane turbulent flows and our theorem indicates that 
they should play an even stronger role on the beta plane. They can be 
generated from conditions with no resemblance to a dipole and they can be 
very efficient in long-range transport of both passive and dynamical proper- 
ties. 
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